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[1] A one-dimensional, thermodynamic, and radiative model of a melt pond on sea ice is
presented that explicitly treats the melt pond as an extra phase. A two-stream radiation
model, which allows albedo to be determined from bulk optical properties, and a
parameterization of the summertime evolution of optical properties, is used. Heat transport
within the sea ice is described using an equation describing heat transport in a mushy layer
of a binary alloy (salt water). The model is tested by comparison of numerical simulations
with SHEBA data and previous modeling. The presence of melt ponds on the sea ice
surface is demonstrated to have a significant effect on the heat and mass balance.
Sensitivity tests indicate that the maximum melt pond depth is highly sensitive to optical
parameters and drainage. INDEX TERMS: 4207 Oceanography: General: Arctic and Antarctic

oceanography; 4255 Oceanography: General: Numerical modeling; 4299 Oceanography: General: General or

miscellaneous; KEYWORDS: sea ice, melt pond, albedo, Arctic Ocean, radiation model, thermodynamic

Citation: Taylor, P. D., and D. L. Feltham (2004), A model of melt pond evolution on sea ice, J. Geophys. Res., 109, C12007,

doi:10.1029/2004JC002361.

1. Introduction

[2] Sea ice is formed by the freezing of seawater in the
high latitudes of the Northern and Southern Hemispheres
and acts as a membrane between the atmosphere and the
ocean, through which heat, moisture, and momentum are
transported. It both influences and is influenced by the
climate. Predictions from climate models indicate that
increases in average temperature due to the enhanced
greenhouse effect will be greatest in the Arctic [Cattle
and Crossley, 1995]. Recent results from satellite observa-
tions have found a high correlation between melt season
length and interannual variation of average sea ice thickness
[Laxon et al., 2003].
[3] Melt ponds are the most distinctive summertime

feature of Arctic sea ice, with estimated sea ice coverage
ranging from 5 to 50% [Eicken et al., 1996]. Melt ponds are
pools of water that collect on the surface of sea ice due to
surface melt driven by increased short-wave radiation
absorption in summer. This is in contrast to Antarctic sea
ice, where melt ponds are relatively rare [Andreas and
Ackley, 1982], except perhaps in the northwest Weddell
Sea [Wadhams, 2000].
[4] Melt ponds influence the summertime energy and

mass balance through the albedo-feedback mechanism
[Ebert and Curry, 1993], alter the physical and optical
properties of sea ice [Maykut, 1996; Perovich et al.,
2002], can also affect the salt and heat budget of the ocean
mixed layer [Eicken et al., 2002], and are an important
factor influencing Arctic summertime ecology [Ferguson et
al., 2000; Gradinger, 1996].

[5] The albedo of pond-covered sea ice (0.15–0.45
[Fetterer and Untersteiner, 1998]) is less than bare sea
ice and snow-covered sea ice (0.52–0.87 [Perovich,
1996]) and so pond-covered sea ice preferentially absorbs
short-wave radiation. The difference in solar energy ab-
sorption between pond-covered and bare sea ice, combined
with the natural and forced convection within the ponds,
explains why the melt rate beneath melt ponds is
2–3 times that of bare sea ice [Bogorodskii, 1995; Fetterer
and Untersteiner, 1998].
[6] Melt ponds influence salinity variation of sea ice and

can drain, releasing relatively fresh water into the upper
layers of the ocean. Drainage is believed to be the primary
source of desalination of sea ice during summer [Cox and
Weeks, 1974; Untersteiner, 1968], and fresh meltwater
draining through sea ice can lead to the formation of
under-ice melt ponds. Draining meltwater alters the energy
and mass budget of the sea ice, and can alter the ocean heat
flux [Notz et al., 2003].
[7] SHEBA (Surface HEat Budget of the Arctic Ocean)

was an interdisciplinary sea ice field experiment to
examine the processes that control feedback mechanisms
such as the albedo-feedback mechanism and cloud-radia-
tion feedback mechanism, and to develop improved
models to improve simulations of the Arctic climate
[Perovich et al., 1999]. The SHEBA camp drifted with
the sea ice from fall 1997 to fall 1998, and meandered
over 3000 km across the Arctic Ocean. In this paper,
atmospheric data from SHEBA are utilized to force the
model at its surface, and optical data from SHEBA are
utilized to parameterize the optical properties of the model
during the summer.
[8] Mellor and Kantha [1989] coupled a sea ice model to

an ocean model and included a layer of standing water on
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the ice. The standing water layer acted as a store of latent
heat and mass and did not influence the surface energy
budget. The albedo of the sea ice was not affected by this
layer of water. Although this model is only a partial
description of melt ponds, it was shown that the sea ice
model is sensitive to the additional mass stored at the
surface, with 0.1 m of standing water leading to a 40%
increase in the equilibrium ice thickness.
[9] Ebert and Curry [1993] proposed a sophisticated,

one-dimensional thermodynamic model of sea ice that is
an extension of Maykut and Untersteiner’s [1971] thermo-
dynamic model. Ebert and Curry’s [1993] equation describ-
ing heat transport within the sea ice is identical to the
equation used by Maykut and Untersteiner [1971], but they
included a surface-dependent albedo, an explicit melt pond
parameterization, and a lead parameterization. The melt
pond parameterization is based on a simple energy balance
based entirely on absorption of solar radiation in the pond
and the surface of the sea ice.
[10] Ebert and Curry [1993] compared the melt pond

component of their model to observations. The fractional
area of melt ponds was an imposed function chosen to
match a large data set; however, only limited data were
available for comparison of the temporal evolution of melt
pond depth [Ebert and Curry, 1993]. A limitation of the
melt pond parameterization used in Ebert and Curry’s
[1993] model is that it does not consider the time depen-
dency of the sensible heat stored within the melt ponds (and
the effect of turbulent heat transport inside the pond) and the
corresponding influence of melt ponds on the surface
energy budget.
[11] In this paper a new one-dimensional, thermody-

namic melt-pond–sea-ice model is developed. The melt-
pond–sea-ice model replaces the commonly used Beer’s
law representation of radiative transfer in sea ice with a
two-stream radiation model. This model is advantageous
in that the albedo can be calculated from the optical
properties and ice thickness, whereas for Beer’s law
formulations, albedo is specified as an external parame-
ter. In the presence of melt ponds, a parameterization is
used to simulate the variation of optical properties caused
by morphological changes to the sea ice during summer.
The governing equation for temperature is based upon
the equation describing conservation of heat in a mushy
layer. Mushy layers describe binary alloys, and consist of
a solid matrix surrounded by its melt. For sea ice the
solid matrix is composed of effectively pure ice, and the
melt is brine. The melt-pond–sea-ice model is primarily
focused on Arctic sea ice, because the forcing data
describe Arctic conditions; however, it is also applicable
to melt ponds in the Antarctic. With some straightfor-
ward modifications, the model could also be applied to
other geophysical surface melt processes such as surface
melting of glaciers.
[12] In section 2, we describe the two-stream radiation

model and the parameterization used to simulate summer-
time variation of optical properties. In section 3, we
formulate the melt-pond–sea-ice model, describing heat
transfer in each component of the model and the boundary
conditions of the model. In section 4, the data used to force
the model are outlined. In section 5, the seasonal evolution
of the model is presented and the sensitivity of the model to

candidate parameters is examined. Finally, section 6 sum-
marizes the main conclusions.

2. Radiation Model

[13] Previous thermodynamic sea ice models have used
Beer’s law to describe radiative transfer within sea ice [e.g.,
Ebert and Curry, 1993; Maykut and Untersteiner, 1971].
The disadvantage of this is that the albedo is specified as an
external parameter. Because melt pond formation is driven
by the summertime increase in shortwave radiation, here we
adopt a more sophisticated radiation model.
[14] In the presence of a snow cover, radiation is assumed

to be attenuated so effectively at the surface of the snow that
we neglect internal heating in the model. The total albedo
has a constant wintertime value (0.84), and when the snow
is melting the total albedo is linearly interpolated between
the melting snow value (0.74) and that of the initial melt
pond albedo calculated using the two-stream model.
[15] We use a three-layer, two-stream radiation model

following Perovich [1990], where the layers correspond to
the melt pond, underlying sea ice and (where it exists) a
layer of refrozen sea ice on top of the melt pond. The two-
stream radiation model describes the radiation field in
terms of an upwelling and downwelling stream. The
advantage of this model is that albedo can be explicitly
determined, although it suffers from the assumption that
the incident radiation is diffuse and scattering is isotropic.
However, during summer, there is a high percentage of
cloud cover [Makshtas et al., 1998], so that the assumption
of diffuse incident radiation is approximately valid
[Perovich, 1990]. For computational convenience we do
not use spectral variation or vertical variation of the optical
properties in each layer, and we parameterize the optical
properties in the presence of melt ponds to obtain more
accurate summertime temporal variation of albedo. Using
wavelength integrated properties should not significantly
affect the qualitative results, since most of the radiative
energy in the sea ice is absorbed near the surface and this
can be well represented using a single-band model [Taylor,
2003].
[16] For the three-layer, two-stream radiation model we

denote the layer closest to the atmospheric surface (the
refrozen melt pond surface) by the suffix 0, the melt pond or
internal melt layer by the suffix 1, and the lower sea ice
layer by the suffix 2. The position zi within each layer is
measured relative to the surface of that layer (i = 0, 1, 2).
The equations describing the variation of downwelling (F#i)
and upwelling (F"i) irradiance in layer i in the two-stream
model are given by

@F#i

@zi
¼ � ki þ rið ÞF#i þ riF"i ð1Þ

@F"i

@zi
¼ ki þ rið ÞF"i � riF#i ; ð2Þ

where ki is the absorption coefficient in layer i, and ri is the
scattering coefficient. Equations (1) and (2) describe the
change in the downwelling (upwelling) irradiance (first
term) because of loss due to absorption and scattering of the
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downwelling (upwelling) stream (second and third terms)
and gain due to scattering of the upwelling (downwelling)
stream (fourth term).
[17] The general solution of (1) and (2) under the restric-

tion that ri 6¼ 0 is

F#i ¼ siA
iekizi þ Bi

si
e�kizi ð3Þ

F"i ¼ Aiekizi þ Bie�kizi ; ð4Þ

where si = (ki � ki)/(ki + ki) is a proxy for sea ice
albedo in the limit of large thickness and no Fresnel
reflection [cf. Grenfell and Maykut, 1977], ki = ki

