

Sensory and instrumental analysis of medium and long shelf-life Charentais cantaloupe melons (Cucumis melo L.) harvested at different maturities

Article

Accepted Version

Creative Commons: Attribution 3.0 (CC-BY)

Lignou, S. ORCID: https://orcid.org/0000-0001-6971-2258, Parker, J. K. ORCID: https://orcid.org/0000-0003-4121-5481, Baxter, C. and Mottram, D. S. (2014) Sensory and instrumental analysis of medium and long shelf-life Charentais cantaloupe melons (Cucumis melo L.) harvested at different maturities. Food Chemistry, 148. pp. 218-229. ISSN 0308-8146 doi: https://doi.org/10.1016/j.foodchem.2013.10.045 Available at https://centaur.reading.ac.uk/34886/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1016/j.foodchem.2013.10.045

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

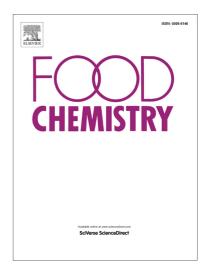
CentAUR

Central Archive at the University of Reading Reading's research outputs online

Accepted Manuscript

Sensory and instrumental analysis of medium and long shelf-life Charentais cantaloupe melons (*Cucumis melo* L.) harvested at different maturities

Stella Lignou, Jane K. Parker, Charles Baxter, Donald S. Mottram


PII: S0308-8146(13)01479-9

DOI: http://dx.doi.org/10.1016/j.foodchem.2013.10.045

Reference: FOCH 14831

To appear in: Food Chemistry

Received Date: 4 July 2013
Revised Date: 4 October 2013
Accepted Date: 8 October 2013

Please cite this article as: Lignou, S., Parker, J.K., Baxter, C., Mottram, D.S., Sensory and instrumental analysis of medium and long shelf-life Charentais cantaloupe melons (*Cucumis melo* L.) harvested at different maturities, *Food Chemistry* (2013), doi: http://dx.doi.org/10.1016/j.foodchem.2013.10.045

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Sensory and instrumental analysis of medium and long shelf-life Charentais cantaloupe melons (Cucumis melo L.) harvested at different maturities Stella Lignou¹, Jane K. Parker¹*, Charles Baxter², Donald S. Mottram¹ ¹University of Reading, Department of Food and Nutritional Sciences, Whiteknights, Reading, RG6 6AP, UK ²Syngenta Seeds Limited, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK *Corresponding author. Tel.: +44 118 378 7455; fax: +44 118 378 7708 E-mail address: <u>i.k.parker@reading.ac.uk</u> (Jane K. Parker).

Δ	BS T	ΓR	Δ	C	Г
$\overline{}$	וכונו		/1		

26

27 The flavour profiles of two genotypes of Charentais cantaloupe melons (medium shelf-life 28 and long shelf-life), harvested at two distinct maturities (immature and mature fruit), were 29 investigated. Dynamic headspace extraction (DHE), solid-phase extraction (SPE), gas 30 chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry/mass 31 spectrometry (GC-O/MS) were used to determine volatile and semi-volatile compounds. 32 Qualitative descriptive analysis (QDA) was used to assess the organoleptic impact of the 33 different melons and the sensory data were correlated with the chemical analysis. There were 34 significant, consistent and substantial differences between the mature and immature fruit for 35 the medium shelf-life genotype, the less mature giving a green, cucumber character and 36 lacking the sweet, fruity character of the mature fruit. However, maturity at harvest had a 37 much smaller impact on the long shelf-life melons and fewer differences were detected. 38 These long shelf-life melons tasted sweet, but lacked fruity flavours, instead exhibiting a 39 musty, earthy character.

40

- 41 **Keywords:** melon, (*Cucumis melo* L.); flavour; Cantaloupe; Charentais; volatile compounds;
- semi-volatile compounds; sensory evaluation; GC-MS; GC-O/MS

1. Introduction

43

44	Fully ripe orange-fleshed Charentais melons (<i>Cucumis melo</i> L. var. <i>cantalupensis</i>) are highly
45	considered for their unique aromatic flavour as well as for the sweet taste of the flesh, both
46	characteristics which develop as the fruit reaches full maturity. Volatile compounds, mainly
47	esters, increase with increasing fruit maturity, thus contributing to the desirable sweet aroma
48	of the fruit. Moreover, fruit that remains attached to the plant accumulates sucrose, resulting
49	in a fruit with a sweet taste. Therefore, to achieve optimum quality and consumer acceptance,
50	melon fruit should be harvested fully mature. Unfortunately, the shelf-life of Charentais
51	melons tends to be very short. In order to deliver a longer shelf-life, fruits are either harvested
52	partially mature, or varieties with extended shelf-life are used. Hybrids of the latter have been
53	produced by plant breeders in order to extend the shelf-life, although consumers often
54	complain about their poor quality, which is associated with less aroma, compared with wild-
55	varieties (Aubert & Bourger, 2004).
56	There have been many studies investigating different types of melons, focusing on the effect
57	of harvest maturity on quality characteristics, including colour, firmness, ethylene, total
58	sugars, organic acids, amino acids, volatile compounds and sensory characteristics (Wyllie,
59	Leach, & Wang, 1996; Wang, Wyllie, & Leach, 1996; Beaulieu & Grimm, 2001; Beaulieu,
60	Ingram, Lea, & Bett-Garber, 2004; Beaulieu, 2006; Beaulieu & Lancaster, 2007; Beaulieu &
61	Lea, 2007; Vallone, Sivertsen, Anthon, Barrett, Mitcham, Ebeler et al., 2013), but very few
62	on Charentais melons (El-Assi & Alsmeirat, 2010; Alsmeirat & El-Assi, 2010). Moreover,
63	there are several studies showing how volatile compounds decrease in Véndrantais melons
64	transformed with an aminocyclopropane-1-carboxylic acid (ACC) oxidase antisense gene
65	(Bauchot, Mottram, Dodson, & John, 1998; Bauchot, Mottram, & John, 2000), however, only
66	a few papers focus on the volatile compounds of medium and long shelf-life varieties

- obtained by conventional breeding methods (Aubert & Bourger, 2004; Lamikanra, Juaraez,
- 68 Watson, & Richard, 2003).
- 69 The purpose of this study was to investigate the effect of harvest maturity and the effect of
- two different genotypes of Charentais melons with extended shelf-life, on the flavour profile
- 71 (volatile, semi-volatile and non-volatile compounds) of the melons. Moreover, quantitative
- descriptive analysis was also used in order to confirm the organoleptic impact of the chemical
- 73 changes and to find correlations between sensory and instrumental data.

74 2. Materials and methods

- 75 *2.1 Melons*
- 76 Charentais melons (C. melo L. var. cantalupensis) of two different genotypes (one medium
- 577 shelf-life coded as MSL (cv. Match) and one long shelf-life coded as LSL (cv. Vulcano))
- harvested at two distinct maturities (immature harvested prior to commercial harvest point
- 79 coded as i, and mature harvested at commercial harvest point coded as m) were
- supplied by Syngenta Seeds Ltd. The harvest point was defined according to the senescence
- of the leaf next to the fruit, also taking into account changes in the external fruit colour plus
- 82 the senescence of the peduncle (these are non-slip varieties which means that they do not
- 83 detach from the plant; however, the peduncle does senesce). Melons were stored at 8 °C
- before analysis, and all analyses were performed within four days of receipt in June 2009
- 85 (shipping times were the same for all samples and aligned to commercial practices).
- 86 2.2 Chemicals
- 87 For capillary electrophoresis (CE), the basic anion buffer (Part No.: 5064-8209) used for
- 88 sugar and organic acid analysis was purchased from Agilent (Santa Clara, CA). Glucose,
- 89 fructose, and citric acid were purchased from Sigma-Aldrich Co. Ltd and sucrose and malic
- 90 acid from Fluka (Poole, UK). For solid-phase extraction (SPE), HPLC-grade methanol was
- 91 purchased from Merck Ltd (Poole, UK) and methyl acetate, sodium sulphate and HPLC

92	grade water from Fisher Scientific (Loughborough, UK). 3-Chlorophenol and the alkane
93	standard C_7 – C_{30} (1000 μ g/ml) in hexane were purchased from Sigma-Aldrich Co. Ltd
94	(Gillingham, UK). For dynamic headspace extraction (DHE), compounds used as standards
95	were obtained from Sigma-Aldrich Co. Ltd: 1,2-dichlorobenzene in methanol (130.6 μg/ml)
96	and the alkane standards C_6 – C_{25} (100 $\mu g/ml$) in diethyl ether. The EZ-Faast amino acid
97	analysis kit (Phenomenex, Torrance, CA) was used for the analysis of amino acids by GC-
98	MS. Norvaline was obtained from Sigma-Aldrich Co. Ltd.
99	2.3 Preparation of sample extracts
100	One melon from each point (maturity, genotype) was rinsed in cold running tap water, the
101	skin (0.8 cm) and the seeds were removed and the remaining fruit was chopped and blended
102	in a food processor. Portions of 200 g were weighed into polypropylene centrifuge bottles
103	(250 ml; Nalge Nunc International, Rochester, NY) and the bottles were centrifuged at
104	21,859 g for 20 min at 4 °C in a RC-6C Plus Sorvall R centrifuge (Thermo Scientific,
105	Waltham, MA). For chemical analysis, the supernatant juice was filtered under vacuum using
106	a Whatman filter No.1 (GE Healthcare UK Ltd, Buckinghamshire, UK), in order to remove
107	any tissue particles, and the filtrate was used for all the analyses. Three replicate fruits were
108	prepared for each point. Portions of the 12 melon extracts were used immediately for sensory
109	and volatile analysis, whilst the remainder was stored at -20 °C prior to semi-volatile and
110	non-volatile analyses.
111	2.4 Volatile compounds
112	2.4.1 Dynamic headspace extraction
113	Melon juice (2 ml) obtained as described above, was transferred to a 250-ml conical flask
114	with a screw-thread neck and 10 ml of water were added. The flask was then placed in the
115	water bath at 37 °C, and a flow of nitrogen swept the volatiles for 1 h at 40 ml/min onto a
116	glass-lined, stainless steel trap (105 mm × 3 mm i.d.) containing 85 mg of Tenax TA

117	(Scientific Glass Engineering Ltd, Ringwood, Australia). Internal standard (1 µl of 130.6
118	$\mu g/ml$ 1,2-dichlorobenzene in methanol) was added to the trap at the end of the collection,
119	and excess solvent and any water retained on the trap were removed by purging the trap with
120	nitrogen at 100 ml/min for 10 min.
121	2.4.2 GC-MS analysis of DHE extracts
122	Traps were thermally desorbed in a CHIS injection port (Scientific Glass Engineering Ltd)
123	attached to a HP5890/5972 GC-MS (Agilent) as described by Elmore, Parker, Halford,
124	Muttucumaru, and Mottram (2008). Volatiles were identified by comparison of each mass
125	spectrum with spectra from authentic compounds analysed in our laboratory, or from the
126	NIST mass spectral database (NIST/EPA/NIH Mass Spectral database, 2008), or spectra
127	published elsewhere. To confirm the identification, the linear retention index (LRI) was
128	calculated for each volatile compound using the retention times of a homologous series of C_6
129	$ C_{25}$ n -alkanes and by comparing the LRI with those of authentic compounds analysed under
130	similar conditions. The approximate quantification of volatiles collected from the headspace
131	were calculated from GC peak areas, by comparison with the peak area of the 1,2-
132	dichlorobenzene standard, using a response factor of 1.
133	2.4.3 GC-O/MS analysis of DHE extracts
134	After the extraction onto preconditioned glass traps (4 mm i.d., 6 mm o.d., 89 mm long)
135	packed with Tenax TA (Supelco, Bellefonte, PA) as described above (but from 20 ml of
136	melon juice), the trap was desorbed onto a HP-5MS column (30 m \times 0.25 mm \times 0.25 μ m film
137	thickness) in an Agilent 7890A/5975C GC-MS (Agilent, Santa Clara, CA), equipped with an
138	automated thermal desorber (Turbomatrix ATD; Perkin Elmer, Waltham, MA) and fitted
139	with an ODO 2 GC-O system (Scientific Glass Engineering Ltd). After desorption, the oven
140	was maintained at 40 $^{\circ}$ C for a further 2 min and then the temperature was raised at 4 $^{\circ}$ C/ min
141	to 300 °C. The mass spectrometer was operated in the electron impact mode with a source

142 temperature of 230 °C, an ionising voltage of 70 eV, and a scan range from m/z 20 to 400. 143 Two assessors were used for the detection and verbal description of the odour-active 144 components of extracts and only those odours which were detected by both assessors were 145 recorded in the results. The assessors scored each odour on a seven-point line-scale (2-8) 146 where 3 = weak, 5 = medium and 7 = strong. n-Alkanes C_6 - C_{25} were analysed under the 147 same conditions to obtain linear retention index (LRI) values for the components. 148 2.5 Semi-volatile compounds 149 2.5.1 Solid-phase extraction 150 3-Chlorophenol (100 µl of a solution containing 1 mg/ml in 10% methanol/water) was added 151 to the filtrate $(20 \pm 0.1 \text{ ml})$ as internal standard and the extraction was performed as described 152 by Lignou, Parker, Oruna-Concha and Mottram (2013). 153 2.5.2 GC-MS analysis of SPE extracts Extracts were analysed by an Agilent 6890/5975 GC-MS as described by Lignou et al. 154 155 (2013). Semi-volatile compounds were identified as described above for the volatile 156 compounds. The semi-quantification of semi-volatile compounds was calculated from the GC 157 peak areas, by comparing with the peak area of the 3-chlorophenol standard, using a response 158 factor of 1. 159 2.5.3 GC-O/MS analysis of SPE extracts 160 The extract (1 µL) was injected into the injection port of an Agilent 7890A/5975C Series GC-161 MS system equipped with an ODO 2 GC-O system. The column used was a DB-Wax column 162 $(30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ } \mu\text{m} \text{ film thickness})$. The temperature programme employed was 1 163 min at 40 °C, a ramp of 4 °C/min to 240 °C, and hold for 10 min. The extract was injected in 164 splitless mode. The helium carrier gas flow rate was 1 ml/min. The mass spectrometer was 165 operated in electron impact mode with a source temperature of 230 °C, an ionising voltage of 166 70 eV, and a scan range from m/z 29 to 400. One assessor was used for the detection and

167 verbal description of the odour-active components of extracts. Each odour was scored on a 168 seven-point line-scale (2–8) where 3 = weak, 5 = medium and 7 = strong. n-Alkanes $C_7 - C_{30}$ 169 were analysed under the same conditions to obtain linear retention index (LRI) values for the 170 components. 171 2.6 Non-volatile compounds 172 2.6.1 Sample preparation 173 An aliquot (1.5 ml) of melon juice was centrifuged at 7200 g for 15 min and then the 174 centrifuged supernatant (400 µl) was transferred to an Amicon Ultra – 3,000 MWCO filter 175 unit (Millipore, Carrigtwohill, Co. Cork, Ireland) and centrifuged at 7200 g for 30 min. 176 2.6.2 Determination of free amino acids by GC-MS 177 An aliquot of the centrifuged supernatant (100 µl) was derivatised using the EZ-Faast amino 178 acid derivatisation technique (Phenomenex). GC-MS analysis of the derivatised samples was 179 carried out using an Agilent 6890/5975 GC-MS instrument, as described by Elmore, 180 Koutsidis, Dodson, Mottram, and Wedzicha (2005). 181 2.6.3 Determination of organic acids and carbohydrates by capillary electrophoresis (CE) 182 An aliquot of the centrifuged supernatant (100 µl) was analysed as described by Lignou et al. 183 (2013).184 2.7 Sensory Analysis 185 The permanent in-house panel of 13 experienced assessors was used to develop a sensory 186 profile to describe the sensory characteristics of the melon juice and the characteristics were 187 estimated quantitatively. Aliquots (20 ml) of melon juice (prepared as described above and 188 filtered through a tea strainer to remove particulate matter) were presented to each assessor at 189 room temperature in clear polypropylene tasting cups. During the development of the sensory 190 profile, the assessors were asked to sniff and then taste (and swallow) the samples to produce 191 as many descriptive terms as seemed appropriate. Reference materials (including a number of

fruit and vegetables, such as strawberries, pineapple, aged apple and banana, citrus, plum,
kiwi, butternut squash, different types of melon (honeydew and Galia), stored cantaloupe
melon, pips and centre from cantaloupe melon, cucumber and other materials like sugar
syrup) were used in order to help the assessors to standardise the language development
process. These terms were discussed by the assessors, as a group, with the help of the panel
leader, and this led to an agreed profile comprising 13 odour terms, 19 taste/flavour terms, 6
mouthfeel terms, and 10 after-effects terms. The quantitative sensory assessment took place
in the sensory booths, each equipped with computer screen and a mouse. Compusense
version 5 software (Compusense Inc., Guelph, Ontario, Canada) was used to acquire the
sensory data. A warm-up sample (a mixture of the examined samples) was presented first to
eliminate first position bias and then the samples were presented to the assessors in a
balanced randomised order. The assessors were instructed to sniff the samples to score the
aroma attributes, and then taste (and swallow) the samples to score the overall taste/flavour
attributes and the mouthfeel attributes. There was a 45-s pause after the end of the mouthfeel
attributes and the assessors then scored the after-effects which included both taste and
mouthfeel effects. The intensity of each attribute for each sample was recorded by the
assessors on a 100-point unstructured line scale. The same three replicates used for chemical
analysis were also used for sensory analysis. Between samples, panellists cleansed their
palate with yoghurt, cracker and water.
2.8 Statistical analysis
The quantitative data for each compound identified in the GC-MS analyses (volatile, semi-
volatile and non-volatile compounds) were analysed by both one- and two-way analysis of
variance (ANOVA) and principal component analysis (PCA) using XLSTAT Version
2012.1.01 (Addinsoft, Paris, France). For those compounds exhibiting significant difference
in the one-way ANOVA. Fisher's least significant difference (LSD) test was applied to

217	determine which sample means differed significantly ($p < 0.05$). These data are shown in
218	Table 1. SENPAQ version 3.2 (Qi Statistics, Reading, UK) was used to carry out ANOVA
219	and PCA of sensory panel data. The means for the sensory data were taken over assessors and
220	correlated with the means from instrumental data via multiple factor analysis (MFA) using
221	XLSTAT.
222	3. Results
223	3.1 Volatile compounds
224	More than 70 compounds were identified in the headspace of the two genotypes. The most
225	abundant compounds are listed in Table 1. These included 31 esters (acetates and non-acetate
226	esters), 8 sulfur-containing compounds, 10 alcohols, 8 aldehydes, 2 terpene derivatives and 2
227	other compounds. Quantitative differences were observed between the two maturity stages
228	(immature (i) and mature (m) fruit) and the two genotypes (medium shelf-life (MSL) and
229	long shelf-life (LSL)). Esters (acetates and non-acetate esters) comprised more than 87% of
230	the total volatiles collected from the iMSL fruit, a percentage which increased to more than
231	93 % in the mMSL fruit. Similarly, the percentage of esters increased from 69% in the iLSL
232	fruit to more than 77% in the mature fruit of the same genotype. The most abundant esters
233	identified were ethyl acetate, 2-methylpropyl acetate, butyl acetate, 2-methylbutyl acetate and
234	ethyl butanoate. Wyllie et al. (1996) and Bauchot et al. (2000) reported that these compounds
235	were predominant in Makdimon (C. melo var. reticulatus) and Vedrantais (C. melo var.
236	cantalupensis) cultivars respectively. These compounds were also the most abundant in a
237	number of Charentais cantaloupe cultivars (Aubert & Bourger, 2004) and in Jiashi
238	muskmelon (var. reticulatus, Hami melon) (Pang, Guo, Qin, Yao, Hu, & Wu, 2012).
239	Both immature fruits contained very few esters compared to their respective mature fruit. Ten
240	out of 13 acetates and 12 out of 18 non-acetate esters were found significantly higher in the
241	mMSL fruit compared to the iMSL fruit. The same trend was observed for the LSL fruits, but

242	the levels were much lower and the differences were not significant. However, the levels of
243	ethyl esters and particularly ethyl acetate, ethyl propanoate, ethyl 2-methylpropanoate, ethyl
244	butanoate and ethyl 2-methylbutanoate increased 4-fold for LSL and 26-fold for MSL with
245	increasing maturity.
246	Generally, the levels of esters were remarkably lower in the LSL genotype, even in mLSL.
247	Similar results were reported by Lamikanra et al. (2003), where hybrids with long shelf-life
248	and hybrids with extended shelf-life presented significantly lower contents of total volatile
249	aromas than traditional shelf-life C. melo var. reticulatus cv. Mission melons. Aubert and
250	Bourger (2004), who studied the volatile compounds of 15 Charentais melon cultivars,
251	reported the same trends: a reduction in a range of 43-77% of total esters in LSL melons
252	compared to MSL or wild melons. They reported that these differences were more obvious
253	for compounds with low odour threshold values, such as ethyl 2-methylbutanoate (0.006
254	$\mu g/kg)$, ethyl butanoate (1 $\mu g/kg)$, ethyl hexanoate (1 $\mu g/kg)$, butyl acetate (2 $\mu g/kg)$ and
255	hexyl acetate (2 μ g/kg). Bauchot et al. (1998) also noted that in transformed Charentais
256	melons with an ACC oxidase antisense gene, the total volatiles were 60-85% lower than that
257	of the nontransformed hybrids. They observed that the reduction in volatiles in these melons
258	was greater for ethyl esters than for acetates, and since ethyl esters have lower odour
259	threshold values than acetates, the reduction of ethylene production in these melons, had the
260	greatest effect on the most potent odorants (Bauchot et al., 2000).
261	Eight sulfur-containing compounds were identified in the headspace of the samples including
262	six thioether esters. Wyllie and Leach (1992) reported that 2-(methylthio)ethyl acetate and 3-
263	(methylthio)propyl acetate were the dominant sulfur compounds in all melon cultivars
264	studied, as was the case in the Charentais melon under study, but only in mMSL fruit. Ethyl
265	2-(methylthio)acetate was another important compound and again present only in mMSL
266	fruit. Generally, the sulfur-containing esters were not detected in the LSL fruit and only two

267	were detected in the iMSL fruit. These compounds are very important in the overall aroma
268	profile of melons, because many are potent odorants with low odour thresholds. A few
269	authors have reported that trace amounts of these compounds have a major impact on the
270	musky note of some melon aromas (Wyllie et al., 1992; Wyllie & Leach, 1990; Wyllie,
271	Leach, Wang, & Shewfelt, 1994; Jordan, Shaw, & Goodner, 2001; Hayata, Sakamoto,
272	Kozuka, Sakamoto, & Osajima, 2002; Hayata, Sakamoto, Maneerat, Li, Kozuka, &
273	Sakamoto, 2003). Aubert and Bourger (2004) also reported a considerable reduction in the
274	levels of these compounds in LSL cultivars, whereas the total levels of them in wild or MSL
275	cultivars were up to 17 times higher than in LSL cultivars.
276	Besides esters and sulfur-containing compounds, some alcohols and aldehydes were
277	identified in the samples. The levels of most alcohols increased with increasing maturity for
278	both genotypes, and this increase was significantly higher, particularly for mMSL fruit.
279	Regarding the aldehydes found, no significantly changes were observed between the different
280	samples except for 2-methyl-2-butenal and 6-nonenal. 2-Methyl-2-butenal was significantly
281	higher in mMSL fruit and 6-nonenal was significantly higher in iMSL fruit. Terpenes like
282	limonene, eucalyptol and geranylacetone were also found, however, only eucalyptol was
283	found significantly higher in mMSL fruit. Finally, 2-methylbutanenitrile and 3-
284	methylbutanentrile were reported for the first time in melons. These compounds were found
285	to be significantly higher in mMSL fruit.
286	To sum up, among all the volatiles identified, 30 compounds were significantly affected by
287	the maturity and 34 by the genotype, supporting the hypothesis that both factors were very
288	important. The two-way ANOVA showed a clear trend, with many of the compounds (mainly
289	esters, sulphur-containing compounds and several alcohols) showing a significant interaction
290	between the two variables. The combination of an MSL variety, and a fruit harvested at

291	maturity, produced a far greater increase in these compounds than would have been predicted
292	from a simple additive model. This synergy is reflected in the GC-O data.
293	GC-olfactometry analysis of the samples yielded a total of 18 odorants in the chromatogram,
294	which are presented in Table 2. All but one of these compounds were identified in the GC-
295	MS analysis, the exception being 4-heptenal which was recognised by its characteristic aroma
296	and confirmed by comparison of its LRI with that of the authentic sample. Quantitative
297	differences were observed between the two maturity stages and the two genotypes. It is
298	clearly illustrated in Table 2 that esters were the most important contributors to the desirable
299	sweet and fruity aroma of the fruit. In particular, seven esters, including ethyl propanoate,
300	propyl acetate, ethyl 2-methylpropanoate, methyl 2-methylbutanoate, ethyl butanoate, ethyl
301	2-methylbutanoate and butyl propanoate, contributed to the fruity, pineapple-like and sweet
302	aroma, particularly of mMSL. Four of these esters were only detected in mMSL, and the
303	other three branched esters were also detected in the less mature and the LSL fruits, but
304	tended to have higher scores for mMSL.
305	Schieberle, Ofner, and Grosch (1990) studied the potent odorants in muskmelons by aroma
306	extraction dilution analysis (AEDA), and they reported that indeed the volatile esters were
307	responsible for the fruity notes in the aroma of muskmelon and that methyl 2-
308	methylbutanoate and ethyl 2-methylbutanoate were the most intense odorants in the ester
309	fraction. Jordan et al. (2001) also found that these two esters contributed to a fruity, sweet
310	and cantaloupe-like aroma. Pang et al. (2012) studied the odour-active compounds of Jiashi
311	muskmelon using both detection frequency analysis (DFA) and odour activity values (OAV).
312	They reported that ethyl 2-methylpropanoate, ethyl butanoate and ethyl 2-methylbutanoate
313	were the esters with the greatest relative importance and were characterised as having fruity,
314	sweet and cantaloupe-like odours. Hexanal, which imparts a fresh green note (Schieberle et
315	al., 1990), and (Z)-3-hexen-1-ol, which imparts a herbal green note (Jordan et al., 2001), were

316	detected in these samples and described as having green and grass notes, respectively.
317	Eucalyptol, reported by Schieberle et al. (1990), was another important odorant detected only
318	in mMSL samples. Kemp, Knavel, and Stoltz (1972), and Kemp, Knavel, Stoltz, and Lundin
319	(1974) concluded that (Z)-6-nonenal and 3,6-nonadien-1-ol were two potent odorants
320	contributing to muskmelon flavour. These two compounds were also identified in these
321	samples, having a cucumber and green note, respectively. 6-Nonenal was scored consistently
322	higher in the immature fruits, consistent with the greener notes of under-ripe fruit. These
323	compounds were also reported by Pang et al. (2012) in Jiashi muskmelons and along with
324	2,6-nonadienal and 2-nonenal were the important contributors for green and cucumber-like
325	aromas. Pang et al. (2012) also stated that although esters were superior in concentration
326	(86%), their contribution rate (OAV percentages) to the aroma profile of Jiashi muskmelons
327	was only 10%, whereas alcohols and aldehydes were just the opposite. The contents of
328	aldehydes and alcohols were only 11 and 4 % that of esters, respectively, but their
329	contribution rates were 56 % and 34 % respectively.
330	Finally, of the eight sulfur compounds which were identified in the headspace of the melons,
331	four were detected by the assessors. S-Methyl 2-methylbutanethioate had a sulfury odour,
332	whereas dimethyl trisulfide imparted a pickled onions and cabbage odour. Ethyl 2-
333	(methylthio)acetate and ethyl 3-(methylthio)propanoate were only identified in mMSL and
334	had an earthy but slightly cucumber note and a cardboard but slightly green odour,
335	respectively. Overall, comparing the odours between the two maturity stages and the two
336	genotypes, it can be observed that mMSL fruit presented the highest intensities, which
337	resulted in a more aromatic fruit compared to the others.
338	3.2 Semi-volatile compounds
339	More than 40 compounds were identified in melon SPE extracts and 29 of them were
340	quantified and listed in Table 1. Semi-volatile compounds included 9 esters (acetates and

341	diacetates), 5 sulfur-containing compounds and a few other compounds (alcohols, aldehydes,
342	furans, acids).
343	2,3-Butanediol diacetate and its precursor 2,3-butanediol monoacetate were identified and
344	found to be significantly higher in mMSL genotype. These compounds were also identified in
345	Japanese melon (cv. Golden Crispy) (Wyllie et al., 1990). 2,3-Butanediol diacetate possesses
346	two asymmetric carbons (erythro and threo forms and a meso-form diastereoisomer), thus
347	producing two peaks on GC (Aubert & Pitrat, 2006). According to Wyllie et al. (1990), the
348	most abundant peak would be the D and/or L isomer, whereas the other would be the meso
349	isomer. 1,2-Propanediol and 1,2-ethanediol diacetate were also identified and found to be
350	significantly higher in mMSL genotype.
351	Five sulfur-containing compounds were identified with this method, three of which had been
352	previously found in the headspace of these melons. The additional compounds were 2-
353	(methylthio)-1-ethanol and 3-(methylthio)-1-propanol and these were, again, significantly
354	higher in mMSL genotype. The relative quantities of these compounds showed good
355	agreement between the two analytical methods.
356	Other compounds identified were alcohols, including 1-hexanol, 3-hexen-1-ol, benzyl alcohol
357	and phenylethanol, compounds that increased with increasing maturity. 5,6,7,7a-Tetrahydro-
358	4,4,7a-trimethyl-2[4H]-benzofuranone (dihydroactinidiolide) is potentially an important
359	compound since it imparts a fruity musky note and was found in higher concentrations in the
360	mature fruits. 2-Ethyl-4-hydroxy-5-methyl-3[2H]-furanone (homofuraneol) and 4-hydroxy-
361	5-methyl-3[2H]-furanone (norfuraneol) were also identified in larger amounts in mature fruits
362	of both genotypes. Finally hexadecanoic acid and 9-hexadecenoic acid were present in the
363	extracts and increased as well with increasing maturity.
364	To sum up, among all the semi-volatiles identified, 17 compounds were significantly affected
365	by maturity and only 11 by genotype, suggesting that the maturity factor was more important

366	for this set of results. There was, again, a clear trend defined by two-way ANOVA where the
367	majority of esters and sulfur-containing compounds showed a strong interaction between the
368	variables, and the synergy between the maturity at harvest and genotype was evident.
369	GC-olfactometry analysis of the SPE extracts yielded a total of 20 aromatic regions in the
370	chromatogram, which were described with a range of terms, including cabbage, cheesy,
371	vinegar, Brie, mushroom, soil, bread, onions, balsamic, cucumber, green, vegetable, cooked
372	potato, floral, synthetic, rubbery, woody, smoky, strawberry, caramel, candyfloss, and rose
373	petals. A number of these odours were detected in our previous study (Lignou et al., 2013);
374	however, the identities of many of these compounds remain unknown. A number of
375	compounds were positively identified including 3-hexen-1-ol with a very strong cut grass
376	odour in mMSL genotype. 2,3-Butanediol diacetate had an earthy, soily odour, and was also
377	described by Wyllie, Leach, Wang and Shewfelt (1995) as having an earthy note. Among the
378	sulfur compounds, ethyl 2-(methylthio)acetate had a slight green odour, 3-(methylthio)propyl
379	acetate had a mushroom-like odour and 3-(methylthio)-1-propanol an onion-like odour,
380	respectively. Homofuraneol and norfuraneol were responsible for the strawberry sweet,
381	caramel-like note in the aroma.
382	Principal component analysis was used to visualise graphically the differences in volatile and
383	semi-volatile concentrations in the two maturity stages and the two genotypes. Twelve
384	samples were used (2 maturity stages \times 2 genotypes \times 3 replicates) and 87 variables (61
385	volatile compounds and 26 semi-volatile compounds). The first two principal components
386	accounted for 76% of the variation in the data (Figure 1). The first axis mainly discriminated
387	the mMSL fruit from the iMSL and the LSL genotype, whereas the second axis mainly
388	discriminated the iMSL from the LSL genotype. For the LSL genotype, the immature and the
389	mature fruits were not well separated on PC1 or PC2, and the effect of maturity at harvest for
390	the LSL fruits was shown to be small compared to that for the MSL fruits. The distribution of

391	the variables is shown in Figure 1B. The majority of acetates (a02, a04-a13), non-acetate
392	esters (b03, b05, b07, b08, b11-b14, b16, b18), diacetates (g02-g05, g08, g09), sulfur-
393	containing compounds (c02, c05-c08 and h01-h05), several alcohols (d02-d05, d07, i01, i02,
394	i07) and a few other compounds were positively correlated with the first axis. Methyl esters,
395	including methyl acetate (a01), methyl propanoate (b01), methyl 2-methylpropanoate (b02),
396	methyl butanoate (b04), methyl 2-methylbutanoate (b06), methyl pentanoate (b09) and
397	methyl hexanote (b17), as well as S-methyl 2-methylbutanethioate (c03), 6-nonenal (e06) and
398	2,6-nonadienal (i03), were positively correlated with the second axis.
399	Mature MSL fruit, positively correlated with the first axis, was characterised by greater
400	numbers of esters (including acetates, diacetates and non-acetate esters), sulfur-containing
401	compounds, several alcohols and furans. Immature MSL, positively correlated with the
402	second axis, was characterised by greater levels of methyl esters, 6-nonenal and 2,6-
403	nonadienal. Immature LSL and mLSL fruit were negatively correlated with both first and
404	second axis because the concentrations of esters (acetates, diacetates and non-acetate esters)
405	were low and, moreover, sulfur-containing esters were not detected.
406	3.3 Non-volatile compounds
407	Two organic acids were identified: citric and malic acid (Table 1). Citric was the dominant
408	acid in both maturity stages and genotypes. The levels of malic acid were approximately
409	eight times lower than citric acid. The same acids were the dominant acids in cantaloupe
410	melon (cv. Mission) (Lamikanra, Chen, Banks & Hunter, 2000). Wang et al. (1996) found
411	that citric acid increased slightly with increasing maturity in the melon of cv. Makdimon.
412	This was also observed in our results; however, the increase of citric acid was not significant
413	for either genotype (Table 1).
414	The sugars identified in the samples were glucose, fructose and sucrose. The results agree
415	with those stated by Wang et al. (1996), Lester and Dunlap (1985), and Beaulieu, Lea,

416	Eggleston and Peralta-Inga (2003). As shown in Table 1, glucose and fructose decreased with
417	increasing maturity, whereas sucrose increased significantly for both genotypes. Comparing
418	the two genotypes, it can be seen that sucrose was significantly higher in LSL genotype. This
419	probably happened because LSL fruit do not develop an abscission zone, and as a result the
420	fruit may be harvested later, thus allowing for a longer period of sugar accumulation and
421	higher sugar content (the major component of soluble solids in melon).
422	The dominant amino acids in both varieties (Table 1) were glutamine and aspartic acid;
423	however, quantitative differences existed for a number of other amino acids between the
424	maturity stages and genotypes. Almost all amino acids markedly increased with increasing
425	maturity, except glutamine which decreased in the mMSL fruit, and leucine and isoleucine,
426	which did not change significantly. Also alanine was found significantly higher in the mMSL
427	fruit, whereas γ -ABA was one of the dominant amino acids in the LSL genotype.
428	It is well-known that there is a biogenetic relationship between the formation of certain aroma
429	volatiles and levels of free amino acids (Wang et al., 1996). In particular, the amino acids
430	alanine, valine, leucine, isoleucine and methionine are precursors of the majority of the esters
431	found in melons (Wyllie et al., 1995; Wang et al., 1996; Bauchot et al., 1998). The trends
432	observed in this study (increasing free amino acids during development and ripening, leucine
433	and isoleucine remaining constant and glutamine decreasing) were also observed by Wang et
434	al. (1996), who suggested that the type and extent of ester formation may be determined by
435	substrate availability in the fruit. In mature melons, the total volatiles content is high, so
436	considerable quantities of precursors are required for their formation. Although the
437	concentrations of leucine and isoleucine remained constant during maturation, esters having
438	carbon skeletons derived from isoleucine did increase with maturity. Wang et al. (1996)
439	suggested that there is a series of steps in ester formation where a considerable degree of
440	selectivity (enzymes involved) must happen as the substrates are drawn from the amino acid

441	pool. Thus, the differences between cultivars in esters derived from amino acids are likely to
442	be due to the efficiencies of the different enzyme pathways within each melon.
443	Consequently, it can be concluded that the extent of ester formation will depend on the
444	amount of available substrates. Harvest time will influence the total volatile production, since
445	fruit that was harvested prematurely would not accumulate sufficient concentrations of
446	required volatiles substrates and this will lead to a poor flavour profile of that fruit. However
447	in addition to the availability of different substrates, subcellular localisation should be taken
448	into account as well as the expression of synthesising enzymes, which play an important role
449	in the reactions. Finally, the response to the climacteric genotypes (climacteric or non-
450	climacteric) is also an important factor, since it was observed that the expression levels of
451	genes responsible for biosynthesis of melon aroma volatiles are generally higher in
452	climacteric genotypes as compared with non-climacteric genotypes (Gonda et al., 2010).
453	3.4 Sensory analysis
454	The sensory profile of the samples was generated by a trained panel of experts who, at the
455	end of the profile development, agreed to use 49 terms for the quantitative assessment of the
456	samples. Table 3 gives the mean panel scores for these attributes and significant differences
457	for the samples, the assessors and their interactions as determined by ANOVA. This table
458	shows 30 out of 49 attributes were found to be significantly different (3 nearly significantly
459	different) between the four samples. A highly significant effect of assessor for all attributes
460	was also found. This suggested that the assessors were using the scales differently; however,
461	only a few attributes (mainly after-effects attributes) had a significant assessor × sample
462	interaction, thus indicating that the assessors were ranking the samples in a similar way.
463	As shown in Table 3, sweet aroma, floral aroma and honey aroma were found to be
464	significantly higher in mMSL, hence confirming the GC-MS results, where the levels of
465	esters (acetates and non-acetate esters) were higher in these samples. These attributes were

highly positively correlated with the sum of acetate and non-acetate esters, having correlation

466

467	coefficients of more than 0.8 (data not shown). Brown orchard fruit aroma was also
468	significantly higher in mMSL fruit. On the contrary, green and cucumber odour and
469	taste/flavour attributes were scored significantly higher in iMSL fruit followed by iLSL fruit.
470	This is also confirmed by both the GC-O and the GC-MS results which showed 6-nonenal
471	(cucumber) was significantly higher in the immature fruit of both genotypes. Sweet and
472	syrupy taste/flavour, as well as sweet aftertaste, were significantly higher in both maturity
473	stages of LSL genotype and in mMSL fruit. This also agrees with the results for sucrose
474	(Table 1).
475	Principal component analysis was carried out on the correlation matrix of all samples and all
476	attributes (Figure 2). The difference in maturity stage was the predominant distinguishing
477	factor in the sensory analysis, with principal component 1 separating the immature from
478	mature MSL fruit and principal component 2 separating the immature from the mature LSL
479	and MSL fruits. Desirable sweet (o01), floral (o02), honey (o03), strawberries (o04) and ripe
480	tropical fruit (o12) odour attributes, as well as floral (tf06), honey (tf07), strawberries (tf09)
481	and ripe tropical fruit (tf19) taste/flavour attributes were associated with the mMSL fruit. On
482	the other hand, cucumber odour (o07), cucumber taste/flavour (tf12), green odour (o08),
483	green taste/flavour (tf13), acidic taste (tf04) and aftertaste (ae04), and savoury taste/flavour
484	(tf02) were highly correlated with the iMSL fruit. Regarding the LSL genotype, earthy (o09-
485	tf16) and musty (o10-tf17) odour and taste/flavour, and salty (tf03) taste/flavour attributes
486	were associated with the iLSL fruit, whereas taste/flavour attributes like sweet (tf01), syrupy
487	(tf08), brown orchard fruit (tf18), as well as sweet (ae01) aftertaste, were associated with the
488	mLSL fruit. Similar results were reported by Beaulieu et al. (2004) who studied the effect of
489	harvest maturity on the sensory characteristics of fresh-cut cantaloupe. They found that the
490	maturity level at harvest coincided with significant differences in flavour attributes. Sweet

491	aromatic flavour and taste significantly increased with increasing maturity, whereas cucurbit
492	flavour decreased.
493	3.5 Multiple factor analysis (MFA)
494	MFA was used in order to simultaneously analyse several tables of variables (three tables for
495	instrumental data: volatiles, semi-volatiles and non-volatiles and one table for sensory data),
496	thus facilitating a study of the relationship between the observations (different samples), the
497	variables and the tables. This was achieved by successively examining the PCA for each
498	table, and then the value of the first eigenvalue of each analysis was used to weight the
499	various tables in a further PCA. Finally, a weighted PCA on the columns of all the tables was
500	performed (Pages, 2004). The coordinates of the tables were displayed and used to create the
501	map of the tables (Figure 3A). As it can be seen on the map, the first factor was related with
502	the tables of volatiles, semi-volatiles and sensory attributes, whereas the second factor was
503	mostly related with the non-volatiles but also with sensory tables.
504	The correlation maps of observations and variables are shown in Figure 3B and C
505	respectively. Although the plots do not implicitly detail coefficients of correlation, one can
506	ascribe relative relationships between parameters closely related, and inversely related
507	(separation close to 180°). Observing the variables map it can be concluded that the sensory
508	analysis linked well with the instrumental data.
509	Mature MSL fruit was positively correlated with the first factor, in other words with sweet
510	(o01), honey (o02), floral (o03) and strawberry (o04) odours and floral (tf06), honey (tf07),
511	strawberries (tf09) and ripe tropical fruit (tf19) taste/flavour terms. These variables were then
512	highly positively correlated with the majority of the esters, which are associated with
513	desirable flavour. On the opposite side (negatively correlated with factor one and factor two),
514	iMSL fruit was correlated with all the cucumber and green notes (o07, o08, tf12, tf13), as
515	well as with acidic after-taste (ae04).

