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Abstract 

This paper considers the effect of using a GARCH filter on the properties of the BDS test 

statistic as well as a number of other issues relating to the application of the test. It is found 

that, for certain values of the user-adjustable parameters, the finite sample distribution of the 

test is far-removed from asymptotic normality. In particular, when data generated from some 

completely different model class are filtered through a GARCH model, the frequency of 

rejection of iid falls, often substantially. The implication of this result is that it might be 

inappropriate to use non-rejection of iid of the standardised residuals of a GARCH model as 

evidence that the GARCH model “fits” the data. 
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I. Introduction 

Testing for nonlinearity in financial and economic time series has become a highly active area 

of research over the past decade. Interest in nonlinear models has developed in parallel with 

an expansion in the number of and understanding of the properties of tools for nonlinear data 

analysis. By far the most widely adopted test for non-linear structure has been the BDS test 

due to Brock, Dechert, Scheinkman and LeBaron (1987, revised in 1996). The base null 

hypothesis for this test is that the data are independently and identically distributed (iid), and 

any departure from iid should lead to rejection of this null in favour of an unspecified 

alternative hypothesis: the test is a pure hypothesis test. Hence the test can be considered a 

broad portmanteau test which has been shown to have reasonable power against a variety of 

nonlinear data generating processes (see Brock et al., 1991 for an extensive Monte Carlo 

study).  

 

The common finding among almost all researchers who apply the test is that the iid null is 

rejected, although this rejection could be the result of either linear or non-linear structure in 

the data. One way to turn the test into one against only nonlinear alternatives  is to fit an 

autoregressive or ARMA model of sufficiently high order to ensure that the residuals are 

serially uncorrelated, and then to test the residuals for iid using the BDS test. If rejection 

occurs, and if the focus is limited to univariate time series
1
, it must by definition imply that 

the data generating mechanism has inherent nonlinearities since linear dependence has been 

filtered out. Brock et al. (1991) show that the BDS test is asymptotically nuisance parameter 

free (NPF) when applied to the residuals of a linear model, implying that the same set of 

                                                           
1
 Another possibility is that the observed “nonlinearity” is simply picking up a linear conditional relationship 

between variables so that the evidence of nonlinearity would disappear once the appropriate conditioning model 

had been specified. 
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(standard normal) critical values can be used when the test is applied to residuals as to the raw 

data. 

 

Unfortunately, evidence of nonlinearity per se does not give the researcher any clue as to the 

likely cause of the nonlinearity, and hence an appropriate functional form for the resultant 

nonlinear model. Thus the researcher is left to make an entirely separate decision on some 

other grounds as to which of a number of possible candidate models might best describe the 

data. In particular, the BDS test has reasonable power against the GARCH family of models, 

and it is often difficult to disentangle the nonlinearity generated by this form of dependence in 

the second moment from nonlinearities arising as a result of other causes (see Brooks, 1996, 

for a more detailed discussion of this issue). One solution to this potential problem is to 

estimate some form of GARCH model for the series (xt) , such as 

x u ut t t  ,  N(0,ht)        (1) 

h u ht t t     1 1

2

1 1 ,  

save the residuals ( ut ) and divide each residual by its corresponding conditional standard 

deviation estimate ( ht ). These standardised residuals are themselves subjected to the BDS 

test and the null hypothesis then becomes one that the specified GARCH model is sufficient to 

model the nonlinear structure in the data against an unspecified alternative that it is not
2
.  

 

This procedure has been followed a number of times in the literature, and opinions are still 

mixed as to whether the GARCH model alone is sufficient to capture all of the nonlinearity in 

economic and financial data or not. Abhyankar et al. (1995) and Hsieh (1991), for example, 

                                                           
2
 It is, of course, possible that there may be further dependence in the conditional second moment which requires 

a higher order GARCH model to capture it, although this point is typically ignored in the testing literature which 

automatically assumes that the remaining structure must be of some other form. 
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find that a significant degree of nonlinearity remains in the standardised residuals of an 

EGARCH(1,1) model of intra-daily UK stock index futures and daily US stock index returns 

respectively. LeBaron (1988), on the other hand, finds that GARCH residuals do not reject iid 

on a sample of weekly value-weighted CRSP stock returns, a result echoed by Hsieh (1989) 

for a set of five daily US Dollar currency series.  

 

The NPF result does not necessarily hold for nonlinear models, however. In particular, Brock 

and Potter (1992, p155) note that the BDS statistic only has the same distribution on the 

estimated residuals of a model as the true residuals when the data are generated by a member 

of the null model class. This, then, does not rule out the possibility that the use of 

inappropriate filter models could radically alter the null distribution of the test statistic, even 

with an infinite amount of data. 

 

The problem is much greater still in the case of finite samples. Brock et al. (1991) themselves 

note: 

 “...Our Monte Carlo experiments have found that the asymptotic distribution does not 

approximate very well the BDS statistic applied to standardised residuals of ARCH, GARCH 

and EGARCH models.”        (p76). 

