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Abstract.3

While changes in land precipitation during the last 50 years have been at-4

tributed in part to human influences, results vary by season, are affected by5

data uncertainty and do not account for changes over ocean. One of the more6

physically robust responses of the water cycle to warming is the expected7

amplification of existing patterns of precipitation and evaporation. Here, pre-8

cipitation changes in wet and dry regions are analysed from satellite data9

for 1988-2010, covering land and ocean. We derive fingerprints for the ex-10

pected change from climate model simulations that separately track changes11

in wet and dry regions. The simulations used are driven with anthropogenic12

and natural forcings combined (ALL), and greenhouse gas forcing or natu-13

ral forcing only. Results of detection and attribution analysis show the fin-14

gerprint of combined external forcing is detectable in observations and that15

this intensification of the water cycle is partly attributable to greenhouse gas16

forcing.17
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1. Introduction

As temperatures rise in response to increasing greenhouse gas concentrations, the global18

water cycle is expected to intensify [Allen and Ingram, 2002; Trenberth et al., 2003]. This19

should lead to increasing atmospheric water vapor and moisture transport, from water20

exporting to importing regions, enhancing existing patterns of precipitation (P) minus21

evaporation (E) [Held and Soden, 2006; Seager and Naik , 2012]. Due to energy budget22

constraints in the atmosphere, the precipitation response in models is 2-3% K−1 [Held23

and Soden, 2006; Stephens and Ellis , 2008], less than the increase in the water vapour24

concentrations of ∼7% K−1 near to the surface [Santer et al., 2007; Willett et al., 2010].25

The pattern of wet regions becoming wetter and dry regions becoming drier is seen in26

multiple satellite based datasets of precipitation [Liu et al., 2012; Chou et al., 2013], in27

studies of atmospheric moisture transport using reanalysis data [Zahn and Allan, 2011],28

modeling studies of past and projected changes [Sun et al., 2007; Seager and Naik , 2012;29

Lau et al., 2013; Liu and Allan, 2013] and changes suggested by ocean salinities [Durack30

et al., 2012]. It is also consistent with a wider frequency distribution of precipitation31

[Lintner et al., 2012; Giorgi et al., 2011; Biasutti , 2013].32

Changes in zonally averaged land precipitation since the 1950s have been partly at-33

tributed to anthropogenic forcing [Zhang et al., 2007; Polson et al., 2013] using fingerprint34

detection and attribution (D+A) methods. Changes over the land and ocean combined35

should show higher signal-to-noise ratio [Balan Sarojini et al., 2012] and the expected36

change pattern is less clear over land than oceans [Held and Soden, 2006]. Here we apply37

a D+A analysis [Allen and Stott , 2003] to satellite data for land and ocean precipitation38
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for the years 1988 to 2010. This is a short timescale for analyzing precipitation trends39

compared to natural variability, however Seager and Naik [2012] find anthropogenically40

induced changes in P-E are beginning to emerge for the satellite period using model and41

reanalysis data. Our analysis focuses on changes in wet and dry regions separately, relying42

on expected changes from well understood physical processes and the predicted response43

to warming. It follows the wet and dry regions as they move over time, tracking the44

changes in these regions independently of their location [Liu et al., 2012] and thus ac-45

counting for changes in atmospheric circulation due to natural variability, or in response46

to warming, for example, poleward migration of the subtropical dry regions [Seager and47

Naik , 2012].48

Climate model simulations of the 20th century are used to derive fingerprints of precip-49

itation response to all external forcings and greenhouse gas only forcing. Natural forcing50

can also affect precipitation. Aerosols from volcanic eruptions reduces precipitation par-51

ticularly in the wet regions for up to 6 years after the eruption in climate models [Iles52

et al., 2013]. The eruptions of El Chichon in 1982 and Pinatubo in 1991 may have im-53

pacted precipitation during first half of the observation period [Trenberth and Dai , 2007],54

leading to a naturally forced trends that are similar to those due to greenhouse gas forcing.55

2. Data: Observations and Models

We use the satellite-based Global Precipitation Climatology Project (GPCP) gridded56

dataset of monthly precipitation [Adler et al., 2003] for the years 1987-2010 (for which57

measurements from the Special Sensor Microwave Imager (SSM/I) are available). Two58

observational datasets of monthly land precipitation, the Climate Research Unit (CRU)59

[Harris et al., 2013] and the Global Precipitation Climatology Centre (GPCC) [Schneider60
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et al., 2011] datasets, are included for comparison. ENSO is removed from the observations61

as the short record means it will influence the trends (note the supplement discusses the62

robustness of our findings, including to removing ENSO).63

Model data are from the Climate Model Intercomparison Project Phase 5 (CMIP5)64

archive [Taylor et al., 2011]. We use historical runs with anthropogenic and natural65

forcings (ALL), greenhouse gas only forcing (GHG) and natural only forcing (NAT). We66

also analyze the expected change for 2011-2033, based on the rcp4.5 scenario (Table S1).67

Data are aggregated to a 5◦x5◦ grid and gridboxes split into land and ocean using the68

model land fraction data with a cutoff of 50%.69

3. Analysis of changes in Wet and Dry Regions

Data were divided into zonal bands from 60◦-40◦S, 40◦-20◦S, 20◦S-0◦, 0◦-20◦N, 20◦-70

40◦N and 40◦-60◦N and then split into wet and dry regions (see below). As satellite71

observations are less reliable poleward of 50-55◦ (Huffman pers. comm.), the mid and72

high latitudes are excluded from the D+A analysis. The data were grouped into four73

seasons; January, February and March (JFM), April, May June (AMJ), July, August and74

September (JAS) and October, November and December (OND), to capture the tropical75

wet and dry seasons, and precipitation averaged across the three months. Precipitation76

changes are calculated for 1988-2010, to ensure OND and JFM are consistent, OND is77

from the previous year (1987-2009). Two methods are used to define the dry and wet78

regions in each zonal band, with all D+A analysis using the precipitation changes from79

method 1.80

Method 1 uses dry and wet regions of fixed size that move from season to season and81

year to year. For each zonal band, P̂x (i , t) is the mean precipitation in the dry or wet82
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region for season i and year t where x is dry or wet . gridboxes are sorted from lowest to83

highest precipitation so that84

P̂dry(i , t) =
L33∑

n=1

Pn(i, t) (1)

where Pn is the precipitation in gridbox n and P̂dry(i , t) is the mean precipitation for85

all gridboxes in the lower 33.3 percentile (n ∈ [1 ,L33 ]), for season i , year t . P̂wet(i , t) is86

the mean precipitation of all gridboxes in the upper 33.3 percentile (n ∈ [U33 ,N ]), where87

N is the total number of gridboxes in each zonal band. A linear least squares regression88

is used to calculate the change in P̂x (i , t) over all years, Ṗx (i) where Ṗx (i) is expressed89

as a percentage relative to P̂x (i , t) averaged over all years.90

Method 2 uses a fixed cutoff value in each zonal band for dry and wet regions for all91

years. This allows the regions to move and change size from season to season and year to92

year. For each zonal band, P33 (i) is the 33.3 percentile for all gridboxes, in all years for93

season i and P66 (i) is the 66.67 percentile. If Pn(i , t) are sorted from lowest to highest94

P̂dry(i , t) =
nP33∑

n=1

Pn(i, t) (2)

here n ∈ [1 , nP33 ] are all gridboxes where Pn(i , t) ≤ P33 (i). For P̂wet(i , t), n ∈ [nP66 ,N ]95

are all gridboxes where Pn(i , t) ≥ P66 (i). Ṗx (i) is then calculated as in method 1.96