2 +
2kiri is the extinction coefficient, and Ai and Bi are
optical coefficients dependent upon optical properties and
thickness. For simplicity, the upper layer of sea ice (the
refrozen melt pond surface) is assumed to have the same
optical properties as the lower layer, so that k0 = k2 and
s0 = s2.
[18] If ri = 0 then there is no scattering and the medium

through which the radiation travels is purely absorbing. This
has been shown to be a valid approximation for melt ponds
with a depth less than 1 m [Podgorny and Grenfell, 1996].
In this purely absorbing case, ki = ki and the general
solution takes the form

F#i ¼ Cie�kizi ð5Þ

F"i ¼ Diekizi ; ð6Þ

where Ci and Di are optical coefficients dependent on
optical properties and thickness.
[19] The boundary conditions that are used in the three-

layer, two-stream radiation model are the same as those
used by Perovich [1990]. The thickness of each layer is
Hi, and the optical properties of each layer are expressed
in terms of the two independent parameters, which are the
extinction coefficients ki and the parameters si = (ki � ki)/
(ki + ki) in the ice layers (i = 0, 2), and the extinction
coefficient k1 in the pond layer (i = 1). At the atmosphere-
ice interface, both the incident short-wave radiation and
the upwelling irradiance F"0(z0 = 0) can have a Fresnel
reflection component, R0 [Perovich, 1990]. This occurs
only at the surface due to the difference between the real
part of the index of refraction of air and ice. Between the
internal layers of ice and internal melt it is assumed that
the difference in the real part of index of refraction is
negligible. Also, across each layer boundary the upwelling
and downwelling fluxes are assumed to be continuous, so
that energy is conserved. At the ice-ocean interface it is
assumed that there is no Fresnel reflection and there is no
radiation scattered upward within the ocean, so that the
upwelling irradiance is negligible. Therefore the boundary
conditions appropriate to the three-layer, two-stream
model are

F#0 z0 ¼ 0ð Þ ¼ 1� R0ð ÞFSW þ R0F"0 z0 ¼ 0ð Þ; ð7Þ

F#0 z0 ¼ H0ð Þ ¼ F#1 z1 ¼ 0ð Þ; ð8Þ

F"0 z0 ¼ H0ð Þ ¼ F"1 z1 ¼ 0ð Þ; ð9Þ

F#1 z1 ¼ H1ð Þ ¼ F#2 z2 ¼ 0ð Þ; ð10Þ

F"1 z1 ¼ H1ð Þ ¼ F"2 z2 ¼ 0ð Þ; ð11Þ

F"2 z2 ¼ H2ð Þ ¼ 0; ð12Þ

where FSW is the incident irradiance, and the Fresnel
reflection coefficient R0 = 0.05 [Perovich, 1990]. The six
optical coefficients of the three-layer model are determined
by substituting the general solution for each layer (equations
(3) to (6)) into the six boundary conditions (equations (7) to
(12)).
[20] The net irradiance at a point inside the sea ice

Fnet(i)(zi) is simply the difference between the downwelling
and the upwelling stream. The rate of energy absorbed per
unit volume within the melt-pond–sea-ice model is given
by �@Fnet(i)(zi)/@zi.
[21] The spectral albedo al for solar radiation at a

specific wavelength l is determined by the energy that
undergoes Fresnel reflection at the surface plus the energy
scattered upward through the surface from within the sea
ice. The total albedo a is the spectral albedo weighted
with the incoming radiation at each wavelength. Since the
model used in this paper neglects spectral variation, the
total albedo is equal to the spectral albedo. In terms of
the two-stream model, the total (and spectral) albedo is
given by

a ¼ R0 þ
1� R0ð ÞF"0 z0 ¼ 0ð Þ

FSW

: ð13Þ

[22] As melt ponds develop on the surface of sea ice
during summer, the underlying sea ice undergoes significant
physical changes affecting the optical and physical proper-
ties [Maykut, 1996]. To allow variation of the sea ice optical
properties during summer, a parameterization for the optical
parameter s2 in the presence of melt ponds is developed by
comparing the two-stream model to field data from the
SHEBA experiment.
[23] The major uncertainty in summertime albedos comes

from the significant variations in the optical properties of
the ice underlying melt ponds, with spectral albedos of ice
underlying ponds estimated to range from 0.2 to 0.7
[Podgorny and Grenfell, 1996]. Furthermore, as summer
progresses the increased brine volumes in the sea ice
beneath ponds lowers the extinction coefficient [Grenfell
and Maykut, 1977]. This variation must be taken into
consideration when modeling the melt pond evolution;
otherwise the energy partitioning between the ice and the
pond will be incorrect. To this end, the parameterization of
s2 is based upon the pond depth and albedo data from
SHEBA.
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[24] It can be shown that for an infinitely thick sea ice
layer without a melt pond, the one-layer, infinite-thickness,
two-stream albedo a1 is given by

a1 ¼ R0 þ
1� R0ð Þ2swinter2

1� R0s
winter
2

; ð14Þ

where the parameter s2
winter is the constant value of the

parameter s2, used in the lower sea ice layer, when there is
no melt pond. For sea ice thicker than 0.8 m the albedo does
not vary significantly with thickness [Perovich et al., 1986],
so that an appropriate value of the albedo at large thickness
a1 can be used to determine s2

winter using equation (14). For
an infinitely thick sea ice layer with a finite melt pond on its
surface, the variable summertime value of s2 can be derived
in a similar way to the constant wintertime value s2

winter and
is given by

s2 ¼
apond
1 � R0

1� 2R0 þ apond
1 R0

� �
exp �2k1H1ð Þ

; ð15Þ

where a1
pond is the albedo of pond-covered, infinitely thick

ice.
[25] The parameter s2 can be calculated using equation

(15) for a given melt pond depth (H1), melt pond albedo
(assumed identical to a1

pond), and melt pond extinction
coefficient (k1). Melt pond depths and their corresponding
total albedo can be obtained from SHEBA data available
from Perovich et al. [1999], and the extinction coefficient of
water can be estimated from existing data [e.g., Hale and
Querry, 1973]. As the extinction coefficient decreases, s2
decreases. There is also a correlation between pond depth
and brine volume in sea ice beneath melt ponds, which can
be deduced from the observation of increasing brine volume
and average pond depths through the summer melt season
[Fetterer and Untersteiner, 1998; Perovich et al., 1999].
Therefore it is assumed that the relationship between melt
pond depth H1 and s2 is given by

s2 H1ð Þ ¼ swinter2 exp �tH1ð Þ; ð16Þ

for some parameter t > 0. Although this relationship is
arbitrary, it is reasonable since larger pond depths are
associated with lower extinction coefficients within the sea
ice (lower values of s2), because of increased brine volume.
Also, s2 remains bounded above by its wintertime (pond-
free) value and below by 0, for all melt pond depths.
[26] The spectral albedo of melt ponds decay to their

Fresnel reflection component for wavelengths greater than
700 nm [Grenfell and Maykut, 1977]. Therefore the bulk
optical properties of the melt pond are chosen to be similar
to spectral values for l less than 700 nm. We used the
500-nm value of extinction as derived by Hale and Querry
[1973], so that k1 = 0.025 m�1. The infinite ice albedo is
assumed to be 0.65, corresponding to summertime melting
white ice values [Perovich, 1996], so that s2

winter = 0.643. By
minimizing the square of the difference between the values
of s2 derived from data using equation (15) and the values
of s2 determined from equation (16), the optimal parameter
t is found to be 3.55 (see Figure 1). The absorption
coefficients ki, in the sea ice layers of the radiation model,
are determined using the definition of s2 so that

k2 ¼ k2
1� s2

1þ s2
;

where k2 = 1.5 m�1 is assumed constant, and when there is
no melt pond (but possibly an internal melt region) s2 =
s2
winter.

3. Model Description

[27] The melt-pond–sea-ice model describes sea ice that
becomes covered by melt ponds during the summer melt
season. The model is one-dimensional and does not incor-
porate any horizontal parameterizations (e.g., meltwater
runoff, ice divergence). There are five possible model
configurations: (1) sea ice only; (2) sea ice and snow layer;
(3) sea ice and melt pond; (4) sea ice, internal melt region,
and refrozen upper ice layer; and (5) sea ice, internal melt
region, refrozen upper ice layer, and snow layer. In winter,
snow covers the sea ice.
[28] The standard annual cycle is shown schematically in

Figure 2. Also shown are the equation numbers of the
governing equations that describe heat transport within the
ice, snow, and melt regions, and the equation numbers of
the boundary conditions at the interfaces. The positions of
the interfaces are measured with respect to the location
of the snow-ice interface at the initial time (1 January). Heat
transport in the sea ice and snow is governed by the mushy
layer heat equation (17) and a simple diffusion equation
(27), respectively. Snow fall occurs in a prescribed manner
identical to that chosen by Maykut and Untersteiner [1971].
Melting snow in summer leads to initial melt pond forma-
tion. Melt ponds transport heat by diffusion or turbulent
convection depending on the time-dependent Rayleigh
number [Taylor, 2003]. At the end of summer, the melt
pond refreezes from its upper surface down and for sim-
plicity it is assumed that the refrozen pond forms sea ice of
the same bulk salinity as the rest of the sea ice. Snow begins
to fall in the fall, and so the model can consist of snow-
covered refreezing ponds. Eventually the ponds completely
refreeze and the model becomes snow-covered sea ice

Figure 1. Comparison of optical parameter s2 for sea ice
using data (points) and parameterization with t = 3.55
(line).
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again. Various other situations can occur depending on the
physical parameters. For example, rapid drainage can pre-
vent melt ponds forming, and in this case the model
assumes that all additional surface meltwater instantaneously
runs off (akin to previous thermodynamic models).