This leads them to use Monte Carlo methods to derive a new set of critical values for 

comparison with BDS test statistics on the standardised residuals of ARCH and GARCH 

models for “small” sample sizes (100, 500, and 1000 observations). Hsieh (1991) extends the 

simulation to the case where the model under the null is an EGARCH. For certain values of 

the BDS test user-adjustable parameters, these studies find that the probability distribution for 

the test statistics can be markedly different from that of a standard normal distribution. 
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In this paper, we extend and generalise the recent Monte Carlo studies described above, and 

also that of Chappell et al. (1996a) to consider the effect of using (very) mis-specified 

GARCH filters on the finite sample distribution of the BDS test statistic. This line of enquiry 

appears highly relevant in the light of many recent studies that have followed this procedure 

(that is, linear and GARCH filtering and then a BDS application to “see what is left”). The 

remainder of the paper develops as follows. Section two gives a presentation of the BDS test 

and highlights a number of issues involved in its application to actual data. This treatment is 

kept deliberately brief since the formulation of the BDS test will probably be familiar to the 

vast majority of interested readers. Section three describes the Monte Carlo framework 

adopted, and section four displays and comments upon our results. Section five concludes and 

offers a number of practical suggestions which might guide future research in this area. 

 

II. A Description of the BDS Test 

The test of Brock, Dechert, Scheinkman and LeBaron (1996, hereafter, denoted BDS after the 

original paper which was written by only the first three authors) takes the concept of the 

correlation integral and transforms it into a formal test statistic which is asymptotically 

distributed as a standard normal variable under the null hypothesis of independent and 

identical distribution (iid) against an unspecified alternative. The BDS test statistic is 

calculated as follows. First, the “m-histories” of the data x x x xt

m

t t t m   ( , ,..., )1 1  are 

calculated for t = 1, 2, ..., T-m for some integer embedding dimension m  2. The correlation 

integral is then computed, which counts the proportion of points in m-dimensional hyperspace 

that are within a distance  of each other: 

C
T m T m

I x xm T t

m

s

m

t s
, ( )

( )( )
( , ) 

    


2

1
      (2) 
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where I   is an indicator function that equals one if x xt

m

s

m    and zero otherwise, and   

denotes the sup. norm. BDS show that under the null hypothesis that the observed xt are iid, 

then  

C T Cm T

asymp m

,

.
( , ) ( )   1  with probability one. The BDS test statistic, which therefore has a 

limiting standard normal distribution, then follows as: 

W m T

m T T

m

m T

T
C C

,

/ , ,

,

( )
[ ( ) ( ) ]

( )


 

 
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
1 2 1

        (3) 

where m T,  () = 2 [K
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and K() is estimated by  K

h x x x

T m T m T m

t s r
t

m

s

m

r

m

( )

( , , )

[( )( )( )]





     

  

6

1 1
 

and h(i,j,k) = [I(i,j) I(j,k)+ I(i,k) I(k,j)+ I(j,i) I(i,k)]/3 

 

III. The Simulation Framework 

We simulate samples of length 500 observations according to five models: an AR(1), an 

MA(1)
3
, a GARCH(1,1), a SETAR(1,1) and a bilinear(0,0,1,1) model. The length 500 

probably represents a lower bound on the sample sizes typically available in finance, although 

it is still much greater than would be available to macroeconomists. Then a GARCH(1,1) 

model is estimated for the data, and the standardised residuals are obtained. The BDS is 

calculated on these residuals for values of  of 0.5, 1, 1.5 and 2 times the standard deviation of 

the data, for values of the embedding dimension, m, from 2 to 10. 

                                                           
3
 Although, as an anonymous referee has pointed out, a competent researcher would not blindly apply a 

GARCH(1,1) model before checking first for the presence of ARCH-type structure in the errors. In particular, an 

applied econometrician should therefore not fit a GARCH model to a series generated by a SETAR process 

unless it could be mistaken for ARCH, which seems unlikely given the results presented below. However, 

researchers do occasionally seem to use the BDS test exhaustively before applying any others, and for this reason 

and for completeness and ease of comparison, the results are presented for all 5 DGPs. 
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This procedure is repeated 5,000 times
4
, and the proportion of rejections of iid at each 

significance level is recorded. Appropriate critical values for the GARCH filter are derived 

from the case where the data are generated by a GARCH(1,1) model and then an appropriately 

specified GARCH model is estimated on the data. The actual models estimated, including the 

necessary model parameters are as follows: 

 

AR(1) 

x x ut t t 05 1.          (4) 

 

MA(1) 

x u ut t t 05 1.          (5) 

 

GARCH(1,1) 

x u ut t t ,   N(0,ht)        (6) 

h u ht t t   0 01 01 081

2

1. . .  

 

SETAR(1,1) 

x
x u if x

x u otherwiset

t t t

t t


  

 





 



05 05 2

05 05

1 1

1

. .

. .
      (7) 

 

Bilinear 

x x u ut t t t  0 4 1 1.          (8) 
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IV. Results 

As a starting point for comparison with previous studies in this area, table 1 shows the 

percentage of rejections of iid when the BDS statistics are estimated on (unfiltered) data 

generated using the GARCH model in (6). The percentage of rejections is clearly very high - 

typically at least 80%, although a couple of further points are worth noting. First, this power is 

high, but far from 100%. Brock et al. (1991) show that the power of the test in detecting 

deviations from iid if the DGP is GARCH asymptotically approaches unity, but it is not clear 

at what rate. The sample size considered here is large by traditional econometric standards, 

but Brock et al. recommend 200 as a very minimum necessary; 500 observations is still 

considered a “small” sample for this test. Second, the power of the test appears to rise both as 

the ratio of  /  is increased, and also as the value of the embedding dimension is increased. 

Unfortunately, Brock et al. show that the test is considerably oversized in finite samples for 

large values of m relative to the number of observations (by “large”, they mean m > 5 for T = 

500); we will return to this point later. 

