Global monsoons in the mid-Holocene and oceanic feedback

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Liu, Z., Harrison, S. P. orcid id iconORCID: https://orcid.org/0000-0001-5687-1903, Kutzbach, J. E. and Otto-Bliesner, B. (2004) Global monsoons in the mid-Holocene and oceanic feedback. Climate Dynamics, 22 (2-3). pp. 157-182. ISSN 0930-7575 doi: 10.1007/s00382-003-0372-y

Abstract/Summary

The response of the six major summer monsoon systems (the North American monsoon, the northern Africa monsoon, the Asia monsoon, the northern Australasian monsoon, the South America monsoon and the southern Africa monsoon) to mid-Holocene orbital forcing has been investigated using a coupled ocean–atmosphere general circulation model (FOAM), with the focus on the distinct roles of the direct insolation forcing and oceanic feedback. The simulation result is also found to compare well with the NCAR CSM. The direct effects of the change in insolation produce an enhancement of the Northern Hemisphere monsoons and a reduction of the Southern Hemisphere monsoons. Ocean feedbacks produce a further enhancement of the northern Africa monsoon and the North American monsoon. However, ocean feedbacks appear to weaken the Asia monsoon, although the overall effect (direct insolation forcing plus ocean feedback) remains a strengthened monsoon. The impact of ocean feedbacks on the South American and southern African monsoons is relatively small, and therefore these regions, especially the South America, experienced a reduced monsoon regime compared to present. However, there is a strong ocean feedback on the northern Australian monsoon that negates the direct effects of orbital changes and results in a strengthening of austral summer monsoon precipitation in this region. A new synthesis is made for mid-Holocene paleoenvironmental records and is compared with the model simulations. Overall, model simulations produce changes in regional climates that are generally consistent with paleoenvironmental observations.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/35945
Identification Number/DOI 10.1007/s00382-003-0372-y
Refereed Yes
Divisions Interdisciplinary Research Centres (IDRCs) > Walker Institute
Science > School of Archaeology, Geography and Environmental Science > Earth Systems Science
Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Interdisciplinary centres and themes > Centre for Past Climate Change
Publisher Springer
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar