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Abstract

Weaning is associated with a major shift in the microbial community of the intestine, and this instability may make it more acquiescent than

the adult microbiota to long-term changes. Modulation achieved through dietary interventions may have potentially beneficial effects on

the developing immune system, which is driven primarily by the microbiota. The specific aim of the present study was to determine

whether immune development could be modified by dietary supplementation with the human probiotic Bifidobacterium lactis

NCC2818 in a tractable model of weaning in infants. Piglets were reared by their mothers before being weaned onto a solid diet

supplemented with B. lactis NCC2818, while sibling controls did not receive supplementation. Probiotic supplementation resulted in

a reduction in IgA (P,0·0005) and IgM (P,0·009) production by mucosal tissues but had no effect on IgG production (P.0·05). Probio-

tic-supplemented pigs had more mast cells than unsupplemented littermates (P,0·0001), although numbers in both groups were low. In

addition, the supplemented piglets made stronger serum IgG responses to fed and injected antigens (P,0·05). The present findings are

consistent with B. lactis NCC2818 reducing intestinal permeability induced by weaning, and suggest that the piglet is a valuable

intermediate between rodent models and human infants. The results also strongly suggest that measures of the effect of probiotic sup-

plementation on the immune system need to be interpreted carefully as proxy measures of health benefit. However, they are useful in

developing an understanding of the mechanism of action of probiotic strains, an important factor in predicting favourable health outcomes

of nutritional intervention.
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It is clear that the intestinal microbiota provides the first line

of defence against pathogenic organisms(1,2). However, it is

becoming more apparent that it also exerts a major influence

over host homeostasis in healthy humans and animals(3–6).

The microbiota can be altered by factors such as diet(7) and

environment(4–6), but in adults, the mature microbiota tends

to re-establish itself once the external influence is removed(8).

More long-term alterations may be generated during early life,

when this intestinal ecosystem is still fluctuating(9) and highly

susceptible to change(10,11). The process of microbial colonisa-

tion and succession in the intestine is a major factor in driving

maturation of the immune system(12–16), and the composition

of the microbiota can affect the function of the immune

system in neonates and adults(17). Some specific modifications

of the microbiota have been correlated with disease(10,18,19),

and clinical trials have suggested that strain-specific probiotic

therapy can confer a health benefit for specific disease situ-

ations(20–24). The process of weaning is associated with a

major shift in the gut microbial community in both humans(25)

and other mammals(26), and therefore may present a target for

beneficial manipulation of the microbiota. Intervention with

probiotics during weaning may have a more pronounced

impact on the subsequent function of the immune system

than administration of probiotics to adults.

Assessing the likely value of a probiotic in a specific clinical

situation requires either direct measurement of health benefit

as part of a clinical trial, or an understanding of the mechanism

of action of the probiotic. The size and robustness of the

evidence base will allow rational selection of specific pro-

biotic strains and the clinical situations in which trials are
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likely to have positive outcomes. However, the extent to which

mechanistic studies can be carried out in human subjects is

limited. Neonates of altricial species such as rodents are not

easily manipulated: in contrast, the omnivorous pig is not

only similar to humans in terms of anatomical, physiological,

immune and metabolic characteristics(27–31) but, in addition,

their precocial development makes them appropriate candi-

dates for manipulation around weaning.

Effects of early-life environment on microbial colonisation

have been identified in young piglets(4), and intra-individual

stability and inter-individual variability of the microbiota are

more similar between humans and pigs than between humans

and mice(32). Further, full genome studies have demonstrated

less differences between humans and pigs than between

humans and rodents(33,34). These factors suggest that piglets

are a valuable intermediate between highly reductionist,

mechanistic studies in mice, and human epidemiological

studies and clinical trials, especially with regard to weaning

and nutritional intervention. Here we use a healthy piglet wean-

ing model to identify the effects of intervention with the human

probiotic Bifidobacterium lactis at weaning on immunological

development and function, and question how well generally

accepted proxy measures of health truly reflect the physiologi-

cal status of an individual.

Materials and methods

Animals

Animal housing and experimental procedures were all

performed according to local ethical guidelines: all experi-

ments were performed under a UK Home Office License

and were approved by the local ethical review group. A

total of seven outbred sows were artificially inseminated

using semen from a single boar (supplied by Hermitage-Sea-

borough Limited). Sows were transported to the Department

of Clinical Veterinary Science 6 weeks before parturition and

fed on a wheat-based diet (BOCM Pauls Limited). At 3 weeks

of age, piglets were weaned and litter-matched into six groups

(Table 1), each group being housed in a separate room, on

straw, in standard large animal facilities.

At this point, three groups received the B. animalis subsp.

lactis (CNCM I-3446) probiotic diet supplementation in the

form of spray-dried culture mixed into the formula at a concen-

tration of 4·2 £ 106 colony-forming units/ml (approximately

2 £ 109 colony-forming units/kg metabolic weight per d). The

required quantity of feed supplemented with fresh probiotics

was fed twice per d to the appropriate groups (A–C) until the

experiment concluded when the pigs were 11 weeks old. The

remaining groups (D–E) did not receive the probiotic sup-

plement. The probiotic-fed and control animals were in differ-

ent suites separated by a biosecurity barrier. Of the piglets

receiving probiotics, two groups were weaned onto a soya-

based diet and one onto an egg-based diet (Table 2). All diets

were supplemented with appropriate levels of vitamins and

minerals and were manufactured to order by Volac (Parnutt)

Foods Limited. The weaning diets were designed such that

the only differences were that each contained 21 % of the

stated protein. One of the two groups that weaned onto the

soya-based diet also received an intraperitoneal injection of

2 mg soluble ovalbumin from chicken egg-white (systemic

exposure; Sigma) and 2 mg Quil A adjuvant (Brenntag Biosector

A/S) in 2 ml PBS to investigate the immune response against a

systemically administered novel protein. The treatment of

these three probiotic-supplemented groups (A–C) was repli-

cated in the probiotic-free control groups D to F. From

7 weeks of age, all six groups were fed a fishmeal-based diet,

free of egg and soya, either with or without probiotic as appro-

priate. The fishmeal diet was used to ensure that the serum anti-

body response was to the injected egg protein and not to the

dietary egg protein. The egg- and soya-based diets were

designed to meet the nutritional requirements of piglets

between 3 and 7 weeks old, whereas the fishmeal-based diet

was designed for piglets between 7 and 11 weeks old. For this

reason, the fishmeal-based diet cannot be compared with the

egg- and soya-based diets. The composition of the different

diets is shown in Table 2. At 9 weeks old, all piglets received

an intraperitoneal injection of 2 mg ovalbumin and 2 mg Quil

A adjuvant in 2 ml PBS.

All piglets were bled by venepuncture at 3, 4, 5, 7 and

9 weeks old for collection of serum. At 11 weeks old, piglets

Table 1. Experimental design*

Group (n 7 per group)

Age (weeks) Treatment A B C D E F

3 Weaning diet Egg Soya Soya Egg Soya Soya
Bifidobacterium lactis NCC2818 þ þ þ 2 2 2

Inject i.p. 2 OVA 2 2 OVA 2

Bleed þ þ þ þ þ þ

4 Bleeds þ þ þ þ þ þ

5 Bleed þ þ þ þ þ þ

7 Bleed þ þ þ þ þ þ

Fishmeal diet þ þ þ þ þ þ

9 Bleed þ þ þ þ þ þ

Inject i.p. OVA OVA OVA OVA OVA OVA
11 Killing þ þ þ þ þ þ

i.p., Intraperitoneally; OVA, ovalbumin.
* Forty-two (six piglets from seven litters) piglets were litter-matched into six treatment groups; three groups received the B. lactis NCC2818 intervention at

weaning at 3 weeks of age.
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were sedated with azaperone and killed with an overdose of

barbiturate. At post-mortem, heart blood and tissues were

recovered.

Tissue culture

At killing, 4 cm2 samples of intestinal mucosa (proximal and

distal jejunum, excluding Peyer’s patches (PP), distinct jejunal

PP, caecum and descending colon), and 1 cm3 of spleen and

mesenteric lymph node (MLN) were collected and placed in

cold sterile medium. Organ fragment culture was carried out

as described in detail by Logan et al.(35). Briefly, the samples

were vigorously washed three times in Ca2þ and Mg2þ-free

Dulbecco’s PBS (Sigma) containing 0·5 mM-EDTA (Sigma),

1 M-HEPES (Invitrogen) and 50mg gentamycin/ml (Gibco),

followed by three further washes in Ca2þ and Mg2þ-free

Dulbecco’s PBS containing 1% HEPES and 50mg gentamycin/ml

before being placed in Roswell Park Memorial Institute-

1640 medium (Sigma) containing 10 % fetal calf serum

(PAA), 200 mM-L-glutamine (Invitrogen), 10 units penicillin/ml

and 10mg streptomycin/ml (Invitrogen) and 50mg gentamy-

cin/ml (complete medium). Intestinal tissues were cut into frag-

ments approximately 3 mm2, while spleen and MLN were cut

into 2 mm cubes, and one fragment of tissue was placed in

each of six individual wells of a twenty-four-well culture plate

(Corning, Inc.) containing 1 ml of complete medium. Cultures

were incubated at 378C, 5 % CO2, 100 % humidity for 96 h,

after which they were frozen at 2208C. The plates were

defrosted and the spent medium from each of the six duplicate

wells for each sample was pooled and refrozen for analysis of Ig

content.

Immunoglobulin assays

Catching ELISA was carried out to determine total IgG1, IgG2,

IgA and IgM in spent medium from organ fragment cultures

and IgA in serum. Briefly, ninety-six well microplates were

coated with either affinity-purified goat anti-pig IgG (H þ L),

goat anti-pig IgA or goat anti-pig IgM (Bethyl Laboratories).

Serial dilutions of serum samples and reference standard were

added to coated plates and incubated for 2 h at room tempera-

ture. Bound Ig were detected using isotype-specific monoclonal

antibodies (anti-pig IgA K61.1B4, anti-pig IgM K52.1C3, anti-pig

IgG1 K139.3C8 and anti-pig IgG2 K68.1G2; all from Serotec) fol-

lowed by horseradish peroxidase-conjugated goat anti-mouse

IgG1. Concentrations of Ig subclasses were determined by

interpolation of samples onto the reference standards.

Antigen-specific immunoglobulin assays

Serum samples were analysed for anti-ovalbumin IgG1 and IgG2

antibodies by ELISA as described in detail by Bailey et al.(36).

Briefly, ninety-six-well microplates were coated with oval-

bumin from chicken egg-white (Sigma) before non-specific

binding sites were blocked with 2 % bovine serum albumin

(Sigma) in PBS–Tween 20. After washing, serial dilutions

of serum samples and reference standard were added to

the plates. Reference standard was porcine serum obtained

Table 2. Composition of the weaning diets and supplements

Ingredients (%) Egg-based Soya-based Fishmeal-based

Whole dried egg 24·3 2 2

Extruded full-fat soya (unmodified, 35 %
protein, 19 % fat)

2 17·6 2

High-protein soya (48 % protein, 2·7 % fat) 2 12·2 2

LT94 Fishmeal 2 2 12·5
Wheat 2 2 30·0
Full-fat whey (50 % lard) 2 2 3·5
Potato protein (Roquette) 2 2 2·5
Barley 2 2 10·0
Cooked wheat (MASHM) 21·0 19·4 16·7
Presco maize 21·0 19·7 10·0
Cooked naked oats 11·7 9·2 2

Dairy crest tint whey 9·4 8·8 5·0
Denatured skimmed milk-A 7·7 6·7 5·0
Dextrose 1·7 1·6 1·5
Vitamin and mineral mix* 1·0 1·0 1·0
SNOWCAL chalk 10 2 2 0·6
Dicalcium phosphate 0·9 1·5 0·3
Limestone Trical 130 0·5 0·5 0·5
L-Lys 0·4 0·4 0·3
L-Thr 0·1 0·1 0·1
Salt 0·1 0·1 0·1
Protein 21·3 21·2 21·5
Oil 12·5 11·2 7·1
Fibre 1·1 2·3 1·7
Ash 4·5 5·3 5·1
Moisture 8·6 9·9 10·8
N-free extract 52·0 50·1 53·8

* Vitamin and mineral mix (calculated units in finished feed): vitamin A, 16 mg/kg; vitamin D3, 2 mg/kg; vitamin E, 250 mg/kg; vitamin K (menadione),
4 mg/kg; vitamin B1, 10 mg/kg; vitamin B2, 16 mg/kg; vitamin B6, 10 mg/kg; vitamin B12, 0·05 mg/kg; nicotinic acid, 50 mg/kg; pantothenic acid,
30 mg/kg; biotin (vitamin K), 0·2 mg/kg; vitamin C, 200 mg/kg; folic acid, 3 mg/kg; choline chloride, 300 mg/kg. Trace minerals: Cu, 155 mg/kg; Fe,
375 mg/kg; Zn, 110 mg/kg, Mn, 100 mg/kg; Co, 0·5 mg/kg; I, 1·2 mg/kg; Se, 0·3 mg/kg.
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following hyperimmunisation with ovalbumin. Bound

anti-soya IgG1 and IgG2 antibodies were detected using

isotype-specific monoclonal antibodies followed by HRP-

conjugated goat anti-mouse as mentioned previously, and

relative concentrations of antibody were determined by

interpolation of samples onto the reference standards.

In order to compare changes in serum antibody generated

by weaning and by the injection of novel proteins in outbred

animals, in which the starting levels differ, results are

expressed as the ratio of antibody after manipulation to that

before manipulation (fold change in antibody).

Immunohistology

Sample collection. MLN and caecum tissue was removed

shortly after death from each of the experimental piglets. Tissues

were embedded in OCT (Tissue TEK; BDH), snap-frozen in iso-

pentane and pre-cooled to approximately 2708C in the vapour

phase of liquid N2. Samples were stored at 2808C until section-

ing. Serial 5mm sections of these tissues were cut using a Model

OTF cryotome (Bright Instrument Company Limited). Sections

were air-dried for 24 h and then fixed by immersion in acetone

for 15 min. Slides were allowed to dry before storage at 2808C.

Fluorescence immunohistology. For two-colour fluor-

escence immunohistology, mouse anti-pig monoclonal anti-

bodies (IgA and IgM, as for ELISA) were used to identify free

and cell-bound IgA- and IgM-positive cells and B-lymphocytes

(anti-CD21, clone IAH CC55). The conjugated secondary

reagents used were as follows: goat anti-mouse IgG1 conjugated

to fluorescein isothiocyanate (FITC) (Southern Biotechnology,

AMS Biotechnology) and goat anti-mouse IgG2b conjugated to

tetramethyl rhodamine isothiocyanate (TRITC) (Southern Bio-

technology). Tissue staining, image capture and automated

image analyses were carried out as described by Inman

et al. (37) with the exception that fracture crystallography (Fc)

receptor blocking was achieved using 10 % goat serum in PBS.

Histochemistry

Small-intestinal samples were obtained as described in the

immunohistology section and processed the same up to and
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Fig. 1. Total (a, b) IgA and (c, d) IgM production (mg/ml, log-transformed) by organ fragment cultures from organised (a, c) lymphoid tissues and (b, d) non-

lymphoid tissues from piglets supplemented with Bifidobacterium lactis NCC2818 (groups A, B and C) or unsupplemented (groups D, E and F). Values are

means, with their standard errors represented by vertical bars (n 21). a,b Mean value with unlike letters was significantly different from that of probiotic supplemen-

tation (P,0·01; t test with Bonferroni correction). MLN, mesenteric lymph node; JPP, jejunal Peyer’s patches; Pro SI, proximal small intestine; Dis SI, distal small

intestine. B, B. lactis; A, control.
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including the acetone fixation step. Fixed slides were stained

for mast cells using 2·5 % toluidine blue O solution (Sigma-

Aldrich) for 15 s followed by dehydration through increasing

concentrations of alcohol culminating in a histoclearw

(National Diagnostics) wash and mounted in distyrene plasti-

ciser xytene (DPX) mounting medium (Fisher). Image capture

was carried out using a Colour Coolview camera and Image-

Pro Plus software (Photonic Science). Thereafter, ten fields

of view were obtained from each piglet and ImageJ software

(National Institutes of Health) was used to allow quantification

of mast cells per cm2 tissue.

Statistical analysis

Statistical analysis was carried out using SPSS statistics (SPSS,

Inc.). Univariate linear regression was carried out using piglet

as the experimental unit and litter, tissue and probiotic treat-

ment as variables. Individual differences between the treatment

groups were determined by least significant differences as in

our previous experiments(3).

Results

Local immunoglobulins

Bifidobacterium lactis NCC2818 supplementation caused a

reduction in local immunoglobulin production in lymphoid-

associated organ fragment cultures. Total IgG1, IgG2, IgA

and IgM were quantified in organ fragment culture medium

from all animals. There were highly significant differences in

the amounts of the four isotypes produced between tissues

(P,0·0001), spleen producing less IgA (20·16 (SEM 0·04) log10

mg/ml) than mucosal tissues in the control animals (mean

range 20·5–1·16 log10 mg/ml). Highly significant effects of pro-

biotic intervention were observed for IgA (P,0·0005; Fig. 1(a)

and (b)) and IgM (P,0·009; Fig. 1(c) and (d)), but not for

IgG1 or IgG2 (data not shown). IgA and IgM were lower in the

probiotic supplemented animals than in the unsupplemented

animals (for IgA from MLN, 20·56 (SEM 0·09) and 0·34 (SEM

0·05) log10 mg/ml, respectively; from proximal jejunum, 0·75

(SEM 0·03) and 0·86 (SEM 0·01) log10 mg/ml; from jejunal PP,

0·02 (SEM 0·09) and 0·80 (SEM 0·09) log10 mg/ml; from caecum,

0·74 (SEM 0·06) and 1·17 (SEM 0·05) log10 mg/ml; for IgM from

MLN, 0·38 (SEM 0·08) and 0·72 (SEM 0·03) log10 mg/ml, respect-

ively; from caecum, 0·13 (SEM 0·18) and 0·85 (SEM 0·03) log10

mg/ml; from colon, 0·60 (SEM 0·04) and 0·81 (SEM 0·03)) log10

mg/ml). There was also a significant interaction between pro-

biotic treatment and tissue (P,0·0001 for both classes), such

that this effect was more marked for some tissues than others.

Specifically, probiotic intervention appeared to have the most

marked effect on IgA production by the organised tissues of

MLN and jejunal PP (Fig. 1(a)), and to a lesser extent by the dif-

fuse lymphoid tissue present in caecal mucosa (Fig. 1(b)).