 

Appropriate critical values for the BDS test applied to standardised residuals of a 

GARCH(1,1) model are given in table 2, along with corresponding critical values for a 

standard normal variate. The critical values are mostly similar to those of Brock et al. (1991, 

p277, table F2) and Hsieh (1991, p362, footnote 4), although the number of replications used 

in this study is more than twice as large, and hence should give more accurate probabilities in 

                                                                                                                                                                                     
4
 This value is severely constrained by CPU time. In spite of efficient code and fast machines, the steps involved 

(data generation, GARCH model estimation, and BDS statistic calculation) for a sample size of 500 takes a non-

trivial amount of processing time. 
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the tails of the distribution
5
. Brock et al. (1991, p169) recommend the use of  /  = 0.5 to 1.5 

and m = 2 to 5 for a sample of this size in order to achieve the best approximation to the 

asymptotic theory over the possible parameter space, while achieving satisfactory power. If 

the users of the test stay within the confines of these guidelines, then the critical values never 

stray far from the standard normal. However, many researchers do not follow this advice, and 

appear to use the test for higher values of m and  /  in spite of insufficiently long samples. 

For  /  = 1, the probability distribution under the null hypothesis is significantly skewed 

towards the left-hand tail, although the upper critical values remain approximately the same. 

The behaviour of the test is worst when  /  is small and m is large. For example, consider 

the case when  /  = 0.5 and m = 10. The null distribution is now skewed greatly towards the 

right-hand tail, although the left-hand tail is also fatter than that of a normal distribution. The 

upper critical value for a 2-sided test of size 1% is now 48.418 compared to 2.576 for a 

standard normal. 

 

IV.1 The Effect of Mis-specified GARCH Filters 

In order to assess the effect of mis-specified GARCH filers on the finite sample distribution of 

the BDS test statistic, it is first necessary to look at the rejection frequencies of the null of iid 

for the four models (AR, MA, SETAR, bilinear) in the absence of any filters. Results for the 

proportion of rejections of iid for each of these models are shown in tables 3 to 6. In all four 

cases, the power of the test is virtually 100%, although it is higher for the non-linear data 

generating processes than for the linear ones, and the proportion of rejections is reduced 

somewhat when  /  = 0.5 or m > 5; the power of the test is always greater than if the data are 

generated by a GARCH model, as Brock et al. (1991) note. Also, in all cases, rejection occurs 

                                                           
5
 For example, the 1% 2-sided critical values will be based on only 10 observations in each tail for the earlier 

studies and 25 observations here. This quantity is still rather small, and is prevented from further increases by the 
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in the right hand tail of the distribution, indicating more clustering of the m-histories in 

hyperspace than would be the case if the data were generated randomly (rather than less 

clustering which would be the case if the test statistics were significantly negative). 

 

Tables 7 to 10 show the proportion of rejections when the data are generated by an AR(1), 

MA(1), SETAR and bilinear model respectively, but with a GARCH model then estimated on 

the data, and the BDS statistic calculated on the standardised residuals of the GARCH “fit”. 

The null hypothesis is now that these standardised residuals are iid and thus that there is no 

further dependence left in the data. This null hypothesis should clearly be rejected, since in 

none of the four cases was the data generated by a model resembling one from the GARCH 

family. Thus one would expect that the proportion of rejections at a given significance level 

should remain close to 100%. On the whole, however, this is found not to be the case. For the 

linear DGP models (AR and MA), the fall in the proportion of rejections is mostly small when 

 /  = 0.5, 1, or 1.5 and m  5. For the AR(1) DGP, for example, when  /  = 1 and m = 3, 

the fall for a 1% size of test is from 100% with no filter to 99.48% with the GARCH filter. 

The effect is very marked, however, for the cases when  /  = 2 or m > 5. The most extreme 

example is for the MA(1) DGP with  /  = 2 and m = 10; the rejection rate is around 73% 

with no filter using a 1% significance level, but this falls to just over 5% when the GARCH 

model is estimated and the BDS test is applied to its standardised residuals. It is important to 

note that, in this case, the linear model is not nested in the GARCH model  since the latter was 

estimated under a specification of equation (1), which includes only a constant term in the 

mean equation. 

 

                                                                                                                                                                                     

intense CPU requirements of the procedure discussed previously. 
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The effect of GARCH filtering is much more pronounced when the data generating process is 

nonlinear. First, when 500 observations are generated using a SETAR model, even for the 

“preferable” choices of  /  = (0.5 to 1.5) and m ( 5) for a sample of this size, the number of 

times the null hypothesis that the series of interest is iid is rejected, falls significantly. For 

example, with  /  = 1 and m = 5, rejection of the iid null occurs virtually 100% of the time 

for the raw data, but only 83% of the time when the test is calculated on the residuals of a 

GARCH model of the data. Again, the problem becomes exacerbated with greater values of  

/  and m.  