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

Compounds like 6-nonenal (e06) and two methyl esters (a01 and b01) were positively correlated with iMSL. It is interesting that 2,6-nonadienal (i03) was positively correlated with citrus taste/flavour (tf11). Additionally, the fact that this fruit was negatively correlated with sweet taste/flavour and after-effects terms, gave a fruit with an undesirable odour and taste. This can be drawn from the variables map, where all the esters are negatively correlated with iMSL fruit. Regarding the iLSL fruit (positively correlated with factor two), although it exhibited very low levels of esters compared to iMSL, the high concentration of sucrose and several amino acids contributing to taste (glutamic acid (116) and aspartic acid (112)), gave a fruit with an acceptable taste but lacking in desirable aroma. This was emphasised by high scores for earthy and musty odour, taste/flavour and after-effects (009, 010, tf16, tf17, ae08). Finally, mLSL was correlated with sweet (tf01) and syrupy (tf08) taste/flavour and sweet (ae01) after-effects terms. These terms were associated with sucrose (k03) and, indeed, this mLSL fruit contained the greatest quantity of sucrose. The slightly increased levels of esters (compared to iLSL and iMSL) gave a fruit a quite nice odour with a very sweet taste. 4. Conclusions Both sensory and instrumental analysis of volatile, semi-volatile and non-volatile compounds have identified significant differences between four melon samples that can be attributed to either the maturity stage or the genotype. The mature fruit of MSL exhibited the highest amount of esters (acetates, diacetates and non-acetate esters), and those melons were generally described by the assessors as having desirable fruity and sweet odours. Moreover, the combination of quite high sucrose levels, along with other compounds, like homofuraneol and norfuraneol, resulted in a fruit with a very sweet taste, while exhibiting the highest levels of strawberry taste/flavour and the lowest levels of bitter and acidic taste. The immature fruit of the MSL exhibited green, cucumber notes typical of an under-ripe melon and lacked the fruity flavour of the mature MSL. Both LSL melons, harvested immature and mature, were

541 relatively sweet, with a sweet syrupy flavour but lacking in the fruity character of the mature 542 MSL, exhibiting instead an earthy, musty quality. Overall, the mature MSL fruit was full of 543 flavour confirming the hypothesis that fruit from MSL genotypes harvested mature will 544 develop a strong aromatic flavour, whereas fruit either harvested too early or from LSL 545 genotypes will develop a less aromatic flavour. 546 Acknowledgments 547 SL was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) 548 and Syngenta Seeds Ltd through a CASE studentship. We thank Professor Hal MacFie for his 549 recommendations and feedback on the statistical analysis, Dr Brandon Hurr (Syngenta Seeds 550 Ltd) for his insights and Andrew Dodson (University of Reading) for technical assistance. 551 We also thank Compusense Inc., Ontario, Canada, for providing sensory acquisition software. 552 References 553 Alsmeirat, N., & El-Assi, N. M. (2010). Changes in esters, alcohols and acetaldehyde in two 554 cultivars of charentais melon as influenced by harvest date and storage. International Journal 555 of Botany, 6, 81-88. Aubert, C., & Bourger, N. (2004). Investigation of volatiles in Charentais cantaloupe melons 556 557 (Cucumis melo Var. cantalupensis). Characterization of aroma constituents in some cultivars. 558 *Journal of Agricultural and Food Chemistry*, 52, 4522-4528. 559 Aubert, C., & Pitrat, M. (2006). Volatile compounds in the skin and pulp of Queen Anne's 560 pocket melon. Journal of Agricultural and Food Chemistry, 54, 8177-8182. 561 Bauchot, A. D., Mottram, D. S., & John, P. (2000). Aroma formation in Cantaloupe 562 Charentais melon. In P. Schieberle & K.-H. Engel (Eds.), Frontiers of Flavour Science (pp. 563 463-468). Garching, Germany: Deutsche Forschungsanstalt für Lebensmittelchemie. 564 Bauchot, A. D., Mottram, D. S., Dodson, A. T., & John, P. (1998). Effect of 565 aminocyclopropane-1-carboxylic acid oxidase antisense gene on the formation of volatile

- esters in cantaloupe charentais melon (Cv. Védrandais). Journal of Agricultural and Food
- 567 *Chemistry*, 46, 4787-4792.
- Beaulieu, J. C. (2006). Volatile changes in cantaloupe during growth, maturation, and in
- stored fresh-cuts prepared from fruit harvested at various maturities. Journal of the American
- 570 Society for Horticultural Science, 131, 127-139.
- Beaulieu, J. C., & Grimm, C. C. (2001). Identification of volatile compounds in cantaloupe at
- various developmental stages using solid phase microextraction. Journal of Agricultural and
- 573 *Food Chemistry*, 49, 1345-1352.
- Beaulieu, J. C., Ingram, D. A., Lea, J. M., & Bett-Garber, K. L. (2004). Effect of harvest
- 575 maturity on the sensory characteristics of fresh-cut cantaloupe. *Journal of Food Science*, 69,
- 576 250-258.
- Beaulieu, J. C., & Lancaster, V. A. (2007). Correlating volatile compounds, sensory
- attributes, and quality parameters in stored fresh-cut cantaloupe. Journal of Agricultural and
- 579 *Food Chemistry*, 55, 9503-13.
- Beaulieu, J. C., & Lea, J. M. (2007). Quality changes in cantaloupe during growth,
- 581 maturation, and in stored fresh-cut cubes prepared from fruit harvested at various maturities.
- Journal of the American Society for Horticultural Science, 132, 720-728.
- Beaulieu, J. C., Lea, J. M., Eggleston, G., & Peralta-Inga, Z. (2003). Sugar and organic acid
- variations in commercial cantaloupes and their inbred parents. Journal of the American
- 585 *Society for Horticultural Science*, *128*, 531-536.
- 586 El-Assi, N., & Alsmeirat, N. (2010). Total aroma and other quality factors of Hugo
- 587 Charentais melons as affected by harvest date and refrigeration. *International Journal of*
- 588 *Botany*, *6*, 21-27.

- Elmore, J. S., Koutsidis, G., Dodson, A. T., Mottram, D. S., & Wedzicha, B. L. (2005).
- Measurement of acrylamide and its precursors in potato, wheat, and rye model systems.
- *Journal of Agricultural and Food Chemistry*, *53*, 1286-93.
- 592 Elmore, J. S., Parker, J. K., Halford, N. G., Muttucumaru, N., & Mottram, D. S. (2008).
- 593 Effects of plant sulfur nutrition on acrylamide and aroma compounds in cooked wheat.
- 594 *Journal of Agricultural and Food Chemistry*, 56, 6173-9.
- Gonda, I., Bar, E., Portnoy, V., Lev, S., Burger, J., Schaffer, A. A., Tadmor, Y., Gepstein, S.,
- 596 Giovannoni, J. J., Katzir, N., & Lewinsohn, E. (2010). Branched-chain and aromatic amino
- 597 acid catabolism into aroma volatiles in Cucumis melo L. Fruit. Journal of Experimental
- 598 *Botany*, *61*, 1111-1123.
- Hayata, Y., Sakamoto, T., Kozuka, H., Sakamoto, K., & Osajima, Y. (2002). Analysis of
- aromatic volatile compounds in "Miyabi" melon (Cucumis melo L.) using the Porapak Q
- 601 column. *Journal of the Japanese Society for Horticultural Science*, 71, 517-525.
- Hayata, Y., Sakamoto, T., Maneerat, C., Li, X. X., Kozuka, H., & Sakamoto, K. (2003).
- Evaluation of aroma compounds contributing to muskmelon flavor in Porapak Q extracts by
- aroma extract dilution analysis. Journal of Agricultural and Food Chemistry, 51, 3415-3418.
- Jordan, M. J., Shaw, P. E., & Goodner, K. L. (2001). Volatile components in aqueous essence
- and fresh fruit of *Cucumis melo* cv. athena (muskmelon) by GC-MS and GC-O. *Journal of*
- 607 Agricultural and Food Chemistry, 49, 5929-5933.
- Kemp, T. R., Knavel, D. E., & Stoltz, L. P. (1972). cis-6-Nonenal: A flavor component of
- 609 muskmelon fruit. *Phytochemistry*, 11, 3321-3322.
- 610 Kemp, T. R., Knavel, D. E., Stoltz, L. P., & Lundin, R. E. (1974). 3,6-Nonadien-1-ol from
- 611 Citrullus vulgaris and *Cucumis melo*. *Phytochemistry*, *13*, 1167-1170.

- Lamikanra, O., Chen, J. C., Banks, D., & Hunter, P. A. (2000). Biochemical and microbial
- changes during the storage of minimally processed cantaloupe. *Journal of Agricultural and*
- 614 Food Chemistry, 48, 5955-5961.
- Lamikanra, O., Juaraez, B., Watson, M. A., & Richard, O. A. (2003). Effect of cutting and
- storage on sensory traits of cantaloupe melon cultivars with extended postharvest shelf life.
- *Journal of the Science of Food and Agriculture*, 83, 702-708.
- 618 Lester, G. E., & Dunlap, J. R. (1985). Physiological changes during development and
- ripening of "Perlita" muskmelon fruits. Scientia Horticulturae, 26, 323-331.
- Lignou, S., Parker, J. K., Oruna-Concha, M. J., & Mottram, D. S. (2013). Flavour profile of
- 621 three novel acidic varieties of muskmelon (Cucumis melo L.). Food Chemistry, 139, 1152-
- 622 1160.
- Pages, J. (2004). Multiple factor analysis: main features and application to sensory data.
- 624 Revista Colombiana de Estadistica, 27, 1-26.
- Pang, X., Guo, X., Qin, Z., Yao, Y., Hu, X., Wu, J. (2012). Identifications of aroma-active
- 626 compounds in Jiashi muskmelon juice by GC-O-MS and OAV calculation. *Journal of*
- 627 Agricultural and Food Chemistry, 60, 4179-4185.
- Schieberle, P., Ofner, S., & Grosch, W. (1990). Evaluation of potent odorants in cucumbers
- 629 (Cucumis sativus) and muskmelons (Cucumis melo) by Aroma Extract Dilution Analysis.
- 630 *Journal of Food Science*, *55*, 193-195.
- Vallone, S., Sivertsen, H., Anthon, G. E., Barrett, D. M., Mitcham, E. J., Ebeler, S. E., &
- Zakharov, F. (2013). An integrated approach for flavour quality evaluation in muskmelon
- 633 (Cucumis melo L. reticulatus group) during ripening. Food Chemistry, 139, 171-183.
- Wang, Y. M., Wyllie, S. G., & Leach, D. N. (1996). Chemical changes during the
- development and ripening of the fruit of *Cucumis melo* (cv. Makdimon). *Journal of*
- 636 Agricultural and Food Chemistry, 44, 210-216.