The same methods are applied to individual simulations to calculate Ṗx (i) in each,97

these are averaged to give the multi-model mean changes. This allows for differences in98

the precipitation patterns and model error in the location of climatological precipitation.99
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Thus the model fingerprints are more physically consistent than that obtained by simply100

averaging across all simulations which may smear out changes.101

4. Detection and Attribution

Total least squares regression [Allen and Stott , 2003] determines the magnitude of the102

fingerprint, F, of the response to external forcing, in the observations y.103

y = (F + εfinger) · β + εnoise (3)

where y is rank-l vector and F is a l x p matrix for p external climate forcings. β104

is a vector of scaling factors with p entries giving the magnitude of each fingerprint in105

the observations, εnoise is the residual associated with internal climate variability and is106

compared to samples of model variability using the F-test [Allen and Stott , 2003]. εfinger107

is a l x p matrix of variability superimposed on the fingerprint.108

Here, single fingerprints (p = 1) are used for ALL, GHG, NAT and RCP4.5. In each109

case F is the multi-model mean Ṗx (i) for the 4 zonal bands in the tropics and subtropics110

for seasons i = 1,4, giving l = 16 for the dry and wet regions separately and l = 32 for111

the dry and wet regions combined. A two-signal approach was applied to GHG and NAT112

forcing. All analysis was repeated for land+ocean, land only and ocean only. Optimized113

fingerprints were tried but did not improve the signal-to-noise ratio.114

Multiple samples of climate noise are added to F and y and β recalculated. If β >115

0 at the 5% significance level, then the fingerprint response pattern is detected in the116

observations [Hegerl et al., 2007]. As models may underestimate precipitation variability,117

β is also calculated for double the model variance [Zhang et al., 2007; Polson et al., 2013].118

D R A F T August 27, 2013, 3:48pm D R A F T



X - 8 POLSON ET AL.: HUMAN INFLUENCE ON WET AND DRY REGIONS

5. Results

The location and size of the GPCP dry and wet regions do not change much from year119

to year (Figure 1) with 70%-85% of the dry and wet regions remaining fixed from one year120

to the next. The models tend to locate the dry and wet regions in the same gridboxes as121

the observations. If the observations define a gridbox as dry(wet) in over 75% of years122

then on average, 73%(65%) of simulations will also define that gridbox dry(wet) in over123

75% of years. The size of the regions from the start to the end of the observation period124

change by less than the maximum year-to-year variation, except in SH mid-latitudes.125

The tropics and subtropics show a pattern of dry regions becoming drier and wet regions126

becoming wetter from 1988-2010 for the observations and multi-model means for models127

with greenhouse gas forcing (ALL, GHG, RCP4.5, see Figure 2). The NAT only multi-128

model mean also shows a tendency for dry to get drier and wet to get wetter, but not as129

consistently for all zonal bands and seasons. However, these patterns are not consistent130

across all simulations. 20-30% of the ALL, GHG and RCP4.5, and 40% of the NAT131

only individual simulations give more (i.e zonal bands and seasons) dry regions becoming132

wetter. Wet regions becoming wetter is a more consistent result with exceptions of less133

than 10% of the ALL forced and GHG only simulations and <20% of the RCP4.5 and134

NAT forced simulations. While the pattern of moistening and drying persists over both135

land and ocean in observations and models (Figures S13 and S14), dry becoming drier is136

more consistent over oceans than land. Comparison of the GPCP land only changes with137

two other station-based observational datasets, GPCC and CRU (masked to the wet and138

dry regions of GPCP), shows consistency between the datasets (Figures S15 and S16).139
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The detection analysis for the combined fingerprint of the wet and dry regions and all140

seasons combined shows that ALL forcing had a significant influence on satellite measure-141

ments of precipitation (Figure 3(a)). The changes from GHG and RCP4.5 simulations142

are similarly detected in the observed changes, while NAT forcing is not (Figure S17).143

Changes are also detected over ocean only, but not land only, likely due to poorer signal-144

to-noise ratio with a smaller fraction of the wet and dry regions coinciding with land than145

ocean and a quicker response to more localized forcing (see Balan Sarojini et al. [2012]).146

SH tropical dry regions in OND and JFM, and SH subtropical wet regions in AMJ and147

JAS were excluded from the land only analysis because few gridboxes coincide with land.148

Changes in the dry and wet regions separately are also detected for ALL, GHG and149

RCP4.5 forcing, (over ocean for ALL forcing, Figure S19). The fingerprint of NAT forcing150

is also detectable for the wet regions, possibly reflecting the influence of volcanoes during151

the first half of the observation period [Iles et al., 2013]. To distinguish the influence of152

GHG from NAT forcing, a 2-signal D+A was applied, simultaneously estimating GHG153

and NAT forcing. The results for the combined dry and wet fingerprint shows that GHG154

forcing is detectable while NAT forcing is not (Figure 3(b)).155

Our results were robust to not removing ENSO and using the Nino-3.4 SST index from156

CPC, NOAA (see supplement), except when ENSO is not removed, ALL forcing for the157

dry+wet fingerprint was not detected for land+ocean, while GHG forcing was detectable158

in the dry regions for the GHG and NAT 2-signal analysis.159

6. Discussion and Conclusions

Precipitation from GPCP observations and models that include GHG forcing (i.e. ALL,160

GHG only and RCP4.5) clearly show a tendency for dry regions to get drier and wet regions161
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to get wetter, consistent with theory [Allen and Ingram, 2002; Held and Soden, 2006]. The162

NAT only simulations show a similar pattern for the wet regions and to a lesser extent163

in the dry regions due to the influence of the El Chichon and Pinatubu eruptions in the164

first half of the observation period.165

The zonal mean changes for the GPCP data are dominated by changes over the ocean166

which are thought to be less reliable than changes over land (e.g. Liu et al. [2012]).167

While the pattern of wet regions becoming wetter holds over both land and ocean, drying168

in the dry regions is less consistent over land. There is evidence that land and ocean169

precipitation are anti-correlated [Liu et al., 2012], however, on short timescale, this is due170

to the influence of ENSO, hence we lose much of this anti-correlation here.171

Detection and attribution analysis shows all external forcings and greenhouse forcing are172

detectable in precipitation changes over the last 20 years in the tropical and subtropical173

dry and wet regions. Fingerprints based on future change are also detectable showing174

they are expected to enhance the pattern of change already observed.175

If the wet and dry signals are combined, greenhouse gas forcing can be detected sep-176

arately to natural forcing. The precipitation response to volcanic eruptions in the dry177

regions is small compared to the greenhouse gas signal, which may explain why the green-178

house gas signal is detectable in the dry regions while the natural signal is not in the179

1-signal analysis. Our analysis did not include aerosol changes explicitly as not enough180

runs were available to characterize changes with reasonable signal-to-noise ratio.181

Our results are subject to uncertainty in trends derived from satellite data and the182

shortness of the observational record. However, our results are consistent with results183

attributing salinity changes to human influences [Durack et al., 2012] over ocean, and184
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changes recorded over land are broadly similar to those recorded by in-situ data. Thus185

our results suggest an emerging pattern of wet regions becoming wetter and dry regions186

becoming drier that appears to be at least in part due to greenhouse gas forcing. This187

provides evidence of an anthropogenically-induced intensification of the water cycle.188
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Figure 1. GPCP dry regions for October, November and December (OND is 1987-2009) from

method 1. (a) The percentage of years a gridbox is defined as dry for 1987-2009. (b) Percentage

of years dry in 2000-2009 minus 1987-1996, only gridboxes where the change is not zero are

plotted. ENSO removed from observations. Similar results for other seasons (see supplement).
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Figure 2. Observed and model simulated zonal mean changes (% per year) in the dry (TOP

FOUR PANELS) and wet (LOWER FOUR PANELS) regions for land and ocean 1988 to 2010

(OND is 1987-2009). The colored bars give the multi-model mean changes for the ALL, GHG,

NAT and RCP4.5 simulations. The orange/blue shading show where GPCP, ALL and RCP4.5

are all negative/positive. Note GPCP is plotted on a larger scale and the influence of ENSO is

removed from observations.
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Figure 3. (a) Scaling factors for the wet and dry regions combined for ALL forced simulations.

L+O is land+ocean. (b) Scaling factor for 2-signal D+A of GHG and NAT forcing. Crosses show

the ’best-guess’ scaling factor for the multi-model mean, thick lines are the 90% confidence inter-

val for the raw model variance added as noise and thin lines are the 90% confidence interval for

double the variance. Influence of ENSO is removed from observations. The residual consistency

test is passed in all cases.
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