 

Finally, the most interesting and extreme results are observed when samples are generated 

from a bilinear model, as tables 6 and 10 show. Rejection of the iid null occurs on the 

unfiltered data for almost every replication for almost all combinations of the user-adjustable 

parameters
6
. When the test statistic is re-computed on the standardised residuals of the 

GARCH model, however, evidence of nonlinear structure is significantly reduced. When  /  

= 2 and m = 2 or 3, the two-sided rejection frequencies are virtually identical to those one 

would expect if the data were independent draws from a standard normal distribution. Other 

values of the user-adjustable parameters show a similar, although less marked picture. Weiss 

(1986) shows that bilinear and GARCH models can be mistaken for one another, and Bera 

and Higgins (1997) demonstrate that the two models have very similar unconditional moment 

structures. So perhaps one should not be surprised that the GARCH model kills the 

nonlinearities, making the resultant standardised residuals look like an iid process. The results 

presented here for the bilinear model nonetheless serve to show that the BDS test cannot 

reliably discriminate between the two models.  
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V. Conclusions 

This paper has examined the use of BDS tests as a diagnostic for the adequacy of GARCH 

models as valid data descriptions. Our results have a number of implications for future 

research in this area. First, although Brock et al. (1991) recommend the use of  /  = 0.5 to 

1.5 and m  5 for sample sizes of 500 or less, this advice is often ignored by empirical 

researchers who presumably assume that more output is always better than less. Our finding is 

that the null distribution of the test statistic can depart substantially from its asymptotic 

normal distribution when  /  = 2 or m  5. The conclusions of many recent papers rejecting 

iid appear to hinge on a body of evidence which includes results computed using these 

parameter values, although we suggest that the test is ill-behaved, unpredictable, and therefore 

should not be computed in these cases.  

 

Second, many researchers have observed significant BDS statistics on linearly independent 

(i.e. ARMA-filtered) data, but insignificant BDS statistics on the standardised residuals of a 

GARCH model of that data (e.g. Hsieh, 1989). The researchers then typically conclude that 

the GARCH model can “explain” a large part of the nonlinearities or even stronger, that 

GARCH successfully “models” the series. The upshot of the results presented here is that one 

would probably observe similar results if the data were truly generated by a completely 

different model (e.g. plausibly a bilinear, or even a SETAR). This is important since, as Bera 

and Higgins (1997) note, a bilinear process has a potentially predictable conditional mean, 

whereas a GARCH process can only help to predict the conditional variance.  

 

The researcher can never know the true data generating process, and hence any econometric 

study is essentially an exercise in attempting to find an acceptable approximation to it. In the 

                                                                                                                                                                                     
6
 With the possible exception of  /  = 0.5 and m  7. 
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case of the bilinear model, GARCH may provide such a reasonable approximation to the 

DGP; the same cannot be said of the SETAR model, however, where the conditional variance 

is typically assumed non-autocorrelated. In a number of recent applied studies, the two models 

(SETAR and GARCH) may both be plausible and competing data descriptions. For example, 

with regard to foreign exchange rates, the former may represent the behaviour of a series 

which is constrained to lie within two boundaries in the European exchange rate mechanism 

(see Chappell et al., 1996b) and the latter can allow for volatility clustering effects (see 

Bollerslev, 1986).  

 

Although the mis-specifications used as examples here are severe, and might be detected by a 

careful researcher jointly using other tests, our results should serve as a warning against 

placing too much emphasis on BDS statistics in this context. They can be fairly poor 

discriminators and inferences about the probable model class should be made jointly with tests 

which have power against only one class of alternatives, such as those proposed by Bera and 

Higgins (1997) or Tsay (1989). Singular use of the BDS portmanteau test could be 

misleading. 
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Table 1: Percentage of Rejections of the Null of iid at the 5% Level for Data Drawn from a GARCH-

(1,1) Model 

 m 

 /  2 3 4 5 6 7 8 9 10 

0.5 70.88 81.14 84.34 84.82 83.52 80.78 79.88 88.80 94.18 

1 76.42 86.66 90.12 91.78 93.04 93.46 93.78 93.58 93.14 

1.5 80.06 90.98 92.82 94.30 95.20 95.72 96.04 96.10 96.16 

2 80.94 92.60 92.32 94.28 95.14 95.92 96.10 96.60 96.76 

 



 15 

Table 2: The Null Distribution for the BDS Test for the Residuals of a GARCH Model with 500 

Observations 

  m 

%’age

point 

 /  2 3 4 5 6 7 8 9 10 N(0,1) 