3.1. Heat Transport Within Sea Ice

[29] The most abundant salt in seawater is sodium chlo-
ride, although seawater also contains small amounts of other
salts such as mirabilite and hydrohalite [Weeks and Ackley,
1986]. The sodium-chloride–water solution is the binary
component alloy most similar to seawater [Weeks and
Ackley, 1986; Wettlaufer et al., 1997]. Wettlaufer et al.
[1997] found negligible differences between the structure
of sea ice grown from seawater and ice grown from aqueous
solutions of sodium chloride. Maykut and Light [1995] also
found that radiatively, at temperatures above �8.2�C, there
is little difference between sea ice formed from seawater
and ice formed from sodium-chloride–water solution.
Therefore we assume that seawater can be approximated
by the binary alloy, sodium-chloride–water solution, at a
salt concentration of 35 ppt and that sea ice is well
represented by the mushy layer formed from sodium chlo-
ride solution. A sea ice mushy layer consists of a solid ice
matrix, consisting of almost pure ice, surrounded by its
melt, which is brine. The vertical heat transport within the
sea ice can be described by the one-dimensional equation
describing conservation of heat in a mushy layer,

rcð Þm
@T

@t
þ rcð ÞlU

@T

@z
¼ @

@z
km

@T

@z

� �
þ rsL

@f
@t

� @

@z
Fnet zð Þ;

ð17Þ

where (rc)m is the volumetric specific heat capacity of the
sea ice, T is the temperature within the sea ice, t is time,
(rc)l = 4.185 � 106 J/(m3 K) is the volumetric specific heat
capacity of the liquid phase (brine), U is the vertical Darcy
velocity of brine flow within the sea ice, z is the vertical
spatial coordinate (pointing downward), km is the thermal
conductivity of the mushy layer, rsL = 3.0132 � 108 J/m3 is

the volumetric latent heat of fusion of the solid phase (fresh
ice), f is the solid fraction (the local volume fraction of sea
ice that is solid), and Fnet(z) is the irradiance at depth z.
Equation (17) describes the rate of change of heat in a
control volume at fixed position due to advection of heat
(second term), thermal diffusion (third term), latent heat
released or absorbed due to internal phase change (fourth
term), and radiative heating (fifth term).
[30] Following Wettlaufer et al. [2000], it is assumed that

the volumetric specific heat capacity of the sea ice (rc)m and
the thermal conductivity of the sea ice km are determined
by the mixture relations

rcð Þm¼ rcð Þsfþ rcð Þl 1� fð Þ ð18Þ

km ¼ ksfþ kl 1� fð Þ; ð19Þ

where (rc)s = 1.883 � 106 J/(m3 K) is the volumetric
specific heat capacity of the solid phase, ks = 2 W/(m K)
is the thermal conductivity of the solid phase, and kl =
0.5 W/(m K) is the thermal conductivity of the liquid phase,
which are all assumed constant. For simplicity the solid and
liquid densities are assumed identical (rs = rl), so that
dynamic effects due to volumetric changes during phase
change can be ignored.
[31] The sea ice is assumed to be in local thermodynamic

equilibrium. For local thermodynamic equilibrium to be
maintained, the solute must diffuse much faster than the
diffusion of variations in sensible and latent heat fluxes
through the mushy layer depth. If d is the dendrite (platelet)
spacing, then the interstitial solute transport timescale is
d2/Dl, where Dl is the diffusivity of salt in the brine.
Therefore, to maintain local thermodynamic equilibrium,
d2/Dl is required to be much less than the timescale of heat
transport through the mushy layer [Feltham and Worster,
2000]. In sea ice the interstitial solute transport timescale is
about 1000 s, which is less than the typical timescale of
thermodynamic variations in sea ice such as diurnal forcing
[Feltham and Worster, 2000]. When sea ice is in local
thermodynamic equilibrium, it can be assumed that the
temperature and brine concentration lie on the liquidus
curve in the phase equilibrium diagram for seawater. Close
to the freezing temperature of pure water the liquidus curve
is linear, and it is assumed that this relationship is valid for
all temperatures, so that

T ¼ TL Cð Þ ¼ �GC þ TL 0ð Þ; ð20Þ

where TL(C) is the equilibrium freezing temperature of a
sodium-chloride–water solution at a concentration C, TL(0)
is the equilibrium freezing temperature at zero concentra-
tion, and G = 0.0514 K/ppt is the gradient of the linearized
liquidus curve.
[32] The local bulk salinity is defined to be

Cbulk zð Þ ¼ fCs þ 1� fð ÞC; ð21Þ

which is the local concentration of salt per unit volume of
sea ice, and Cs is the concentration of solute in the solid
phase, which is effectively zero [Weeks and Ackley, 1986]. It
is assumed that the local bulk salinity through the depth of

Figure 2. Schematic diagram of evolution of boundaries
of melt-pond–sea-ice model. Equation numbers of govern-
ing equations and boundary conditions also shown.
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the sea ice is a constant 3.2 ppt [Ebert and Curry, 1993] and
remains so throughout simulations. The value of 3.2 ppt for
the constant bulk salinity is consistent with the bulk salinity
of multiyear sea ice of about 2 m thickness [Kovacs, 1996].
The assumption of constant local bulk salinity allows the
solid fraction to be expressed in terms of temperature by
rearranging equation (21) and using the liquidus relation-
ship (20). Therefore the temperature determines the local
solid fraction and hence the thermal conductivity and
specific heat capacity. When there is a melt pond, the solid
fraction near the surface of the sea ice is always small, so
that the thermal properties are close to those of the liquid
component. At the base of the sea ice the solid fraction is
always large, so that the thermal properties are close to
those of the solid component. Therefore, altering the bulk
salinity will not affect the melt rates significantly. Replacing
the time derivative of the solid fraction in equation (17) and
replacing the solid fraction in the mixture relations (18) and
(19) transforms equation (17) into a nonlinear advection-
diffusion equation, which is analogous to that used by
Maykut and Untersteiner [1971] when there is no advection.

3.2. Heat Transport Within Melt Pond and Internal
Melt Region

[33] For melt ponds with low salinities, where the surface
is being heated, ‘‘warm’’ surface water will be more dense
than cool water at the base of the melt pond, and so there
will be a natural propensity for the surface water to sink and
be replaced by water at depth. This overturning is inhibited
by frictional losses due to the melt pond’s viscosity and heat
diffusion away from a sinking plume, which reduces its
negative buoyancy. Turbulent convective motions take
place when the melt pond becomes dynamically unstable,
which occurs once the time-dependent Rayleigh number
Ra(t) exceeds the critical Rayleigh number Racrit. The time-
dependent Rayleigh number is given by

Ra tð Þ ¼ ga*DTH3
1

nlkl
; ð22Þ

where g = 9.81 m/s2 is the magnitude of acceleration due to
gravity, a* = 5 � 10�5 K�1 is the coefficient of thermal
expansion of the water in the melt pond, DT is the
temperature difference across the pond, kl = kl/(rc)l ’
1.19 � 10�7 m2/s is the thermal diffusivity of the melt
pond, nl = 10�6 m2/s is the kinematic viscosity of the water
in the melt pond, and H1 is the depth of the melt pond
(following the notation used in section 2). The critical
Rayleigh number Racrit = 630 is assumed to be constant
from a numerical study [Taylor, 2003].
[34] A simple order of magnitude estimate of the Ray-

leigh number of a 0.1-m melt pond assuming a 0.2 K
temperature difference across the entire pond depth is

Ra tð Þ ’ 10m=s2  5� 10�5 K�1  0:2K  0:1mð Þ3

10�6 m2=s  10�7 m2=s
’ 106; ð23Þ

using equation (22). Such large Rayleigh numbers lead to
turbulent convective motion.
[35] Observations show that as well as natural convec-

tion, there can be forced convection within the pond driven

by the wind [Eicken et al., 2002]. Observations of scalping
at the sides of melt ponds [Fetterer and Untersteiner, 1998]
have been explained by melt pond surface currents. The rate
of turbulent heat transfer through the pond may be increased
in the presence of wind-driven mixing; however, as the
sensible and latent heat losses to the atmosphere may be
affected, the impact on the melt rate beneath the melt pond
is not clear.
[36] In the nonturbulent regime (Ra(t) < Racrit), the

equation describing conservation of heat is

rcð Þl
@T

@t
þ u

@T

@z

� �
¼ kl

@2T

@z2
� @

@z
Fnet zð Þ; ð24Þ

where u is the fluid velocity in the liquid region. Since the
model is one-dimensional, the assumption of continuity of
mass flux at the lower boundary of the liquid region implies
that u = U. Equation (24) describes the rate of change of
temperature in a control volume at fixed position (first
term), subject to advection of heat (second term), thermal
diffusion (third term), and radiative heating (fourth term).
[37] Turbulent convection leads to mixing of the melt

pond, except near the boundaries where diffusive effects are
dominant. As the Rayleigh number becomes larger the
temperature gradient steepens near the boundaries and
flattens in the core of the melt pond. In the turbulent case,
it is assumed that the pond interior is well mixed and the
evolution of the mean core temperature of the pond �T (t) is
to be determined. For simplicity, the pond salinity Cpond is
assumed constant and the mixing of the pond is assumed to
leave the salinity unchanged.
[38] Heat transfer across the melt-pond–sea-ice and in-

ternal-melt–sea-ice boundaries due to turbulent convective
overturning is modeled using the four-thirds law for turbu-
lent convection. The four-thirds law arises when the heat
flux across a fluid layer is assumed to be independent of the
depth of a fluid layer, so that the Nusselt number, which is
the ratio of the convective to diffusive heat flux, is propor-
tional to the Rayleigh number to the power of one third
[Linden, 2000]. Then the heat flux at the boundary of a
liquid region (melt pond or internal melt), directed outward,
is given by

Fc T*ð Þ ¼ sgn �T � T*ð Þ rcð ÞlJ �T � T*j j4=3 if Ra tð Þ � Racrit;

¼ �kl
@T

@z
if Ra tð Þ < Racrit and z ¼ hl ;

¼ kl
@T

@z
if Ra tð Þ < Racrit and z ¼ hu; ð25Þ

where T* is the boundary temperature, hl is the location of
the lower boundary of the liquid region (pond or internal
melt), hu is the location of the upper boundary of the liquid
region, and

J ¼ g
ga*k2l
nl

� �1=3

;

where g is a dimensionless number taken to be 0.1
[Huppert, 2000].
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[39] For the turbulent case, conservation of energy in the
liquid region yields

rcð ÞlH1

@�T

@t
¼ �Fc Tlð Þ � Fc Tuð Þ �

Z hl

hu

@

@z
Fnet zð Þ dz; ð26Þ

where Tl is the temperature at the lower boundary of the
liquid region, and Tu is the temperature at the upper
boundary of the liquid region. It is assumed that the
radiative energy that would be absorbed across the thin
boundary layers is transferred instantaneously into the
turbulent core, and that the boundary layers are always
much thinner than the convecting region. This should be
valid for developed melt ponds since Ra(t)/Racrit is typically
O(103) (using equation 23). Equation (26) equates the
change in total sensible heat of the turbulent core (first term)
to the heat flux in/out from the upper boundary (second
term) minus the heat flux out of the lower boundary (third
term) plus the total heat gain from internal heating due to
incoming short-wave radiation (fourth term).