- Wyllie, S. G., & Leach, D. N. (1990). Aroma volatiles of *Cucumis melo* cv. Golden Crispy.
- 638 *Journal of Agricultural and Food Chemistry*, 38, 2042-2044.
- 639 Wyllie, S. G., & Leach, D. N. (1992). Sulfur-containing compounds in the aroma volatiles of
- melons (Cucumis melo). Journal of Agricultural and Food Chemistry, 40, 253-256.
- 641 Wyllie, S. G., Leach, D. N., & Wang, Y. (1996). Development of flavor attributes in the fruit
- of C. melo during ripening and storage. In G. R. Takeoka, R. Teranishi, P. J. Williams, & A.
- Kobayashi (Eds.), *Biotechnology for improved foods and flavors* (pp. 228-239). Washington:
- 644 American Chemical Society.
- 645 Wyllie, S. G., Leach, D. N., Wang, Y. M., & Shewfelt, R. L. (1994). Sulfur volatiles in
- 646 Cucumis melo cv. Makdimon (muskmelon) aroma Sensory evaluation by gas
- chromatography-olfactometry. In C. J. Mussinan & M. E. Keelan (Eds.), Sulfur Compounds
- 648 in Foods (pp. 36-48). Washington: American Chemical Society.
- 649 Wyllie, S. G., Leach, D. N., Wang, Y. M., & Shewfelt, R. L. (1995). Key aroma compounds
- 650 in melons Their development and cultivar dependence. In R. L. Rouseff & M. M. Leahy
- 651 (Eds.), Fruit Flavors, ACS Symposium Series 596 (pp. 248-257). Washington: American
- 652 Chemical Society.

Figure Captions

Figure 1. Principal component analysis of four different samples showing correlation with volatile and semi-volatile compounds. (A) Projection of the samples (MSL = medium shelf-life, LSL = long shelf-life, m = mature, i = immature); (B) Distribution of variables (codes on plot refer to compound codes in Table 1).

Figure 2. Principal component analysis of four different samples (♠) (MSL = medium shelf-life, LSL = long shelf-life, m = mature, i = immature) showing correlations with sensory attributes (O) (codes on plot refer to sensory attribute codes in Table 3).

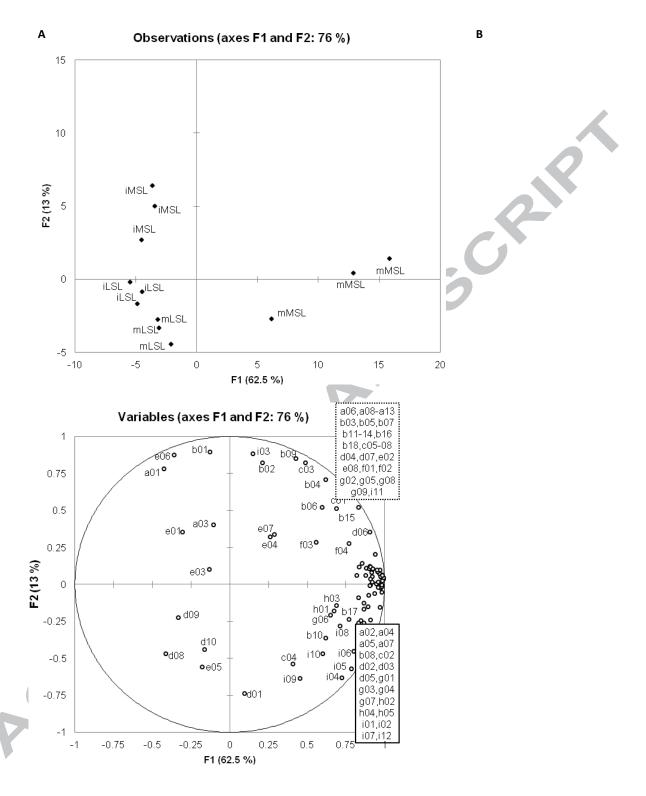

Figure 3. MFA: (A) Representation of groups (tables) of variables; (B) Representation of the samples (MSL = medium shelf-life, LSL = long shelf-life, m = mature, i = immature); (C) Distribution of variables (O = volatiles, \blacksquare = semi-volatiles, \blacksquare = non-volatiles and Δ = sensory variables - codes on plot refer to codes in Tables 1 and 3).

Figure Captions

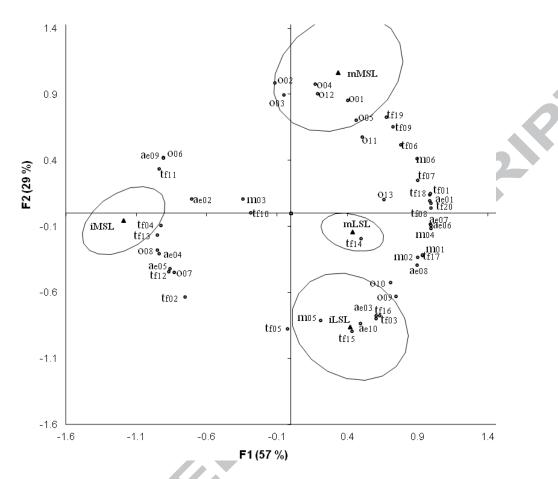

Figure 1. Principal component analysis of four different samples showing correlation with volatile and semi-volatile compounds. (A) Projection of the samples (MSL = medium shelf-life, LSL = long shelf-life, m = mature, i = immature); (B) Distribution of variables (codes on plot refer to compound codes in Table 1).

Figure 2. Principal component analysis of four different samples (♠) (MSL = medium shelf-life, LSL = long shelf-life, m = mature, i = immature) showing correlations with sensory attributes (O) (codes on plot refer to sensory attribute codes in Table 3).

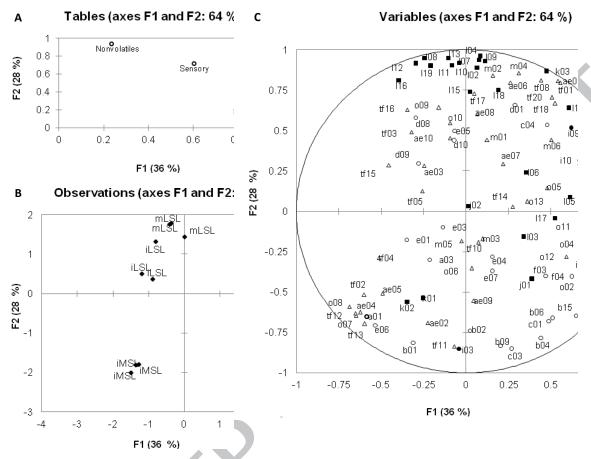

Figure 3. MFA: (A) Representation of groups (tables) of variables; (B) Representation of the samples (MSL = medium shelf-life, LSL = long shelf-life, m = mature, i = immature); (C) Distribution of variables (O = volatiles, $\bullet = semi-volatiles$, $\bullet = non-volatiles$ and $\Delta = sensory variables - codes on plot refer to codes in Tables 1 and 3).$

Figure 1. Principal component analysis of four different samples showing correlation with volatile and semi-volatile compounds: (A) Projection of the samples; (B) Distribution of variables (codes on plot refer to compound codes in Table 1).

Figure 2. Principal component analysis of four different samples showing correlations with sensory attributes (codes on plot refer to sensory attribute codes in Table 3).

Figure 3. MFA: (A) Representation of groups (tables) of variables; (B) Representation of the samples (MSL = medium shelf-life, LSL = long shelf-life, m = mature, i = immature); (C) Distribution of variables (O = volatiles, \blacksquare = semi-volatiles, \blacksquare = non-volatiles and \triangle = sensory variables - codes on plot refer to codes in Tables 1 and 3).

CCI

Table 1. Approximate quantities of volatile, semi-volatile and non-volatile compounds identified in the headspace, SPE extracts or melon juice respectively of two genotypes of Charentais melon harvested at two different maturity stages.

Code	Compound	LRI^a	\mathbf{ID}^b	A	pproxim	ate quan	tity ^c	LSD ^d	\mathbf{P}^e
	-		-	iLSL	mLSL	iMSL	mMSL		
	le analysis								
Acetat	es								
a01	methyl acetate	<600	A	68 ^a	53 ^a	193 ^b	37 ^a	65	**
a02	ethyl acetate	616	Α	118 ^a	458 ^a	196ª	3314 ^b	512	***
a03	1-methylethyl acetate	656	A	29	36	44	32	29	ns
a04	propyl acetate	715	A	16 ^a	99 ^a	49 ^a	497 ^b	154	***
a05	2-methylpropyl acetate	773	A	134 ^a	412 ^a	214^{a}	1469 ^b	736	*
a06	butyl acetate	817	A	18 ^a	186 ^a	92ª	1538 ^b	690	**
a07	3-methylbutyl acetate	878	A	0.6^{a}	2.7^{a}	1.7 ^a	24 ^b	5.4	***
a08	2-methylbutyl acetate	880	A	16 ^a	61 ^a	102 ^a	1227 ^b	685	**
a09	pentyl acetate	915	A	nd	3.6^{a}	3.4^{a}	105 ^b	59	**
a10	3-hexen-1-yl acetate	1005	A	34 ^a	13 ^a	46ª	577 ^b	380	*
a11	hexyl acetate	1013	A	6.4 ^a	36 ^a	26 ^a	598 ^b	262	**
a12	heptyl acetate	1111	A	nd	nd	nd	7.0		
a13	benzyl acetate	1168	A	1.3 ^b	2.9 ^b	nd	35 ^a	28	ns ^{(0.06}
	total acetates			441	1361	967	9460		
Non-a	cetate esters								
b01	methyl propanoate	632	A	19 ^a	16 ^a	122 ^b	38^{a}	39	***
b02	methyl 2-methylpropanoate	685	A	9.6ª	12 ^a	44 ^b	29 ^{ab}	25	*
b03	ethyl propanoate	710	A	4.2^{a}	24^a	11 ^a	559 ^b	211	***
b04	methyl butanoate	722	A	9.0^{a}	8.0^{a}	141^{b}	159 ^b	83	**
b05	ethyl 2-methylpropanoate	758	A	nd	3.9^{a}	1.5 ^a	155 ^b	60	***
b06	methyl 2-methylbutanoate	782	Α	21 ^a	17 ^a	$98^{\rm b}$	131 ^b	54	**
b07	ethyl butanoate	803	A	1.5 ^a	15 ^a	9.9^{a}	1348 ^b	590	**
b08	propyl propanoate	814	Α	nd	3.0^{a}	nd	18^{b}	11	*
b09	methyl pentanoate	830	A	nd	nd	1.3	0.9	0.8	#
b10	isopropyl butanoate	844	A	0.4^{a}	1.8 ^b	0.8^{a}	1.9 ^b	0.8	**
b11	ethyl 2-methylbutanoate	851	A	1.5 ^a	7.6 ^a	8.7^{a}	422^{b}	189	**
b12	propyl butanoate	901	Α	nd	nd	nd	30		
b13	ethyl pentanoate	903	A	nd	nd	nd	16		
b14	butyl propanoate	910	A	nd	0.9^{a}	0.7^{a}	4.0^{b}	2.2	*
b15	methyl hexanoate	926	A	nd	nd	4.3	7.9	5.0	#
b16	propyl 2-methylbutanoate	947	Α	nd	0.1^{a}	0.1^{a}	2.3^{b}	1.7	*
b17	2-methylpropyl butanoate	956	A	nd	3.0^{ab}	0.4^{a}	4.5 ^b	3.5	ns ^(0.05)
b18	ethyl hexanoate	999	A	nd	nd	nd	110		
	total non-acetate esters			66	112	444	3037		
Sulfur-	-containing compounds								
c01	S-methyl thioacetate	703	A	nd	nd	2.2	3.1	2.8	#
c02	dimethyl disulfide	748	A	3.4^{a}	7.8^{a}	2.0^{a}	14 ^b	6.0	**
c03	S-methyl 2-methylbutanethioate	944	A	nd	nd	9.8	7.9	5.6	#
c04	dimethyl trisulfide	981	A	0.3	0.7	nd	0.5	0.5	#
c05	ethyl (methylthio)acetate	989	A	nd	nd	nd	52		
c06	2-(methylthio)ethyl acetate	1010	А	nd	nd	nd	69		

Code	Compound	LRI^a	${ m ID}^b$	Approximate quantity ^c					\mathbf{P}^e
	-		•	iLSL	mLSL	iMSL	mMSL	•	
c07	ethyl 3-(methylthio)propanoate	1104	A	nd	nd	nd	8.0		
c08	3-(methylthio)propyl acetate	1127	A	nd	nd	nd	38		
	total sulfur-containing compounds			3.4	8.5	14	193		
Alcoho									
d01	2-methylpropanol	633	A	18 ^a	63 ^b	7.0^{a}	34^{ab}	35	*
d02	1-butanol	668	A	2.1 ^a	11 ^a	4.1 ^a	33 ^b	9.6	***
d03	2-methyl-1-butanol	749	A	36 ^a	125 ^b	28^{a}	295°	71	***
d04	3-hexen-1-ol	866	A	5.5 ^a	2.3 ^a	3.0^{a}	52 ^b	13	***
d05	1-hexanol	874	A	4.1^{ab}	20^{b}	2.0^{a}	93°	17	***
d06	eucalyptol	1041	A	1.1 ^a	0.6^{a}	4.9^{a}	14 ^b	8.2	*
d07	1-octanol	1072	A	3.5^{a}	5.1a	3.3^{a}	35 ^b	22	*
d08	3-nonen-1-ol	1157	\mathbf{B}^f	34^{ab}	53 ^a	15 ^b		44	ns ^(0.073)
d09	3,6-nonadien-1-ol	1165	\mathbf{B}^f	14	10	3.6	1.7	18	ns
d10	1-nonanol	1173	A	21	27	8.2	10	28	ns
410	total alcohols	11,0		139	317	79	572		110
Aldehy				137	31		372		
e01	2-methylbutanal	666	A	4.8	6.0	8.0	3.4	8.0	ns
e02	2-methyl 2-butenal	745	A	0.5^{a}	1.5 ^a	0.7^{a}	9.8 ^b	4.5	**
e03	hexanal	811	A	9.4	1.3	17	11	13	ns
e04	heptanal	907	A	8.0	7.6	9.0	9.0	6.7	ns
e05	benzaldehyde	974	A	9.9 ^{ab}	31 ^b	6.6 ^a	6.5 ^a	23	ns
e06	6-nonenal	1104	A	2.0^{a}	nd	13 ^b	nd	5.4	*
e07	nonanal	1104	A	30	27	36	35	33	ns
e08	decanal	1210	A	18 ^a	16 ^a	16 ^a	36 ^b	17	ns ^(0.062)
C 00	total aldehydes	1210	71	83	109	106	111	1.7	113
0.1				03	10)	100	111		
	compounds	730		1	0.48	1 18	56 ^b	10	***
f01	2-methylbutanenitrile	728	A	nd	0.4^{a}	1.1 ^a		18	***
f02	3-methylbutanenitrile	735	A	nd	nd	0.6^{a}	18 ^b	5.9	
f03	limonene	1036	A	1.3	1.7	1.9	2.4	1.4	ns
f04	geranylacetone	1451	A	nd	0.2	1.3	4.4	5.0	Ns
Semi-v	volatile analysis								
Esters	volutile alialysis								
g01	2-acetoxy-3-butanone	1358	A	nd	nd	nd	4.6		
g02	2,3-butanediol diacetate ^f	1462	A	0.1^{a}	0.8^{a}	0.6^{a}	8.5 ^b	4.6	**
g03	1,2-propanediol diacetate	1486	A	nd	0.2^{a}	0.1^{a}	0.6 ^b	0.3	*
g04	2,3-butanediol diacetate ^f	1497	A	0.1^{a}	0.2^{a}	0.1^{a}	6.1 ^b	1.5	***
g05	1,2-ethanediol diacetate	1518	A	0.1^{a}	0.6^{a}	0.2^{a}	2.5 ^b	1.0	**
g05	2,3-butanediol monoacetate ^g	1536	A	0.1^{a}	0.6^{a}	0.2^{a}	10 ^b	6.5	*
g07	2,3-butanediol monoacetate ^g	1549	A	0.2^{a}	1.1 ^a	0.2^{a}	30 ^b	4.3	***
g08	1,3-butanediol diacetate	1593	В	nd	nd	nd	1.0	٦.٥	
g08 g09	1,4-butanediol diacetate	1748	В	nd	nd	nd	1.0		
_	containing compounds	1/40	В	110	IIG	iiu	1.2		
h01	ethyl (methylthio)acetate	1423	A	nd	nd	nd	6.3		
			А		IIU				
h02	2-(methylthio)ethyl acetate	1468	A	nd	nd	nd	21		

Code	Compound	LRI^a	${ m ID}^b$	Al	proxim	ate quan	tity ^c	LSD^d	\mathbf{P}^e
	-			iLSL	mLSL	iMSL	mMSL	•	
h03	2-(methylthio)ethanol	1503	A	nd	nd	nd	4.6		
h04	3-(methylthio)propyl acetate	1601	A	nd	nd	nd	14		
h05	3-(methylthio)-1-propanol	1689	A	nd	nd	nd	5.2		
Other		1336	A	0.3^{a}	1.4 ^a	0.2^{a}	13 ^b	2.8	***
i01	1-hexanol	1363	В	1.1 ^a	0.3^{a}	0.6^{a}	14 ^b	1.9	***
i02	3-hexen-1-ol	1557	В	0.2^{ab}	0.1^{a}	0.6^{c}	0.4^{bc}	0.2	**
i03	2,6-nonadienal	1844	A	$8.7^{\rm b}$	17 ^c	1.5 ^a	23°	5.7	***
i04	benzyl alcohol	1879	A	1.2 ^b	2.6°	0.2^{a}	3.7^{d}	0.8	***
i05	phenylethanol	1995	В	0.3^{a}	1.0^{b}	0.1^{a}	1.6°	0.4	***
i06	dihydro-3-hydroxy-4,4-dimethyl-2(3H)-furanone	2014	В	0.2ª	0.6 ^a	nd	3.2 ^b	1.0	***
i07	benzenepropanol	2064	В	nd	0.6^{a}	nd	2.5^{b}	1.5	*
i08	2-ethyl-4-hydroxy-5-methyl-3(2 <i>H</i>)-furanone	2081	В	2.0 ^a	15 ^b	0.6 ^a	13 ^b	6.2	**
i09	4-hydroxy-5-methyl-3(2 <i>H</i>)-furanone	2315	В	0.5 ^a	2.3 ^b	0.8^{a}	2.1 ^b	0.5	***
i10	5,6,7,7a-tetrahydro-4,4,7a-trimethyl-2(4H)-benzofuranone	1336	A	0.3ª	1.4ª	0.2^{a}	13 ^b	2.8	***
i11	hexadecanoic acid	2886	В	14 ^a	34 ^a	33 ^a	56 ^b	22	*
i12	9-hexadecenoic acid	2928	В	5.9 ^{ab}	17 ^b	4.3 ^a	31°	13	**
	olatile analysis								
_	ic acids								
j01	citric acid			3.1	3.4	4.0	4.5	1.5	ns
j02	calic acid			0.4	0.5	0.5	0.4	0.2	ns
Sugars									
k01	fructose	•		14	13	20	14	9.4	ns
k02	glucose			13	10	19	11	9.1	ns
k03	sucrose			57 ^b	84 ^c	15 ^a	67 ^b	16	***
	mino acids				h				
101	Ala			299 ^a	714 ^b	271 ^a	1384 ^c	361	***
102	Gly			103 ^b	228 ^c	37 ^a	92 ^b	37	***
103	α-ABA			6.0 ^a	9.0 ^{ab}	9.0 ^{ab}	10 ^b	3.0	*
104	Val			216 ^b	348°	59 ^a	169 ^b	69	***
105	Leu			25	31	25	39	17	ns
106	lle			40	37	33	42	13	ns
107	Thr			121 ^b	174 ^c	63 ^a	109 ^{ab}	46	**
108	γ-ABA			1485 ^b	2216°	371 ^a	515 ^a	388	***
109	Ser			402 ^b	623°	162 ^a	336 ^{ab}	193	**
110	Pro			65°	99 ^d	26 ^a	44 ^b	13	***
111	Asn			171 ^b	252°	111 ^a	136 ^{ab}	43	***
112	Asp			3544 ^b	5627°	1294 ^a	1243 ^a	1015	***
113	Met			63°	106 ^d	21 ^a	37 ^b	12	***
114	Glu			305 ^{ab}	568 ^b	15 ^a	589 ^b	363	*
115	Phe			62 ^b	129 ^c	27 ^a	49 ^{ab}	49	**
116	Gln			6449 ^b	8659 ^b	3176 ^a	2460 ^a	2515	**
117	Lys			19	21	20	28	13	ns