0.5% 0.5 -2.583 -2.484 -2.956 -3.543 -4.553 -5.940 -7.016 -6.373 -5.410 -2.576 

2.5% 0.5 -1.965 -2.071 -2.296 -2.755 -3.627 -4.670 -6.088 -5.810 -4.941 -1.960 

5% 0.5 -1.719 -1.800 -1.976 -2.375 -3.078 -4.090 -5.363 -5.518 -4.726 -1.645 

95% 0.5  1.515  1.579  1.773  2.173  3.008  4.532  7.139 11.799 19.783   1.645 

97.5% 0.5  1.886  1.943  2.192  2.766  3.818  5.622  9.069 15.751 27.968   1.960 

99.5% 0.5  2.467  2.623  3.228  4.122  5.258  7.984 13.192 24.197 48.418   2.576 

0.5% 1 -2.495 -2.236 -2.067 -1.964 -1.940 -1.976 -2.055 -2.139 -2.327 -2.576 

2.5% 1 -1.905 -1.743 -1.626 -1.569 -1.552 -1.570 -1.619 -1.727 -1.894 -1.960 

5% 1 -1.660 -1.488 -1.411 -1.357 -1.351 -1.375 -1.420 -1.509 -1.634 -1.645 

95% 1  1.175  1.078  1.007  1.004  1.026  1.099  1.204  1.358  1.569   1.645 

97.5% 1  1.483  1.369  1.302  1.322  1.364  1.460  1.630  1.725  1.982   1.960 

99.5% 1  2.155  2.109  2.122  2.101  2.269  2.481  2.840  3.020  3.282   2.576 

0.5% 1.5 -3.890 -2.970 -2.620 -2.216 -2.033 -1.909 -1.913 -1.894 -1.887 -2.576 

2.5% 1.5 -2.639 -2.075 -1.859 -1.695 -1.576 -1.545 -1.485 -1.467 -1.429 -1.960 

5% 1.5 -2.208 -1.770 -1.546 -1.439 -1.359 -1.319 -1.272 -1.253 -1.245 -1.645 

95% 1.5  1.112  1.006  0.913  0.862  0.846  0.826  0.838  0.837  0.876   1.645 

97.5% 1.5  1.454  1.280  1.196  1.130  1.135  1.151  1.147  1.183  1.208   1.960 

99.5% 1.5  2.013  2.013  1.933  1.981  2.402  2.494  2.709  2.985  3.156   2.576 

0.5% 2 -13.96 -8.931 -7.197 -6.050 -5.500 -5.024 -4.566 -4.345 -4.148 -2.576 

2.5% 2 -7.610 -5.171 -4.171 -3.594 -3.157 -2.894 -2.708 -2.523 -2.395 -1.960 

5% 2 -5.778 -3.980 -3.170  2.725 -2.445 -2.234 -2.070 -1.957 -1.856 -1.645 

95% 2  1.123  1.051  0.991  0.990  0.976  0.949  0.918  0.918  0.927  1.645 

97.5% 2  1.559  1.458  1.389  1.296  1.276  1.290  1.310  1.343  1.313  1.960 

99.5% 2  2.404  2.368  2.229  2.273  2.433  2.515  2.763  2.858  3.002  2.576 
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Table 3: Proportion of Rejections for the BDS Test for 500 Observations Simulated using an AR(1) 

Model 

  m 

%’age

point 

 /  2 3 4 5 6 7 8 9 10 N(0,1) 

0.5% 0.5 0.00 0.00 0.00 0.00 0.00 0.12 2.96 12.50 49.46 0.5 

2.5% 0.5 0.00 0.00 0.00 0.00 0.00 0.22 3.18 12.50 49.48 2.5 

5% 0.5 0.00 0.00 0.00 0.00 0.00 0.34 3.66 12.50 49.48 5 

95% 0.5 100.0 99.98 99.98 99.74 98.60 94.42 84.36 69.64 50.52 5 

97.5% 0.5 100.0 99.96 99.92 99.62 98.24 93.46 82.76 68.88 50.50 2.5 

99.5% 0.5 100.0 99.94 99.78 99.04 96.76 90.66 79.96 67.08 50.46 0.5 

0.5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 

2.5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.5 

5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 

95% 1 100.0 100.0 100.0 100.0 100.0 99.92 99.88 99.70 99.50 5 

97.5% 1 100.0 100.0 100.0 100.0 99.96 99.90 99.78 99.60 99.14 2.5 

99.5% 1 100.0 100.0 100.0 99.92 99.78 99.70 99.40 98.80 98.28 0.5 

0.5% 1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 

2.5% 1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.5 

5% 1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 

95% 1.5 100.0 100.0 100.0 100.0 100.0 99.98 99.98 99.98 99.94 5 

97.5% 1.5 99.98 99.98 99.98 99.98 99.96 99.98 99.96 99.90 99.72 2.5 

99.5% 1.5 99.96 99.98 99.96 99.94 99.90 99.78 99.60 98.38 97.16 0.5 

0.5% 2 0.20 0.06 0.06 0.06 0.04 0.00 0.00 0.00 0.02 0.5 

2.5% 2 0.26 0.08 0.06 0.06 0.06 0.04 0.04 0.02 0.02 2.5 

5% 2 0.26 0.10 0.06 0.06 0.06 0.06 0.04 0.04 0.02 5 

95% 2 99.20 99.72 99.76 99.80 99.78 99.74 99.72 99.58 99.40 5 

97.5% 2 99.08 99.68 99.74 99.70 99.64 99.58 99.50 99.28 99.06 2.5 

99.5% 2 98.84 99.48 99.58 99.50 99.32 99.08 98.66 98.26 97.76 0.5 
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Table 4: Proportion of Rejections for the BDS Test for 500 Observations Simulated using an MA(1) 

Model 

  m 

%’age

point 

 /  2 3 4 5 6 7 8 9 10 N(0,1) 