3.3. Heat Transport Within Snow

[40] Since the snow cover is highly complex and is not
the main focus of this paper, we use the model of snow
introduced by Maykut and Untersteiner [1971]. Heat trans-
port within the snow is governed by the diffusion equation,

rsnowcsnow
@T

@t
¼ ksnow

@2T

@z2
; ð27Þ

where rsnow = 330 kg/m3 is the constant wintertime density
of the snow, csnow = 2092 J/(kg K) is the constant
volumetric specific heat capacity of snow, and ksnow =
0.31 W/(m K) is the constant thermal conductivity of snow.
Radiation is neglected within the snow cover since most of
the short-wave energy is scattered near the surface
[Wiscombe and Warren, 1980]. This leads to high albedos
(greater than 0.8), so that only a relatively small fraction of
incident radiation penetrates the snow and leads to internal
heating. The influence of this small amount of radiation
should only influence the timing of the start of the melt
season, and is unlikely to produce qualitatively different
results during the melt season.

3.4. Boundary Conditions

[41] The net energy per unit area at the upper surface (z =
hs), i.e., the interface with the atmosphere, for all surface
types is given by

Enetð Þx0� cx þ FLW � �xsT4
0 !þ 1� ix0

� �
1� að ÞFSW � Fx

sens � Fx
lat;

ð28Þ

where superscript x denotes the surface type (m = sea ice,
snow = snow, l = pond), cx is the conductive flux (sea ice,
snow, or diffusive melt pond) or convective flux (convective
melt pond) into the surface, �x is the emissivity (�m = �snow =
0.99, �l = 0.97 [Ebert and Curry, 1993]), s = 5.67 � 10�8 is
the Stefan-Boltzmann constant, T0 (K) is the temperature at
the surface, and i0

x is the fraction of radiation that is not
absorbed near the surface. For snow and sea ice,cx= kx@T/@z,
and for a melt pond, cl = Fc(T0), as given by equation (25).

[42] For the sensible and latent heat fluxes, we use bulk
parameterizations identical to Ebert and Curry [1993],
given by

Fx
sens ¼ racaC

x
Tv Ta � T0ð Þ ð29Þ

Fx
lat ¼ raL*Cx

Tv qa � q0ð Þ; ð30Þ

where ra = 1.275 kg/m3 is the density of dry air, ca = 1005 J/
(kg K) is the specific heat capacity of dry air, Ta (K) is the
air temperature at some reference height (obtained from
data), v (m/s) is the wind speed at the reference height
(obtained from data), L* = 2.501 � 106 J/kg is the latent
heat of vaporization, q0 is the specific humidity (mass of
water vapor per unit mass of air) at the surface, qa is the
specific humidity at the reference level (obtained from data),
and CT

x is a stability dependent bulk transfer coefficient
following Ebert and Curry [1993]. Since there have not
been any measurements of sensible or latent heat fluxes
over melt ponds to date (E. L. Andreas, personal
communication, 2002), we assume that the value of the
transfer coefficient CT

l for melt ponds is identical to that
used for leads by Ebert and Curry [1993]. The specific
humidity at the surface is estimated using the assumption
that the air at the surface is saturated, so that

q0 ¼
0:622pv

patm � 0:378pv
;

where pv = 2.53 � 108exp(�5420/T0) (kPa) is the partial
pressure of water vapor [Rogers and Yau, 1989], and
patm (kPa) is the atmospheric pressure (obtained from
data).
[43] The parameter i0

x represents the fraction of incident
radiation that passes through the surface into the interior
of the ice, pond, or snow, and does not contribute to
energy changes at the surface. While i0

x will vary on a
short timescale due to cloudiness, we neglect this variation
in our study. The surface energy fluxes (e.g., long-wave
radiation, and turbulent fluxes) are transferred over small
lengthscales (e.g., absorption depth, viscous molecular
sublayer). Therefore the i0

x parameter can be interpreted
physically as the fraction of incident short-wave radiation
that is not absorbed over a small lengthscale at the surface.
To conserve energy within the body of the melt-pond–sea-
ice system, the radiation predicted by the two-stream
radiation model is attenuated by i0

x of its initial value.
Clearly, from the assumption that no radiation penetrates
snow-covered sea ice, we have i0

snow = 0. In a numerical
simulation, energy is only ‘‘measured’’ at the location of
grid points. Therefore i0

x must represent the fraction of
energy that passes through the surface of the model to the
first interior grid point. The extinction coefficient
decreases by up to 2 orders of magnitude near the surface
of sea ice [Grenfell and Maykut, 1977], so that unless the
optical model used reproduces the correct variation be-
tween the first two grid points, the error introduced must
be accounted for by modifying the magnitude of i0

m. The
radiation model that we use neglects spectral variation,
and longer wavelengths of radiation are absorbed more
effectively than shorter wavelengths.
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[44] Previous studies [e.g., Ebert and Curry, 1993;
Maykut and Untersteiner, 1971] had relatively coarse res-
olutions; however, in the melt-pond–sea-ice model calcu-
lations presented here, we have used a fixed number of grid
points at a much higher resolution (641 grid points), and our
model does not have spectral variation or vertical variations
of optical properties within each layer (ice/pond). Therefore,
for the sea ice surface, we define i0

m as the minimum of 0.4
and the ratio of the net irradiance at the first interior grid
point to the irradiance at the surface, which is the fraction of
incident radiation that is not reflected by the sea ice at the
first interior grid point. This ensures that subsurface melting
for the case of melting bare sea ice is avoided [Taylor,
2003]. This is necessary because the radiation model is
insufficient to describe the variation in optical properties
near the surface of the sea ice in this case. For melt ponds,
most of the short-wave radiation beyond 700 nm is
absorbed very effectively [Perovich et al., 1999]. The
rapidly absorbed radiation is assumed to contribute to the
surface energy balance via the i0

l parameter. From observa-
tions of cloudy sky incident radiation [Grenfell, 1979], up to
40% of the incident short-wave radiation field is beyond the
700 nm range. Therefore the parameter i0

l is assumed
constant and is set equal to 0.6.
[45] For numerical simplicity, we assume that the melting

temperature of the upper surface of the sea ice (TL(Cpond) =
�0.2�C) is constant and is marginally less than the equilib-
rium freezing temperature of the bulk salinity of the ice
(TL(Cbulk)), so that an explicit Stefan condition can be used.
This is an assumption made for numerical convenience. In
the (typical) case that the pond salinity is less than the bulk
salinity of the sea ice, the solid fraction f at the pond-ice
interface is zero and the interface position must be deter-
mined implicitly from the balance of energy flux across the
interface. Setting the solid fraction to be a small constant
enables the interface position to be determined explicitly
and is justified through our numerical experiments and
previous calculations [e.g., Feltham and Worster, 1999]. If
the surface temperature is less than the melting temperature,
then the net energy at the upper surface of the sea ice (Enet)0

m

must be zero. If the surface temperature is at the melting
temperature, then the net energy at the surface must balance
the latent heat required to melt the mushy layer, rsLfdhs/dt.
[46] If a melt pond forms, then the surface energy balance

for the melt pond (Enet)0
l is used and must equal zero. The

velocity of the pond-ice boundary is determined from the
Stefan condition,

rsLf
dhp

dt
¼ km

@T

@z
þ Fc TL Cpond

� �� �
; z ¼ hp

� �
: ð31Þ

[47] We assume that the refreezing surface of a melt pond
forms a mushy layer of the same constant bulk salinity as
the lower sea ice layer, and with freezing temperature
identical to the upper surface of the lower sea ice layer.
This enables the sea ice to reform as a continuous block
once the internal melt region has completely refrozen. At
the upper-ice–internal-melt interface (z = hui) the tempera-
ture is at the melting temperature of the pond, so that

T ¼ TL Cpond

� �
; ð32Þ

and the velocity of the boundary is given by the Stefan
condition

rsLf
dhui

dt
¼ km

@T

@z
� Fc TL Cpond

� �� �
: ð33Þ

[48] The accretion of snow onto the ice surface in
the model is identical to the findings of Maykut and
Untersteiner [1971] and accumulates linearly at different
rates during winter. An accumulation of 30 cm of snow
occurs between 20 August and 30 October. An additional
5 cm of snow falls from 1 November to 30 April. Finally,
5 cm falls from 1 May to 31 May, so that in total, there is
40 cm of snowfall per year. Qualitatively, this is similar to
the results from SHEBA [Perovich et al., 1999], although at
SHEBA the initial accumulation was less rapid than in this
case. At the snow-ice interface (z = hsnow) it is assumed that
there is no melting until a melt pond forms. When there is
no melting at the snow-atmosphere interface the heat flux is
assumed to be continuous across the snow-ice boundary,
and so

ksnow
@T

@z
¼ km

@T

@z
: ð34Þ

It is also assumed that when there is no melting the
temperature is continuous across the snow-ice interface. The
evolution of the snow-ice interfacial temperature is
determined implicitly from equation (34) using an iterative
method.
[49] If the surface temperature of the snow is less than its

melting temperature (273 K), then the net energy at the
surface (Enet)0

snow must be zero. The melting of snow is
complex, with meltwater percolation and refreezing, and
rapid densification of the snow cover [Maykut and
Untersteiner, 1969]. Since the primary interest here is in
the role of melt ponds, we utilize a similar methodology to
Maykut and Untersteiner [1971]. As soon as the surface
temperature of the snow reaches the melting point, the snow
is allowed to melt. There is an initial amount of melt as the
snow layer becomes isothermal at its melting point (see
below). Subsequently, further melt is determined by the
requirement that the net energy at the surface must balance
the latent heat required to melt the snow layer, so that

rsnowLsnow

dhsnow

dt
¼ Enetð Þsnow0 ; ð35Þ

where Lsnow = 332424 J/kg [Ebert and Curry, 1993] is the
constant latent heat of the snow, and rsnow is the variable
density of snow (see below).
[50] The initial quantity of melting is determined by

equating the energy required to make the snow layer
isothermal at its melting temperature and to raise the surface
of the sea ice to its melting temperature (between the first
two grid points) with the latent heat required to melt the
undetermined quantity of snow. At this time, the tempera-
ture profiles within the snow and between the first two grid
points within the sea ice are approximately linear.
[51] Since the number of grid points is large, the energy

required to raise the sea ice surface to its melting temper-
ature is negligible compared to the energy required to make
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the snow layer isothermal. Therefore, assuming the temper-
ature profile in the snow is linear, the amount of melting at
the surface can be approximated by