Code	Compound	LRI^a	\mathbf{ID}^b	Aj	proxima	LSD^d	\mathbf{P}^e		
				iLSL	mLSL	iMSL	mMSL		
118	Tyr			21 ^a	31 ^b	14 ^a	22 ^{ab}	9.0	*
119	Trp			21^{b}	33°	7.0^{a}	10 ^a	6.0	***

^a For compounds a to f: linear retention index on DB-5 column, for compounds g to i: linear retention index on a DB-WAX. b A, mass spectrum and LRI agree with those of authentic compound; B, mass spectrum agrees with reference spectrum in the NIST/EPA/NIH mass spectra database and LRI agree with those in the literature (reference given). ^c For compounds a to f: estimated quantities (ng) collected from the headspace of 2 ml of melon juice diluted in 10 ml of HPLC water, calculated by comparison with 130.6 ng of 1,2-dichlorobenzene used as internal standard; for compounds g to i: estimated quantities (mg) from 20 ml melon juice, calculated by comparison with 100 mg of 3-chlorophenol used as internal standard; for compounds j and k: estimated quantities (g/l) of melon juice and for compounds l: estimated quantities (mg/l) of melon juice; means not labelled with the same letters are significantly different (p < 0.05); means of three replicate samples; nd, not detected. d Least significant difference at p = 0.05. e Probability, obtained by ANOVA, that there is a difference between means; ns, no significant difference between means (p > 0.05); * significant at the 5% level; ** significant at the 1% level; *** significant at 0.1% level, # difference between samples (absent vs. present) but no significant difference between those samples where the compound was present. fig Pair of diastereoisomers.

Table 2. Odorants identified by GC-O/MS in the headspace of two genotypes of Charentais melon harvested at two different maturity stages.

Code	Compound	LRIexpt ^a	Odour description		Inte	nsity ^b	
			-	iLSL	mLSL	iMSL	mMSL
1	ethyl propanoate	713	fruity, over-ripe	-	-	-	9
2	propyl acetate	715	pungent, sweet fruit	-	-	-	12
3	ethyl 2-methylpropanoate	759	fruity, pineapple	-	10	6	12
4	methyl 2-methylbutanoate	778	fruity, pineapple	9	11	9	11
5	hexanal	805	green, grass	4	9	7	6
6	ethyl butanoate	806	sweet fruity, fake	-	-	-	10
7	ethyl 2-methylbutanoate	849	fruity sweet, pineapple	8	11	8	13
8	3-hexen-1-ol	856	fresh-cut grass	-	-	-	5
9	1-hexanol	870	herbaceous	-	_	-	5
10	4-heptenal	902	lamb fat, cheesy		_	11	-
11	butyl propanoate	911	ripe banana	-	-	-	4
12	S-methyl 2-methylbutanethioate	940	sulfury	7 -	-	5	3
13	dimethyl trisulfide	972	pickled onions, cabbage	10	13	9	13
14	ethyl (methylthio)acetate	985	earthy, slightly	-	-	-	5
15	eucalyptol	1032	pine	-	-	-	3
16	ethyl 3-(methylthio)propanoate	1102	cardboard, slightly	-	-	-	4
17	6-nonenal	1110	cucumber	10	-	12	-
18	3,6-nonadien-1-ol	1164	rags, dry	8	5	4	3

^a Linear retention index on DB-5 column, calculated from a linear equation between each pair of straight chain n-alkanes C_6 - C_{25} . ^b The sum of intensities recorded by two assessors for each sample (scoring scale: weak = 3, medium = 5, strong = 7), - = not detected.

Table 3. Mean panel scores for sensory attributes of two genotypes of Charentais melon harvested at two different maturity stages.

Code	Attribute		Sc	ore ^a		LSD^b		\mathbf{P}^{c}	
		iLSL	mLSL	iMSL	mMSL	· 	S	A	I
	Odour								
o01	sweet	41 ^b	41 ^b	40^{b}	50 ^a	5.4	**	***	ns
002	floral	17 ^b	19 ^b	21^{ab}	26 ^b	6.4	*	***	ns
003	honey	11 ^b	10^{b}	14 ^b	21^a	4.4	***	***	ns
004	strawberries	$6.5^{\rm b}$	10 ^{ab}	8.8^{b}	14 ^a	4.4	**	***	ns
005	orange squash	13 ^a	18 ^a	14^{ab}	18 ^a	4.4	ns	***	ns
006	citrus	10	10	11	10	2.8	ns	***	ns
007	cucumber	17 ^b	12 ^c	22 ^a	12 ^c	4.1	***	***	ns
80c	green ^d	14 ^b	14 ^b	21^a	11 ^b	4.0	***	***	ns
009	earthy	18 ^a	14^{ab}	8.1°	11^{bc}	5.5	**	***	ns
510	musty	16 ^a	8.9^{b}	5.1 ^b	$9.0^{\rm b}$	6.3	**	**	ns
511	brown orchard fruit ^e	13 ^{ab}	10^{b}	9.9^{b}	17 ^a	4.4	**	***	ns
512	ripe tropical fruit ^f	11	11	11	14	3.8	ns	***	ns
013	fermenting	13 ^a	9.9^{b}	9.2^{b}	13 ^a	2.9	**	***	ns
	Taste/Flavour					1			
f01	sweet	60 ^a	66 ^a	31 ^b	65 ^a	8.8	***	***	**
f02	savoury	15 ^{ab}	12 ^{bc}	17 ^a	11 ^c	3.1	***	***	ns
f03	salty	18 ^a	15 ^{ab}	13 ^b	13 ^b	4.3	ns	***	ns
f04	acidic	15	17	20	15	4.7	ns	***	n
f05	bitter	17	14	15	13	4.8	ns	***	n
f06	floral	21 ^a	19 ^{ab}	14 ^b	26 ^a	6.3	**	***	*
f07	honey	17 ^a	14 ^a	9.2 ^b	18 ^a	5.1	**	***	n
f08	syrupy	37 ^a	41 ^a	10 ^b	37 ^a	9.4	***	***	*:
f09	strawberries	7.5 ^b	7.9 ^b	3.5 ^b	13 ^a	4.8	**	***	*
f10	orange squash	11	9.1	11	11	4.7	ns	***	n
f11	citrus	6.4 ^b	6.5 ^b	11 ^a	8.4 ^b	2.7	**	***	n
f12	cucumber	16 ^b	10 ^{bc}	23 ^a	9.4°	6.4	***	***	**
f13	green	11 ^b	8.5 ^b	17 ^a	9.8 ^b	4.1	***	***	n
f14	metallic	22 ^a	17 ^b	17 ^a	20 ^{ab}	3.9	ns ^(0.050)	***	n
f15	pithy	17	16	13	12	7.6	ns	**	*:
f16	earthy	22 ^a	17 ^b	11 ^b	11 ^b	5.7	**	***	n
f17	musty	18 ^a	15 ^a	5.4 ^b	13 ^a	6.1	***	***	n
f18	brown orchard fruit ^e	17 ^a	17 ^a	6.9 ^b	13 ^a	6.3	**	**	
f19	ripe tropical fruit	9.8 ^b	13 ^{ab}	8.1 ^b	16 ^a	5.7	*	***	n: *
f20	fermenting	15 ^a	15 ^a	4.9 ^b	16 ^a	7.5	**	***	*:
120	Mouthfeel	13	13	4.7	10	1.5			
n∩1	*	41	41	37	40	6.2	ne	***	n
n01	mouth drying	41 41 ^{ab}	41 43 ^a	32°	37 ^{bc}	5.5	ns **	***	n
n02	mouth coating							***	n
n03	tongue tingling	8.0	6.9	7.9	7.9	4.0	ns ***	***	n: *
n04	body	46 ^a	46 ^a	24 ^b	42 ^a	7.5			
n05	salivating	33	32	32	32	5.7	ns ns ^(0.052)	***	n
n06	smoothness	44 ^{ab}	44 ^{ab}	37 ^b	47ª	6.5	ns	***	ns
0.0	After-effects		^						
ae01	sweet	50 ^a	55 ^a	26 ^b	52 ^a	10	***	**	**
ne02	savoury	14	11	16	14	4.8	ns	***	*

Code	Attribute		Sco	ore ^a		LSD^b	\mathbf{P}^c		
		iLSL	mLSL	iMSL	mMSL	•	S	A	I
ae03	salty	15	15	13	13	4.4	ns	***	*
ae04	acidic	15 ^{ab}	13 ^b	21ª	13 ^b	5.7	*	***	*
ae05	bitter	16 ^{ab}	14 ^b	19 ^a	14 ^b	4.2	ns (0.050)	***	ns
ae06	mouthcoating	42 ^a	43 ^a	33 ^b	41 ^a	4.6	**	***	*
ae07	drying	42	43	39	42	7.8	ns	***	***
ae08	musty	21 ^a	17 ^a	8.4 ^b	15 ^{ab}	7.3	*	***	*
ae09	soapy	4.5	5.2	8.9	6.6	5.0	ns	***	ns
ae10	metallic	22	22	19	18	6.5	ns	***	**

 $[\]frac{1}{2}$ Means not labelled with the same letters are significantly different (p < 0.05); means are from three replicate samples. b Least significance difference at p = 0.05. Probability, obtained from ANOVA, that there is a difference between means; ns, no significant difference between means (p > 0.05); * significant at the 5% level; ** significant at the 1% level; *** significant at the 0.1% level; F-ratios for sample and assessor were calculated by comparing the mean square of the effect with the mean square of the samplexassessor interaction; S: significance of samples, ars. Oc. A: significance of assessors, I: significance of the interaction (SxA). d Odour associated with freshly cut grass and green beans. Odour or taste-flavour associated with overripe apples and pears. Odour or taste-flavour associated

Highlights

- Flavour of medium and long shelf-life Charentais cantaloupe melons was compared.
- Volatile and semivolatile profiles were correlated with sensory data using multifactorial analysis.
- Maturity at harvest has a significant impact on the flavour of medium-shelf life fruit.
- Maturity at harvest had much less impact on a long shelf-life genotype.
- Esters and sulfur-compounds were more abundant in mature medium shelf-life fruit.