0.5% 0.5 0.00 0.00 0.00 0.00 0.02 0.72 6.78 19.70 61.06 0.5 

2.5% 0.5 0.00 0.00 0.00 0.00 0.06 1.56 7.34 19.70 61.06 2.5 

5% 0.5 0.00 0.00 0.00 0.00 0.12 1.88 8.52 19.70 61.06 5 

95% 0.5 99.86 99.84 99.28 97.50 92.60 83.96 71.42 56.68 38.94 5 

97.5% 0.5 99.70 99.64 98.84 96.28 90.66 81.76 69.04 55.94 38.94 2.5 

99.5% 0.5 98.86 98.82 97.02 93.04 85.52 76.30 64.40 53.48 38.92 0.5 

0.5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 

2.5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.5 

5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 

95% 1 99.94 100.0 99.94 99.78 99.58 99.04 97.94 96.28 94.20 5 

97.5% 1 99.92 99.86 99.78 99.52 98.96 97.98 96.42 94.04 91.60 2.5 

99.5% 1 99.42 99.50 99.12 98.00 96.02 93.68 90.70 87.44 83.98 0.5 

0.5% 1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 

2.5% 1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.5 

5% 1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 

95% 1.5 99.88 99.98 99.90 99.64 99.28 98.78 98.10 96.96 95.72 5 

97.5% 1.5 99.66 99.86 99.64 99.26 98.58 97.62 96.34 94.46 92.64 2.5 

99.5% 1.5 99.08 99.24 98.46 97.30 95.54 92.76 89.88 86.70 83.74 0.5 

0.5% 2 0.88 0.18 0.12 0.06 0.02 0.02 0.00 0.00 0.00 0.5 

2.5% 2 1.12 0.20 0.14 0.10 0.02 0.02 0.04 0.04 0.04 2.5 

5% 2 1.44 0.30 0.18 0.10 0.04 0.06 0.04 0.06 0.06 5 

95% 2 93.36 96.78 97.02 96.34 95.26 93.70 92.66 91.04 89.32 5 

97.5% 2 92.12 95.88 95.72 94.72 93.06 91.62 89.48 87.30 85.40 2.5 

99.5% 2 89.44 92.86 91.98 89.46 86.62 83.32 80.20 76.50 72.72 0.5 
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 Table 5: Proportion of Rejections for the BDS Test for 500 Observations Simulated using a SETAR 

Model 

  m 

%’age

point 

 /  2 3 4 5 6 7 8 9 10 N(0,1) 

0.5% 0.5 0.00 0.00 0.00 0.00 0.00 0.16 3.62 14.64 52.94 0.5 

2.5% 0.5 0.00 0.00 0.00 0.00 0.04 0.48 3.90 14.64 52.94 2.5 

5% 0.5 0.00 0.00 0.00 0.00 0.04 0.60 4.56 14.72 52.94 5 

95% 0.5 100.0 100.0 99.94 99.66 98.56 93.32 83.06 67.02 47.06 5 

97.5% 0.5 100.0 100.0 99.88 99.54 97.98 91.80 81.66 66.42 47.06 2.5 

99.5% 0.5 99.98 99.98 99.76 99.00 96.16 89.18 77.66 64.72 47.06 0.5 

0.5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 

2.5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.5 

5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 

95% 1 100.0 100.0 100.0 100.0 99.94 99.90 99.80 99.50 98.98 5 

97.5% 1 100.0 100.0 99.98 99.96 99.94 99.82 99.56 99.18 98.48 2.5 

99.5% 1 100.0 99.96 99.92 99.80 99.66 99.34 98.68 97.44 96.16 0.5 

0.5% 1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 

2.5% 1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.5 

5% 1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 

95% 1.5 100.0 100.0 100.0 99.98 99.98 99.86 99.82 99.58 99.26 5 

97.5% 1.5 100.0 100.0 100.0 99.98 99.86 99.82 99.58 99.08 98.60 2.5 

99.5% 1.5 100.0 100.0 99.92 99.76 99.52 99.02 98.28 97.70 96.94 0.5 

0.5% 2 0.32 0.04 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.5 

2.5% 2 0.44 0.08 0.04 0.04 0.02 0.02 0.00 0.00 0.00 2.5 

5% 2 0.44 0.08 0.06 0.04 0.04 0.04 0.04 0.02 0.02 5 

95% 2 98.08 99.36 99.34 99.20 99.08 98.54 97.98 97.08 96.46 5 

97.5% 2 97.76 99.06 99.12 98.92 98.42 97.62 96.78 95.96 95.06 2.5 

99.5% 2 96.94 98.54 98.24 97.56 96.42 95.08 93.72 91.86 89.66 0.5 

 



 19 

Table 6: Proportion of Rejections for the BDS Test for 500 Observations Simulated using a Bilinear 

Model 

  m 

%’age

point 

 /  2 3 4 5 6 7 8 9 10 N(0,1) 

0.5% 0.5 0.00 0.00 0.00 0.00 0.00 0.08 0.72 4.88 32.44 0.5 

2.5% 0.5 0.00 0.00 0.00 0.00 0.00 0.12 1.08 5.98 32.56 2.5 

5% 0.5 0.00 0.00 0.00 0.00 0.00 0.14 1.46 7.18 32.56 5 

95% 0.5 100.0 100.0 100.0 99.94 99.46 96.94 90.30 77.90 63.46 5 

97.5% 0.5 100.0 100.0 100.0 99.92 99.30 96.08 88.72 76.40 62.46 2.5 

99.5% 0.5 100.0 99.98 99.98 99.74 98.40 94.08 85.52 73.14 60.48 0.5 

0.5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 

2.5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.5 

5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 

95% 1 100.0 100.0 100.0 100.0 100.0 100.0 99.92 99.78 99.56 5 

97.5% 1 100.0 100.0 100.0 100.0 100.0 99.98 99.82 99.64 99.26 2.5 

99.5% 1 100.0 100.0 100.0 99.98 99.94 99.80 99.44 98.80 97.82 0.5 

0.5% 1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 

2.5% 1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.5 

5% 1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 

95% 1.5 100.0 100.0 100.0 100.0 100.0 99.98 99.94 99.84 99.76 5 

97.5% 1.5 100.0 100.0 100.0 100.0 99.98 99.96 99.86 99.78 99.60 2.5 

99.5% 1.5 100.0 100.0 100.0 100.0 99.84 99.72 99.48 99.10 98.72 0.5 

0.5% 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 

2.5% 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.5 

5% 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 

95% 2 99.92 100.0 99.98 99.98 99.94 99.92 99.86 99.76 99.62 5 

97.5% 2 99.88 99.96 99.98 99.94 99.92 99.86 99.76 99.62 99.38 2.5 

99.5% 2 99.80 99.90 99.88 99.84 99.70 99.50 99.06 98.50 97.86 0.5 
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Table 7: Proportion of Rejections for the BDS Test for the Residuals of a GARCH Model with 500 