hs*� hsð Þ ¼ csnow hsnow � hsð Þ T0 � Tice*ð Þ
2Lsnow

; ð36Þ

where z = hs (z = hs*) is the location of the surface of the
snow layer before (after) melting has occurred, and Tice* is
the temperature of the snow-ice interface before melting has
occurred.
[52] Once this quantity of melting has occurred the snow

is assumed instantaneously to be isothermal at its melting
temperature and the ice surface is brought to its melting
temperature. The density of the snow is also assumed to
increase instantaneously to a limiting value, so that rsnow
increases to 450 kg/m3 [Maykut and Untersteiner, 1971], to
represent rapid densification. The snow is then allowed to
melt according to equation (35) until a melt pond forms,
with the initial depth of the melt pond being given by (hsnow
� hs*)rsnow/rl. For simplicity, we assume that once the depth
of the snow surface melts to the initial pond height the
melting snow becomes a melt pond.
[53] Unlike previous models, it is required that the snow

melts and initiates the formation of a melt pond. Therefore,
conservation of mass and energy must be used to estimate
the variation of density of the snow as it initially melts to
form a melt pond. A linear variation of density with snow
depth Hsnow(t) does not satisfy conservation of energy.
Therefore we assume that the variation of density with
snow depth varies quadratically according to

rsnow Hsnow tð Þð Þ ¼ aHsnow tð Þ2þbHsnow tð Þ þ c; ð37Þ

where a, b, and c are constants determined by the conditions
that the initial density of the snow is rsnow(Hsnow(t0)) =
450 kg/m3 at time t0, and the final density of the snow, once
it has formed a melt pond, is rsnow(Hsnow(t1)) = 1000 kg/m3

at time t1, where Hsnow(t1) is the water equivalent of the
initial snow layer after initial melting, and the total energy
required to melt the snow satisfies
Z t1

t0

rsnow Hsnow tð Þð ÞLsnow

dHsnow tð Þ
dt

dt

¼ �r Hsnow t0ð Þð ÞLsnowHsnow t0ð Þ: ð38Þ

The exact densification process is unimportant to the
simulation of melt ponds. However, it is necessary to ensure
that the model initiates with a melt pond from the melting of
snow, and also that the model conserves energy.
[54] Since the melt-pond–sea-ice model does not contain

any description of the mixed layer of the ocean, we assume,
in common with previous models [e.g., Bitz and Lipscomb,
1999; Ebert and Curry, 1993], that the ocean has constant
salinity (35 ppt) and is at its equilibrium freezing temper-
ature. Then, any surplus or deficit of salt due to phase
change at the sea-ice–ocean interface is assumed to be
instantly removed to the mixed layer of the ocean. At the
sea-ice–ocean interface z = hi, the sea ice is at the freezing
temperature of the ocean, so that

T ¼ TL Coceanð Þ: ð39Þ

The velocity of the ice–ocean boundary is given by the
Stefan condition,

rsLf
dhi

dt
¼ km

@T

@z
� Focean; z ¼ hið Þ; ð40Þ

where Focean is the heat flux from the ocean directed into the
base of the ice. Equation (40) states that the excess/deficit of
heat at the melting interface balances the latent heat
released/absorbed at the melting interface.

3.5. Drainage

[55] Since summer sea ice is porous [Eicken et al.,
2002], drainage occurs within melt ponds that are above
sea level at a rate dictated by the pressure head that they
create. This is believed to be the primary source of
desalination (flushing) of multiyear sea ice [Cox and
Weeks, 1974; Untersteiner, 1968].
[56] Vertical drainage through sea ice occurs relatively

rapidly, so that the position of the surface of a melt pond
relative to the sea surface is essentially dependent on the
relative area of the melt pond to its catchment area from
which surface melt runs into the pond. For reasonably large
ponds the net result is that their surfaces become fixed at the
sea surface [Perovich et al., 2003; Taylor, 2003], so that the
effective drainage rate is then approximately equal to
changes in freeboard.
[57] The net upward motion of sea ice floes which

melt during summer has an approximately constant rate
[Perovich et al., 1999], which we take to suggest that the
effective sea level melt-pond drainage rate is also constant.
From these data, we assume that the effective drainage rate
(dhs/dt) is a constant 1.75 cm/day.

3.6. Method of Solution

[58] The sets of equations to be solved within each
domain are decoupled, in the sense that the interfacial
temperatures at the boundaries are fixed, except when a
snow layer is present that is not melting.
[59] The governing equations and boundary conditions

were nondimensionalized. The governing equations for
each layer (snow layer, upper ice layer, melt pond/internal
melt, lower ice layer) were transformed from the (z, t)
coordinate system to the (x, z) coordinate system, by the
transformation

x ¼ z� ha

hb � ha
; z ¼ t; ð41Þ

where ha < hb are the positions of the boundaries of the
respective layers. The moving domain [ha, hb] is thus
transformed onto the fixed domain [0, 1]. A major
advantage of this method is that interpolation of
temperatures at the moving boundaries is not required,
and that the number of grid points in the numerical
scheme remains fixed. A further advantage of this method
is that library routine D03PCF from the Numerical
Algorithms Group can be used to solve the governing
equations.
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[60] To solve the coupled snow-ice layer equations using
D03PCF an iterative scheme was used to calculate the
correct interfacial temperature at the end of each time step.
The temperature gradients at each side of the interface were
approximated using a three-point backward (snow)/forward
(ice) difference approximation. D03PCF is integrated using
an initial estimate of the interfacial temperature at the end of
the time step. The estimate is calculated from the current
rate of change of the interfacial temperature determined
from previous time steps. The interfacial condition on the
heat flux (equation (34)) forms a quadratic equation for the
interfacial temperature. The expected interfacial temperature
at the end of the time step is calculated from this quadratic
expression once D03PCF has been integrated forward in
time. If the difference between the initial estimate and the
expected interfacial temperature is greater than a prescribed
tolerance (0.001, in nondimensional temperature units), then
the expected interfacial temperature is used as the initial
estimate in the next iteration of D03PCF. If the difference is
less than the prescribed tolerance, then the iterations are
stopped.
[61] During each time step, the forcing fluxes (FSW, FLW,

Fsens
x , Flat

x , and Focean) and the thickness of each layer are
assumed fixed. Once the temperature becomes greater than
the melting temperature upon integrating the temperatures
in the ice forward in time, interpolation is used to estimate
initial thickness of the melt. The model boundary conditions
are then changed for the next time step to the appropriate
configuration. At the end of each time step the forcing
fluxes are updated, and the thickness of each layer is
updated.

4. Forcing Data

[62] The model input forcing data are: incoming short-
wave radiation, incoming long-wave radiation, air temper-
ature at 10 m (used in determining the sensible heat flux),
specific humidity at 10 m (used in determining the latent
heat flux), air pressure (used in determining the latent heat
flux), wind speed at 10 m (used in determining the latent
and sensible heat fluxes), and ocean heat flux. The model
forcing was assumed to have no diurnal variation, and

varied continuously throughout the annual cycle. Diurnal
variation was not considered because it would reduce the
accuracy of the model in the early melt season where there
could be rapid melt/freeze cycles. Atmospheric SHEBA
data were obtained from the online CODIAC system
provided by JOSS/UCAR (www.joss.ucar.edu/sheba/) and
are derived from data from the SHEBA Surface Flux Group.
An assumed profile of the form XLW + YLW cos(2pd/365)
was fitted to the long-wave data using the method of least
squares (where d is day of year), and an assumed profile of
the form Max(0, XSW + YSW sin(2p(d � 249)/365)) was
fitted to the short-wave data. The best-fit coefficients for the
long-wave flux are XLW = 214.27 and YLW = �73.81. The
best-fit coefficients for the short-wave flux are XSW = 29.25
and YSW = �240.59. The fitted and observed short- and
long-wave fluxes are shown in Figures 3 and 4.
[63] The sensible and latent heat fluxes parameterizations

utilize air temperature, specific humidity, air pressure, and
wind speed. These were estimated from the SHEBA Surface
Flux Group data. The data were averaged for each month,
and the average monthly values were interpolated using a
cubic spline. Since the data for October were sparse, the
averaged September and November value was used. The
annual wind speed monthly average was 4.90 m/s (com-
pared to 5 m/s [Ebert and Curry, 1993]) with standard
deviation 0.27 m/s, and so a constant value of 4.90 m/s was
used.
[64] Since the aim of our study was not to analyze the

interaction between ocean and sea ice, the ocean heat flux
was prescribed as an external parameter. For simplicity the
ocean heat flux was set to be a constant 2 W/m2 [Bitz and
Lipscomb, 1999]. In reality the ocean heat flux has been
observed to have an annual cycle with a summertime peak
of over 30 W/m2 [Perovich and Elder, 2002]. However, the
constant ocean heat flux we use is similar to the annual
average of previous investigations [Perovich and Elder,
2002], so that the annual mass balance should not be
significantly in error.

5. Simulation Results

[65] The results of the simulations are now presented.
First, the baseline, standard case is described and the quality

Figure 3. Fitted (white line) and observed (black) seasonal
evolution of short-wave radiation (FSW). (Day 0 denotes
1 January 1998. Data after day 300 correspond to fall 1997
measurements.)

Figure 4. Fitted (thick line) and observed (thin line)
seasonal evolution of long-wave radiation (FLW). (Day 0
denotes 1 January 1998. Data after day 300 correspond to
fall 1997 measurements.)
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of the simulation is assessed by comparison to observations
at SHEBA and previous modeling. Second, the sensitivity
of the model to the drainage rate, initial ice thickness,
maximum snow depth, and optical properties is examined.
[66] All model runs are initialized with a linear temper-

ature gradient in the sea ice and the snow and a surface
temperature of �30�C, consistent with observed wintertime
temperature data at SHEBA [Perovich et al., 1999]. In the
snow covered case the snow-ice interfacial temperature is
determined simply using the condition of conservation of
conductive flux at this boundary (equation (34)). The initial
ice thickness is set to 2 m, and the initial snow depth is 0.32
m (consistent with the snow cover formulation described in
section 3.4), unless otherwise stated.
[67] The likely long-term fate (after several years) of ice

that forms melt ponds will be that it melts completely in
summer, with new ice formation through the next season.
Therefore, following previous work by Flato and Brown
[1996] and Gabison [1987], the melt-pond–sea-ice model is
allowed to run for one summer melt season from 1 January
to 31 December and is then terminated.