Observations Simulated using an AR(1) Model 

  m 

%’age

point 

 /  2 3 4 5 6 7 8 9 10 N(0,1) 

0.5% 0.5 0.00 0.00 0.00 0.00 0.02 0.08 0.40 2.00 3.24 0.5 

2.5% 0.5 0.00 0.00 0.00 0.00 0.02 0.28 1.08 5.36 10.56 2.5 

5% 0.5 0.00 0.00 0.00 0.00 0.02 0.40 1.70 9.14 16.56 5 

95% 0.5 99.94 99.64 97.94 90.58 72.72 51.18 3.15 19.50 12.30 5 

97.5% 0.5 99.84 99.18 95.70 85.38 63.70 40.18 23.04 13.16 8.86 2.5 

99.5% 0.5 99.10 97.06 87.62 67.28 46.90 23.94 10.70 5.34 3.02 0.5 

0.5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 

2.5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.5 

5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 

95% 1 100.00 100.00 99.94 99.88 99.56 98.94 97.74 94.68 89.84 5 

97.5% 1 99.98 99.96 99.86 99.58 98.96 97.72 94.60 91.26 84.62 2.5 

99.5% 1 99.74 99.48 98.58 97.14 94.04 88.04 77.98 70.94 61.78 0.5 

0.5% 1.5 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.5 

2.5% 1.5 0.02 0.02 0.00 0.00 0.00 0.00 0.02 0.02 0.02 2.5 

5% 1.5 0.02 0.02 0.02 0.00 0.00 0.02 0.02 0.02 0.02 5 

95% 1.5 99.82 99.94 99.90 99.86 99.74 99.38 99.08 98.48 97.78 5 

97.5% 1.5 99.64 99.88 99.80 99.62 99.10 98.60 97.80 96.82 95.54 2.5 

99.5% 1.5 98.94 99.20 98.36 96.78 89.78 84.64 75.42 63.08 54.28 0.5 

0.5% 2 0.14 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.5 

2.5% 2 0.82 0.30 0.20 0.20 0.20 0.18 0.18 0.22 0.22 2.5 

5% 2 1.38 0.62 0.50 0.38 0.34 0.38 0.38 0.46 0.52 5 

95% 2 83.40 91.36 92.68 92.52 91.74 90.86 90.08 88.74 87.06 5 

97.5% 2 79.22 88.38 89.68 89.58 88.70 86.52 84.42 81.52 80.02 2.5 

99.5% 2 68.36 76.84 78.00 72.86 63.30 55.58 42.74 35.14 27.30 0.5 
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Table 8: Proportion of Rejections for the BDS Test for the Residuals of a GARCH Model with 500 

Observations Simulated using an MA(1) Model 

  m 

%’age

point 

 /  2 3 4 5 6 7 8 9 10 N(0,1) 

0.5% 0.5 0.00 0.00 0.00 0.00 0.00 0.02 0.32 1.24 2.24 0.5 

2.5% 0.5 0.00 0.00 0.00 0.00 0.00 0.14 0.90 4.52 7.76 2.5 

5% 0.5 0.00 0.00 0.00 0.02 0.002 0.38 1.52 7.86 13.02 5 

95% 0.5 99.66 99.00 95.24 84.94 65.34 41.70 26.78 17.48 11.70 5 

97.5% 0.5 99.18 97.66 92.04 77.16 53.82 32.60 19.16 11.60 7.88 2.5 

99.5% 0.5 97.62 93.82 79.78 55.74 34.72 17.42 8.94 4.52 2.78 0.5 

0.5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 

2.5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.5 

5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 

95% 1 99.96 99.88 99.70 99.20 97.88 95.82 92.60 87.34 79.58 5 

97.5% 1 99.82 99.66 99.30 97.84 95.82 92.42 86.52 80.60 71.90 2.5 

99.5% 1 98.70 97.68 94.42 91.16 83.62 74.24 60.48 52.54 44.16 0.5 

0.5% 1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 

2.5% 1.5 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.5 

5% 1.5 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 5 

95% 1.5 99.02 99.50 99.22 98.54 97.56 96.28 94.72 92.58 90.08 5 

97.5% 1.5 98.16 99.10 98.26 97.20 95.12 92.84 89.72 86.34 82.78 2.5 

99.5% 1.5 95.16 94.44 91.20 85.04 66.08 56.12 43.70 31.92 24.94 0.5 

0.5% 2 0.40 0.28 0.24 0.22 0.22 0.22 0.22 0.22 0.26 0.5 

2.5% 2 1.26 0.84 0.72 0.68 0.76 0.78 0.88 0.86 0.98 2.5 

5% 2 2.00 1.30 1.24 1.24 1.32 1.40 1.52 1.58 1.68 5 

95% 2 65.38 75.14 74.54 71.32 67.80 65.18 63.10 60.52 58.26 5 

97.5% 2 56.42 65.68 63.18 61.54 58.08 53.36 49.56 45.84 44.38 2.5 

99.5% 2 33.60 37.78 35.58 29.08 20.02 15.20 9.46 7.10 5.06 0.5 
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Table 9: Proportion of Rejections for the BDS Test for the Residuals of a GARCH Model with 500 

Observations Simulated using a SETAR Model 

  m 

%’age

point 

 /  2 3 4 5 6 7 8 9 10 N(0,1) 

0.5% 0.5 0.00 0.00 0.00 0.00 0.04 0.04 0.26 0.62 1.18 0.5 

2.5% 0.5 0.00 0.00 0.00 0.04 0.08 0.36 1.04 3.00 4.78 2.5 

5% 0.5 0.00 0.00 0.00 0.04 0.12 0.78 1.90 5.32 8.42 5 

95% 0.5 96.72 96.90 91.98 78.10 56.82 34.74 21.46 14.68 10.64 5 

97.5% 0.5 92.78 94.16 96.26 67.58 43.56 25.66 14.54 9.18 6.58 2.5 

99.5% 0.5 84.42 84.12 65.08 40.78 25.48 11.92 5.96 2.86 1.90 0.5 

0.5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 

2.5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 2.5 

5% 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 5 

95% 1 99.28 99.86 99.66 99.04 97.82 95.62 91.38 84.42 76.14 5 

97.5% 1 98.44 99.46 98.96 97.60 95.38 91.36 83.82 76.52 65.62 2.5 

99.5% 1 92.24 95.14 91.40 88.02 78.80 67.02 50.78 41.96 33.26 0.5 

0.5% 1.5 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 

2.5% 1.5 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.5 

5% 1.5 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 

95% 1.5 97.44 99.26 99.26 98.72 97.78 96.86 94.92 92.70 89.82 5 

97.5% 1.5 95.50 98.62 98.04 97.18 95.52 92.96 90.14 86.16 82.68 2.5 

99.5% 1.5 88.12 92.36 89.68 83.48 61.38 49.84 36.34 23.64 17.26 0.5 

0.5% 2 0.24 0.18 0.12 0.12 0.08 0.08 0.08 0.08 0.10 0.5 

2.5% 2 0.96 0.60 0.56 0.52 0.50 0.50 0.52 0.58 0.54 2.5 

5% 2 1.74 0.84 0.70 0.78 0.74 0.78 0.80 0.98 1.06 5 

95% 2 69.28 79.80 79.90 78.46 76.16 73.80 71.90 68.98 66.38 5 

97.5% 2 62.30 72.28 71.24 70.38 67.18 62.88 57.92 53.46 51.46 2.5 

99.5% 2 42.18 46.88 44.38 36.04 24.34 18.50 10.96 81.40 57.20 0.5 
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Table 10: Proportion of Rejections for the BDS Test for the Standardised Residuals of a GARCH 

Model Estimated on Data Created Using a Bilinear Model with 500 Observations 

  m 

%’age

point 

 /  2 3 4 5 6 7 8 9 10 N(0,1) 

0.5% 0.5 0.00 0.00 0.00 0.02 0.04 0.08 0.18 0.40 0.32 0.5 

2.5% 0.5 0.08 0.00 0.06 0.14 0.30 0.74 1.12 1.72 1.90 2.5 

5% 0.5 0.12 0.08 0.08 0.34 0.72 1.54 2.74 3.54 3.80 5 

95% 0.5 36.84 46.32 41.40 31.78 21.38 13.40 10.12 7.86 7.02 5 

97.5% 0.5 26.70 35.82 31.26 21.62 13.30 8.34 5.50 4.30 3.56 2.5 

99.5% 0.5 14.92 20.30 12.76 71.80 4.96 2.66 1.64 1.14 0.86 0.5 

0.5% 1 0.02 0.00 0.00 0.00 0.02 0.02 0.02 0.00 0.00 0.5 

2.5% 1 0.08 0.08 0.06 0.08 0.14 0.18 0.16 0.12 0.14 2.5 

5% 1 0.22 0.16 0.16 0.16 0.28 0.32 0.46 0.58 0.62 5 

95% 1 32.56 48.24 49.84 47.42 44.00 38.40 33.46 27.44 22.64 5 

97.5% 1 22.76 36.74 37.48 34.84 30.42 26.36 20.92 18.24 13.96 2.5 

99.5% 1 8.48 14.14 12.80 12.16 8.84 6.24 3.56 3.44 2.98 0.5 

0.5% 1.5 0.36 0.22 0.18 0.20 0.24 0.36 0.36 0.38 0.40 0.5 

2.5% 1.5 1.32 0.62 0.56 0.66 0.88 1.12 1.58 1.64 1.76 2.5 

5% 1.5 2.34 1.26 1.32 1.56 1.70 1.98 2.46 2.98 3.38 5 

95% 1.5 14.02 22.20 24.62 24.74 24.26 24.58 23.52 23.18 21.38 5 

97.5% 1.5 7.20 13.64 14.66 15.56 15.16 14.32 14.64 13.76 13.04 2.5 

99.5% 1.5 2.26 2.94 3.12 2.76 1.16 1.16 0.84 0.50 0.34 0.5 

0.5% 2 0.86 1.00 1.04 1.10 1.04 0.98 1.08 1.12 1.20 0.5 

2.5% 2 3.96 3.96 4.00 4.28 4.78 5.02 5.24 5.74 6.04 2.5 

5% 2 6.80 6.68 7.28 7.90 8.38 9.08 9.86 10.74 11.58 5 

95% 2 4.42 5.58 6.16 6.52 6.72 7.46 8.26 8.82 8.72 5 

97.5% 2 2.00 2.94 3.26 3.84 4.16 4.20 4.24 4.16 4.48 2.5 

99.5% 2 0.44 0.68 0.90 0.78 0.76 0.70 0.46 0.42 0.32 0.5 

 

 