5.1. Standard Case

[68] The standard case was chosen to be the simulation
with model parameters that gave a reasonable approxima-
tion to the expected summertime evolution of melt ponds.
Figure 5 shows the evolution of the positions of the
boundaries of the melt-pond–sea-ice system. Also shown
in the figure is the evolution of the albedo.
[69] During winter the evolution of ice thickness and

snow depth is slow, with minor variations at the snow
surface due to precipitation and at the ice-ocean interface
due to freezing of seawater. As the short-wave energy
increases, the temperature of the snow increases until it is
warm enough to begin melting, which occurs on day 168
(18 June). When melting begins, the snow albedo drops
from its wintertime value (0.84) to its melting value, which
is determined from the linearly interpolated value, based on
a melting snow value (0.74) at the initial snow thickness and
the expected value using the two-stream radiation model at
the initial pond depth. The time taken to melt the snow and
thus form an initial melt pond is about 9 days, so that on day

177 (27 June), there is a melt pond of depth 0.13 m with
albedo 0.42. As summer continues, the pond deepens and
the albedo decreases. The temperature of the pond is in
good agreement with observations of pond temperature, a
few tenths above freezing [Eicken et al., 1994], with
maximum surface temperature 0.74�C and maximum core
temperature 0.28�C. On day 213 (2 August) the melt pond
is at its maximum depth (0.33 m), having melted through
0.84 m of ice, and the albedo is at its minimum value (0.23).
On day 221 (10 August) the melt pond has decreased in
depth (0.27 m) and surface ablation has melted 0.92 m of
ice. However, it is at this time that refreezing at the melt
pond surface occurs, leading to a rapid increase in albedo up
to 0.64. The reason for this rapid increase is that the
wintertime optical properties of the radiation model are
incorporated at this point so that a thin layer of sea ice is
highly effective at reflecting the incident radiation. Al-
though this sudden increase in refrozen pond albedo is
somewhat unrealistic, in practice the refrozen pond is
typically covered in a light dusting of snow, which has
the effect of increasing the albedo [Perovich et al., 2002].
The constant drainage rate yields a net mass loss of sea ice
at the surface of 0.64 m. After only 10 days, on day 231 (20
August), snow begins to fall, and the albedo rises again to
its constant wintertime value (0.84). The internal molten
region remains as a store of sensible and latent heat, but
refreezes by day 253 (11 September). On day 322 (19
November) the sea ice has cooled sufficiently and begins
to refreeze at its base. By the end of December the ice has
refrozen so that it is 1.83 m thick, which implies a net
annual loss of 0.18 m of sea ice.
[70] The data available from the SHEBA field experiment

provide a necessary check on the simulations. SHEBA melt
pond mass balance data of Perovich et al. [1999] using
26 depth gauges indicate that the average maximum pond
depth was 0.36 m, with maximum 0.54 m. The amount of
surface ablation for all the gauges averaged 0.75 m, with
minimum 0.4 m and maximum 1.09 m. The standard case
exhibited maximum pond depth 0.33 m, and 0.92 m of

Figure 5. Annual cycle for standard case. Lines indicate
motion of boundaries through the year, relative to initial
wintertime snow-ice interface (left scale). Uppermost line is
the evolution of albedo through the year (right scale). (Day
0 denotes 1 January.)

Figure 6. Comparison of melt pond depth evolution:
Melt-pond–sea-ice model (standard case); Ebert and
Curry’s [1993] model; and SHEBA [Perovich et al.,
1999] data. Discontinuity in data for melt-pond–sea-ice
model represents estimated day that snow cover becomes
fully molten and forms a melt pond. (Day 0 denotes 1
January.)
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surface ablation. Therefore the standard case is exhibiting
behavior that is similar to observations.
[71] Figure 6 compares the evolution of average pond

depths observed at SHEBA [Perovich et al., 1999], with the
evolution of pond depth from Ebert and Curry’s [1993]
model, and the evolution of pond depth from this study. The
start of the melt season for the standard case begins late
compared to SHEBA data, a feature common among
numerical simulations [e.g., Ebert and Curry, 1993; Maykut
and Untersteiner, 1971]. The reason for the late start of the
melt season is most likely the use of a constant wintertime
snow albedo (in reality, this might be expected to decrease
as the snow warms before melting). The standard case
underestimates the pond depth at the beginning and end
of the melt season, although it is remarkably similar during
the middle of the melt season. The most likely reason for
this is the specification of a constant drainage rate. Melt
rates at the surface of sea ice typically wax and wane with
the summer season [Perovich et al., 1999], so that the
constant drainage rate is an overestimate at the beginning
and end of the summer melt season, but yields reasonable
total drainage.
[72] Freeze-up in the standard case occurs in mid-August

just as in the SHEBA data. Since the surface forcing data
are averaged SHEBA data, this similarity between freeze-up
dates is evidence to support the use of turbulent heat
transport in the melt pond and suggests that the sensible
heat stored in the pond is a good approximation.
[73] Figure 7 shows the evolution of the partitioning of

the short-wave radiation between the sea ice and melt pond,
the ocean, and the atmosphere. The short-wave radiation
peaks on day 156 (6 June) at 270 W/m2, so that when melt
ponds form (day 177) the short-wave radiation is decreasing
and the absorbed short-wave radiation rapidly triples in
value reaching a maximum of 145 W/m2. Table 1 shows the
annual radiative energy budget split into ponded and
unponded periods. The total incoming short-wave radiation
is comparable to previous models [e.g., Ebert and Curry,
1993; Maykut and Untersteiner, 1971]. Although the melt
season is relatively short, the quantity of radiation absorbed
during summer in the presence of melt ponds is about the
same as the radiation absorbed in the rest of the year.

[74] A typical temperature profile for fall (day 250) of the
standard case is shown in Figure 8. At this time, the model
configuration is at its most complex since it has four
separate layers that are tracked at each time step. The air
temperature has cooled from its summertime value, of
around 0�C, to �3.3�C, and the sensible and latent heat
fluxes are directed into the snow and are about 6 W/m2 and
3 W/m2, respectively.
[75] Figure 9 shows the evolution of temperature inside

the ice from day 0 to day 365 (compare Figure 5). The
temperatures observed in the sea ice of the standard case are
similar to observed temperature profiles from SHEBA [see
Perovich et al., 1999], with the ice steadily becoming
isothermal as summer approaches, and are generally lower
than those simulated by Maykut and Untersteiner [1971].
[76] Maykut and Untersteiner’s [1971] model predicts a

more rapid cooling of the sea ice during fall than is
observed in field data. This is common in thermodynamic
models of sea ice. This effect is sometimes ameliorated by
adding latent heat to the model at the surface (at a
sufficiently low rate to prevent melting from reoccurring).
The melt-pond–sea-ice model presented here does not
predict as rapid a cooling as previous models (without
latent heat addition), and the ice-ocean interface begins to
refreeze in late November. As the internal melt region cools
and refreezes, it releases sensible and latent heat to the
surrounding sea ice, which diffuses away from the melt
region. This extra heat reduces the rate of cooling of the sea
ice in fall, consistent with observations, and reduces the
temperature gradient in the lower half of the sea ice, leading

Figure 7. Evolution of short-wave radiation in the melt-
pond–sea-ice model. Shown are the incoming short-wave
radiation (Total), the short-wave radiation that is reflected
(Reflected), the short-wave radiation that is absorbed within
the whole melt-pond–sea-ice system (Absorbed), and the
short-wave radiation that is transmitted through to the ocean
(Transmitted). (Day 0 denotes 1 January.)

Table 1. Annual Energy Budget for the Standard Case

Epoch
Ponds Present,

108 J/m2
Ponds Absent,

108 J/m2
Whole Year,
108 J/m2

Reflected 2.52 17.07 19.59
Absorbed 5.04 4.08 9.12
Transmitted 0.21 0.02 0.23
Total 7.77 21.17 28.94

Figure 8. Temperature profile inside melt-pond–sea-ice
model at day 250 of the standard case. Snow depth is 0.078
m and internal melt depth is 0.142 m. Snow–ice interface is
at 0 m.

C12007 TAYLOR AND FELTHAM: MELT POND MODEL

12 of 19

C12007



to less wintertime growth. This effect can be seen by
comparing the date on which the sea ice begins to refreeze
in Figure 5, where there is a melt pond, to Figure 12 in
section 5.2.1, where there is only a short-lived melt pond.

5.2. Model Sensitivity

[77] Since it is the first time that a melt pond has been
explicitly simulated as a separate phase on the sea ice, it is
important to understand the sensitivity of the melt-pond–
sea-ice model to those components that have a large degree
of uncertainty. The parameters that we investigate are
drainage rate, initial ice thickness, maximum snow depth,
and optical properties of sea ice and melt ponds.
[78] To examine sensitivity we perform simulations with

different values of the parameter under investigation while
holding all other parameters constant and equal to those
used in the standard case. The most informative diagnostic
of the simulations is the maximum melt pond depth. This is
because it can be directly compared to observations and is
routinely measured in field studies of melt ponds [e.g.,
Eicken et al., 1994; Morassutti and LeDrew, 1996; Perovich
et al., 1999]. The pond depth is also crucial in determining
the albedo of melt pond covered sea ice and is utilized in

parameterizations of melt pond albedo [e.g., Ebert and
Curry, 1993; Morassutti and LeDrew, 1996].
5.2.1. Drainage
[79] Figure 10 shows the dependence of the maximum

pond depth on the drainage rate. Qualitatively, there are
three types of behavior that are observed as the drainage rate
varies. At low drainage rates (0–1.5 cm/day), the maximum
pond depths are large, which is partly because deeper ponds
have a lower albedo which enhances melting at their base
(see Figure 11, which shows the evolution of the standard
case except that drainage rate is set to zero). At intermediate
drainage rates (1.5–2.0 cm/day), the maximum pond depths
are small, which is partly due to the negative correlation
between albedo and pond depth (see Figure 5). At large
drainage rates (>2.0 cm/day), the drainage rate is so rapid
that initial melt ponds formed from snowmelt drain com-
pletely (see Figure 12, which shows the evolution of the
standard case except that drainage rate is set to 3.5 cm/day).

Figure 9. Contour plot of annual evolution of temperature
(�C) inside sea ice in the standard case. Moving boundaries
are also shown through the year, relative to initial
wintertime snow-ice interface. Linear interpolation was
used to construct the contour plot onto a uniform grid. (Day
0 denotes 1 January.)

Figure 10. Dependence of maximum pond depth upon
drainage rate, with other parameters equal to those used in
the standard case.

Figure 11. Annual cycle for standard case except that the
drainage rate is set to zero. Lines indicate motion of
boundaries through the year, relative to initial wintertime
snow-ice interface (left scale). Uppermost line is the
evolution of albedo through the year (right scale). (Day 0
denotes 1 January 1.)

Figure 12. Annual cycle for standard case except that the
drainage rate was set to 3.5 cm/day. Lines indicate motion
of boundaries through the year, relative to initial wintertime
snow-ice interface (left scale). Uppermost line is the
evolution of albedo through the year (right scale). (Day 0
denotes 1 January.)
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The reason that the maximum pond depth is greater than
zero for large drainage rates is that the melt-pond–sea-ice
model produces a pond of fixed depth at the beginning of
the melt season from melting the initial snow cover. Surface
ablation exhibits the same dependence upon drainage rate as
the maximum pond depth, since the albedo is correlated to
pond depth.
5.2.2. Initial Ice Thickness
[80] Intuitively, it might be expected that the albedo-

feedback mechanism would accelerate melting of ice ini-
tially thinner than the standard case due to its lower albedo.
However, the maximum pond depth for thinner ice is less
than the standard case. The albedo-feedback mechanism is
unimportant at this ice thickness because the albedo is
relatively insensitive to changes in ice thickness when the
ice thickness is greater than about 0.8 m [Perovich et al.,
1986]. The maximum melt pond depth decreases with initial
sea ice thickness because of the conductive flux through the
sea ice. In the presence of melt ponds, heat is transported
away from the pond-ice interface toward the ocean, and
thinner ice transports heat away more rapidly. Therefore the
melt rate is less rapid, which results in a smaller maximum
pond depth. As the initial ice thickness becomes much
thinner (less than 0.75 m), the albedo-feedback mechanism
becomes more effective than the conductive feedback in the
summer and so the maximum pond depth increases slightly
(see Figure 13).
[81] Measurements at SHEBA revealed excessive bottom

melting of the sea ice cover during the field experiment
equivalent to 187 MJ/m2 over the year, of which only about
two thirds is explained by short-wave radiation entering the
ocean through leads [Perovich et al., 2003]. This indicates
an energy deficit of about 60 MJ/m2 per year, part of which
has been suspected of being transmitted short-wave radia-
tion through the ice and melt ponds into the ocean [Perovich
and Elder, 2002; Perovich et al., 2003]. The annual estimate
of 23 MJ/m2 (see Table 1) from our standard case calcula-
tion accounts for less than half of the missing 60 MJ/m2.
Figure 14 shows the variation in total annual transmitted
radiation for different initial ice thicknesses. To obtain an
annual transmission budget of 60 MJ/m2 requires the initial
wintertime ice thickness to be about 1.25 m. This is too thin,
since the mean ice thickness at SHEBA was 1.5 m in
October 1997 [Perovich et al., 2003]. Therefore, if the

parameter assumptions are valid, it is unlikely that the
observed energy deficit is solely due to radiation transmitted
through the sea ice cover. Other potential sources for the
missing energy, noted by Perovich et al. [2003], are heat
advected from the edge of the summer sea ice cover and
deep warmer water reaching the underside of the ice
contributing to melt.
5.2.3. Snow Cover
[82] A snow cover insulates sea ice from the atmosphere,

slowing the rate of warming or cooling of the sea ice, and
prevents most incoming radiation from entering the sea ice.
The net effect of this is to lower the sea ice surface
temperature relative to bare sea ice [Sturm et al., 2002].
[83] The sensitivity of the maximum pond depth and

maximum surface ablation to the maximum snow depth
are shown in Figure 15. The maximum depth of the snow
cover was varied by scaling the precipitation rate uniformly
throughout the year. The maximum pond depth increases
monotonically with maximum snow depth, since the
amount of surface water available at the beginning of the
melt season is directly proportional to the maximum snow
depth. For maximum snow depths greater than 0.3 m,
relatively deep ponds are formed that can rapidly melt

Figure 13. Dependence of maximum pond depth upon
initial sea ice depth with other parameters equal to those
used in the standard case.

Figure 14. Dependence of annual short-wave transmission
into ocean upon initial sea ice depth with other parameters
equal to those used in the standard case.

Figure 15. Dependence of maximum surface ablation and
maximum pond depth upon maximum snow depth with
other parameters equal to those used in the standard case.
Snow accumulation rate was scaled uniformly through the
year to attain variation in maximum snow depth.

C12007 TAYLOR AND FELTHAM: MELT POND MODEL

14 of 19

C12007



through the ice and lead to an increase in maximum surface
ablation with increasing maximum snow depth. For maxi-
mum snow depths less than 0.3 m, however, the maximum
surface ablation increases as maximum snow depth
decreases. This behavior is due to thinner snow cover
allowing melt ponds to form sooner and hence increase
the length of the melt season, which overcompensates the
corresponding decrease in melt rate associated with shal-
lower melt ponds.
5.2.4. Optical Properties
[84] The optical properties of the melt-pond–sea-ice

model are described by two parameters (k2 and s2) for the
ice and two parameters (k1 and i0

l ) for the pond. Figure 16
shows the dependence of the maximum pond depth upon
the extinction coefficient of the sea ice (k2). A lower sea ice
extinction coefficient corresponds to proportionally less
energy absorbed by the sea ice near the surface than the
interior. This allows more sensible heat to be stored within
the interior of the ice, so that less energy can contribute to
surface melting, in agreement with the results of Maykut
and Untersteiner [1971]. The result of this is that lower sea
ice extinction coefficients lead to ponds that are shallower
and with smaller surface ablation.
[85] Figure 17 shows the sensitivity of the maximum

pond depth to the sea ice albedo proxy s2. Lower sea ice

albedo s2 corresponds to larger pond depths and increased
surface ablation since more short-wave radiation can enter
the melt pond and sea ice.
[86] The optical properties of a melt pond are simpler

than those of sea ice in that a pond does not have the same
temporally evolving morphological complexity. However,
the optical properties of the pond can be affected by
biological and particulate inclusions (e.g., soot), which
can either be in suspension or accumulate at the base of
ponds. The effect of suspended inclusions is to increase the
absorption coefficient of the pond. Figure 18 shows the
sensitivity of the maximum pond depth to the extinction
coefficient of the melt pond. As the absorption coefficient of
the pond increases, the pond can convert more short-wave
radiation into heat, and also there is a decrease in albedo.
Both of these effects result in larger pond depths and more
sea ice ablation as the extinction coefficient increases.
[87] The i0

l parameter for the melt pond determines the
amount of radiation that passes through the surface of the
pond and contributes to internal heating. This is highly
uncertain because the amount of radiation that can pass
through the surface depends on the spectral composition of
the incident radiation. Clouds absorb longer wavelength

Figure 16. Dependence of maximum pond depth upon sea
ice extinction coefficient k2 with other parameters equal to
those used in the standard case.

Figure 17. Dependence of maximum pond depth upon sea
ice albedo proxy s2

winter with other parameters equal to
those used in the standard case.

Figure 18. Dependence of maximum pond depth upon
melt pond extinction coefficient k1 with other parameters
equal to those used in the standard case.

Figure 19. Dependence of maximum pond depth upon
fraction of short-wave radiation penetrating into melt pond
and sea ice i0

l at standard drainage rate with other
parameters equal to those used in the standard case.
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radiation more strongly than shorter wavelength radiation
[Perovich, 1996]. Therefore, when it is cloudy the i0

l

parameter for the melt pond is larger than when it is clear.
[88] Figure 19 shows the sensitivity of the maximum

pond depth to a wide range of values of i0
l . As i0

l increases,
the radiative heating of the melt pond and sea ice increases;
however, increasing i0

l decreases the magnitude of the
turbulent convective heat flux in the melt pond at the
atmosphere-pond interface, which can be seen from
the surface energy balance (equation (28)). The turbulent
convective heat flux into the pond is more sensitive to
variations in i0

l than the radiative heating of the pond due
to short-wave radiation, so that increasing i0

l leads to a
decrease in the maximum pond depth.
5.2.5. Comparison of Model Sensitivity
[89] We define a measure of model sensitivity dsens(x),

where x is the parameter being considered, as the non-
dimensionalized partial derivative of the maximum pond
depth with respect to parameter x, in a similar way to Ebert
and Curry [1993]. The scales used for nondimensionaliza-
tion are determined by the standard case values of the
maximum pond depth and the parameter being considered.
The partial derivative is determined using a central finite
difference scheme. The model sensitivity is

dsens xð Þ ¼ hxi
hHmax

pondi
@Hmax

pond

@x
; ð42Þ

where angle brackets denote the value at the standard case,
and Hpond

max is the maximum pond depth. The value of dsens is
a local measure of sensitivity in the vicinity of the standard
case parameters. If dsens(x) is positive, then increases in
parameter x result in increases in the maximum pond depth,
and vice versa. The magnitude of the sensitivity parameter
indicates the strength of the sensitivity, with larger
magnitudes corresponding to increased sensitivity.
[90] Table 2 shows the value of the sensitivity measure

dsens for the parameters investigated in section 5.2. The
maximum melt pond depth was most sensitive to the melt
pond optical parameter i0, because of its influence on the
surface energy balance. The least influential parameter was
the melt pond extinction coefficient. This is because the
total amount of radiation absorbed by the pond is relatively
small in comparison to the turbulent heat fluxes at the
boundaries (equation (26)). However, it should be noted
that the sensitivity parameter is only a local estimate of

sensitivity, and since the model is nonlinear, the sensitivity
parameter may vary across parameter space.

6. Summary and Conclusions

[91] Previous work has parameterized melt ponds [e.g.,
Ebert and Curry, 1993; Maykut and Untersteiner, 1971;
Mellor and Kantha, 1989]. The current work describes an
explicit, physically based model of melt ponds on sea ice.
[92] The thermodynamic component of the sea ice model

is described using the equations describing a mushy layer,
so that the sea ice is assumed to consist of a solid matrix of
pure ice surrounded by brine (there are no air pockets). The
simplifying assumption of constant density of each phase
removes dynamic effects due to phase change. The melt
pond salinity is assumed to remain constant due to mixing
as the pond undergoes turbulent convection.
[93] The two-stream radiation model is used because it

enables albedo to be obtained from optical properties
describing the sea ice, instead of prescribing albedo as an
external parameter. The two-stream model is reformulated
in terms of the sea ice albedo proxy, s2, a combination of the
absorption (k2) and extinction (k2) coefficients. The radia-
tion field in each layer of the two-stream model is deter-
mined by two unknown parameters, calculated from the
upper and lower boundary conditions of each layer. The
optical properties and incident radiation are assumed to be
independent of wavelength. However, this should not affect
the qualitative results of the thermodynamic model provided
that the radiation near the surface is adequately modeled.
[94] The sea ice optical property s2 is parameterized to

account for summertime variation. As expected, the inter-
action of radiation with sea ice, snow, and melt ponds is
fundamental to controlling summertime melt. The melt
pond depth is most sensitive to the optical properties
(Table 2), which is probably because the optical parameter
s2 was dependent on the melt pond depth. The ability of the
simulation to replicate albedo variations observed during
summertime [Perovich et al., 2002] lends confidence to the
parameterization of s2. Further work is warranted in order to
refine this type of parameterization of optical properties
during summer.
[95] The melt rate beneath melt ponds is related to pond

depth through the dependence of radiative heating, due to
the albedo-feedback mechanism, on pond depth, and
the dependence of the conductive flux through the sea ice
to the ocean on ice thickness. In the presence of melt ponds
the complexity of feedback mechanisms that affect the mass
balance of the sea ice is increased.
[96] A simple snow cover model was utilized, following

Maykut and Untersteiner [1971], since we focused on the
effect of melt ponds. To conserve mass and energy as the
snowmelts and forms a melt pond, a nonlinear relationship
between density and volume was imposed.
[97] Drainage of melt ponds on sea ice is complicated,

since it is the net result of drainage through the base of melt
ponds and accumulation due to lateral water transport into
the pond through permeable sea ice. Calculations of vertical
drainage through permeable sea ice of a meltwater head
show it to be rapid, with timescales of the order of minutes
for permeabilities of about 10�10 m2 [Taylor, 2003]. Even in
the early melt season with permeabilities as low as 10�12 m2

Table 2. Sensitivity Parameter dsens for Variables Against Which

the Maximum Melt Pond Depth Sensitivity Was Examineda

Parameter dsens
Drainage �5.228
Initial ice thickness 0.801
Maximum snow depth 3.820
Sea ice extinction k2 2.103
Ice albedo proxy s2 �7.513
Melt pond extinction k1 0.245
Melt pond parameter i0

l �9.685
aA larger magnitude of dsens indicates increased sensitivity, with a

positive sign indicating that an increase in the parameter leads to an
increase in the maximum pond depth, and vice versa.
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the timescale of drainage is of the order of several days. To
maintain a steady meltwater head above sea level requires
that the lateral accumulation balances the drainage out of
the pond. However, the total mass necessary to maintain
such a meltwater head above sea level is disproportionately
large [Taylor, 2003]. The result is that on average the
surface of sufficiently large melt ponds (lateral size �2 m)
should be maintained at sea level, and drainage is therefore
fixed by the change in relative sea level of the entire sea ice
floe.
[98] Ebert and Curry [1993] utilized the runoff fraction in

their sea ice model as a tunable parameter, in a way similar
to that in which Maykut and Untersteiner [1971] used the
sea ice albedo to tune their model. It is a common feature of
sea ice models that there is such a large degree of uncer-
tainty within model parameters that they can be tuned
within error estimates of parameters to resemble reality
[Shine and Henderson-Sellers, 1985]. In the melt-pond–
sea-ice model presented here, the inherent uncertainty and
obvious variability of the drainage rate means that this
could be tuned within reasonable bounds, for example, 0–
5 cm/day. Future research should re-evaluate the assumption
of a constant drainage rate, by considering factors such as
temporal evolution of permeability of sea ice.
[99] It has been pointed out [Eicken et al., 2002] that the

hydrology of the ice affects the temporal evolution of sea ice
albedo. This follows because the depth of the pond is nega-
tively correlated with its albedo. The significant sensitivity to
the drainage parameter in the melt-pond–sea-ice model (see
Table 2) chimes well with the requirement of incorporating
hydrology into a determination of sea ice albedo.
[100] Previous research has assumed that the influence of

melt ponds on the overall mass balance of sea ice is
relatively small since they refreeze in fall [Maykut and
Untersteiner, 1971]. However, the calculations presented
here using our new melt-pond–sea-ice model indicate that
the presence of melt ponds affect the mass balance signif-
icantly through the albedo-feedback mechanism, drainage,
and through the delayed onset of refreezing at the ice-ocean
interface caused by sensible and latent heat storage in
refreezing melt ponds. The model simulations compare
favorably with SHEBA field data.

Notation

a* coefficient of thermal expansion of pond, equal
to 5 � 10�5 K�1.

apond
1 albedo of pond-covered sea ice in limit of

infinite ice thickness.
a1 albedo of single layer of sea ice in limit of

infinite thickness, equal to 0.65.
a total albedo.
al spectral albedo at wavelength l.
d dendrite (platelet) spacing inside sea ice, m.

dsens(x) sensitivity of maximum melt pond depth for a
simulation to parameter x.

�x emmisivity of surface type x.
z transformed temporal coordinate, s.
g constant of proportionality for turbulent heat

flux, 0.1.
G gradient of linearized liquidus curve, equal to

0.0514 K/ppt.

ki extinction coefficient in layer i, m�1.
kl thermal diffusivity of pond, equal to 1.19 � 10�7

m2/s.
l wavelength, nm.
nl kinematic viscosity of pond, equal to 10�6 m2/s.
x transformed spatial coordinate.
ra density of air, equal to 1.275 kg/m3.

rsL volumetric latent heat of fusion of pure ice, equal
to 3.0132 � 108 J/m3.

rsnow density of snow, kg/m3.
(rc)l volumetric specific heat capacity of brine or

pond, equal to 4.185 � 106 J/(m3 K).
(rc)m volumetric specific heat capacity of sea ice,

J/(m3 K).
(rc)s volumetric specific heat capacity of pure ice,

equal to 1.883 � 106 J/(m3 K).
s Stefan-Boltzmann constant, equal to 5.67 �

10�8 J/(K4 m2 s).
t optimal parameter for assumed form of optical

parameter s2, equal to 3.55 m�1.
f local solid fraction inside sea ice.
cx heat flux at surface of surface type x, W/m2.
a coefficient in snow density–thickness relation-

ship, kg/m5.
Ai optical parameter dependent on optical proper-

ties and thickness in layer i, W/m2.
b coefficient in snow density–thickness relation-

ship, kg/m4.
Bi optical parameter dependent on optical proper-

ties and thickness in layer i, W/m2.
c coefficient in snow density–thickness relation-

ship, kg/m3.
ca specific heat capacity of air, equal to 1005 J/(kg

K).
csnow specific heat capacity of snow, equal to 2092 J/

(kg K).
C concentration of brine inside sea ice, ppt.

Cbulk local bulk salinity, equal to 3.2 ppt.
Ci optical parameter dependent on optical proper-

ties and thickness in layer i, W/m2.
Cocean salinity of ocean, equal to 35 ppt.
Cpond salinity of pond, equal to 3.9 ppt.

Cs salinity of pure ice, equal to 0 ppt.
CT
x stability dependent transfer coefficient of surface

type x.
d day of year.
Di optical parameter dependent on optical proper-

ties and thickness in layer i, W/m2.
Dl solutal diffusivity in brine, m2/s.

(Enet)0
x net energy at surface of surface type x, W/m2.

F#i downwelling irradiance in layer i, W/m2.
F"i upwelling irradiance in layer i, W/m2.

Fc(T*) heat flux out of pond or internal melt region,
W/m2.

Flat
x latent heat flux of surface type x, W/m2.

FLW incoming long-wave flux, W/m2.
Fnet(i)(zi) net irradiance at position zi in layer i, W/m2.
Fnet(z) net-irradiance measure with respect to uppermost

surface of model, W/m2.
Focean ocean heat flux, equal to 2 W/m2.
Fsens
x sensible heat flux of surface type x, W/m2.
FSW incident short-wave irradiance, W/m2.
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g magnitude of acceleration due to gravity, equal
to 9.8 m/s2.

hi position of ice-ocean interface, m.
hl position of lower boundary of liquid region, m.
hp position of lower-ice–pond interface, m.
hs position of surface, m.
hs* position of snow-atmosphere interface after

initial melting has occurred, m.
hsnow position of snow-ice interface, m.

hu position of upper boundary of liquid region, m.
hui position of upper-ice–pond interface, m.
Hi depth of layer i, m.

Hsnow depth of snow layer, m.
i0
x fraction of incident radiation that penetrates

surface of surface type x.
J turbulent heat flux factor, equal to 1.907 �

10�5 m/(s K1/3).
ki absorption coefficient in layer i, m�1.
kl thermal conductivity of brine or pond, equal to

0.5 W/(m K).
km thermal conductivity of sea ice, W/(m K).
ks thermal conductivity of pure ice, equal to

2 W/(m K).
ksnow thermal conductivity of snow, equal to

0.31 W/(m K).
L* latent heat of vaporization, equal to 2.501 �

106 J/kg.
Lsnow latent heat of snow, equal to 332424 J/kg
patm atmospheric pressure, kPa.
pv partial pressure of water vapor, kPa.
q0 specific humidity at surface.
qa specific humidity of air at reference height.
ri scattering coefficient in layer i, m�1.
R0 fresnel reflection coefficient, equal to 0.05.

Ra(t) time-dependent Rayleigh number.
Racrit critical Rayleigh number, equal to 630.
s2
winter constant value of optical parameter s2 used

during winter, equal to 0.643.
si optical parameter dependent on absorption and

extinction coefficient in layer i.
t time, s.

DT temperature difference across pond (surface
minus base), K.

�T mean temperature of turbulent pond, K.
T0 surface temperature, K.
T temperature, K.

Tice* temperature of snow-ice interface before initial
melting has occurred, K.

Tl temperature of lower boundary of liquid region,
equal to 272.8 K.

TL(0) equilibrium freezing temperature at zero con-
centration, equal to 273 K.

TL(C) equilibrium freezing temperature of sea ice at
concentration C, K.

Tu temperature of upper boundary of liquid region,
K.

u velocity of fluid in pond, m/s.
U Darcy velocity of brine inside sea ice, m/s.
v wind speed at reference height, equal to 4.9 m/s.

hxi value of parameter x for a standard case
simulation

Hpond
max maximum pond depth, m.

XLW coefficient of long-wave parameterization, equal
to 214.27 W/m2.

XSW coefficient of short-wave parameterization, equal
to 29.25 W/m2.

YSW coefficient of short-wave parameterization, equal
to �240.59W/m2.

YLW coefficient of long-wave parameterization, equal
to �73.81 W/m2.

zi relative position measured vertically down with
respect to layer i (i = 0, 1, 2), m.
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