Although supplementation also resulted in significantly

decreased IgA production by tissue from the proximal small

intestine, the effect was much smaller. IgA production in the

spleen, distal small intestine and colon showed no difference

between the probiotic supplemented and non-supplemented

animals (from spleen, 20·25 (SEM 0·04) and 20·16 (SEM

0·04) log10 mg/ml, respectively; from distal jejunum, 0·46 (SEM

0·03) and 0·44 (SEM 0·07) log10 mg/ml; from colon, 1·16 (SEM

0·02) and 1·06 (SEM 0·05) log10 mg/ml). There was also no differ-

ence as a result of dietary supplementation in spleen or small-

intestinal IgM (for spleen, 0·62 (SEM 0·09) and 20·79 (SEM

0·06) log10 mg/ml, respectively; from proximal jejunum, 0·36

(SEM 0·07) and 0·36 (SEM 0·07) log10 mg/ml; for distal jejunum,

0·27 (SEM 0·06) and 0·40 (SEM 0·05) log10 mg/ml; for discrete jeju-

nal PP, 0·75 (SEM 0·05) and 0·35 (SEM 0·05) log10 mg/ml). It should

be noted that IgA in serum taken at time points throughout the

experiment remained unaltered by the supplementation with B.

lactis NCC2818 (P.0·05).

Local IgA and IgM proteins were reduced in caecal tissue,

mesenteric lymph node-associated B-cells and B-cell follicles

following probiotic intervention. In order to examine the

mechanisms by which probiotic administration reduced Ig

secretion in organ fragment cultures, levels of IgA, IgM and

CD21 were examined in MLN (Figs. 2 and 3) and caecum

(Fig. 4) samples from groups B and E (soya diet, supplemented

with the probiotic and control, respectively). These tissues and

groups were chosen as they had previously produced the most

consistent differences in organ fragment cultures. Consistent

with the organ fragment culture data, there was reduced

expression of IgA (Fig. 2(a) and (d)), IgM (Fig. 2(d)) and also

–1·3

–1·2

–1·1

–1·0

–0·9

Lo
g

10
 p

ro
p

o
rt

io
n

 o
f 

C
D

21
-p

o
si

ti
ve

 p
ix

el
s

–1·6

–1·4

–1·2

–1·0

–0·8

–0·6

–0·4

IgA IgM

Lo
g

10
 p

ro
p

o
rt

io
n

 o
f 

p
o

si
ti

ve
 p

ix
el

s

B. lactis Control

***

***

***

100 µm 100 µm

(a) (b)

(c) (d)

Fig. 2. Fluorescence immunohistology of the mesenteric lymph node from

treatment groups B (ovalbumin priming and recall and Bifidobacterium lactis

NCC2818 intervention; B) and E (ovalbumin priming and recall without

B. lactis NCC2818 intervention; A). (a) Example field from treatment group

B: green fluorescence indicates binding of anti-pig IgA monoclonal antibody

and red, anti-pig CD21 monoclonal antibody. (b) Example field from treat-

ment group E stained similarly. (c) Proportional area of expression of CD21

and (d) IgA and IgM in the same treatment groups (group B, B. lactis

NCC2818; group E, control). Values are means, with their standard errors

represented by vertical bars (n 7). *** Mean value was significantly different

from that of group B (P,0·0001 in all cases). (A colour version of this figure

can be found online at http://www.journals.cambridge.org/bjn)
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CD21 (Fig. 2(c)), within B-cell follicles in the MLN of the B. lactis

NCC2818-treated animals compared with the control group

(P,0·0001). There was no effect of intervention with B. lactis

NCC2818 on the total number of MLN follicles (P.0·05;

Fig. 3(a)), but the number of IgM-specific follicles (Fig. 3(c))

and extrafollicular IgM-producing B-cells (Fig. 3(b)) was

reduced in the animals receiving the intervention (P,0·0001).

In contrast, no change was seen in the number of extrafollicular

IgA-positive cells (Fig. 3(b), P.0·05), whereas the number of

IgA-specific follicles was actually significantly increased

(Fig. 3(c)) in animals fed with B. lactis NCC2818 when com-

pared with the controls (P,0·0001). Reductions in the

expression of IgA (Fig. 4(a) and (c)) and IgM (Fig. 4(b) and

(d)) in situ in the caecum were also apparent (Fig. 4), both in

the subepithelial lamina propria (associated with production)

and in the caecal crypt epithelium (associated with transport)

(Fig. 4(c) and (d)).

A reduction in lymphoid-associated IgA and IgM
production was associated with increased mast cell
numbers in the intestinal mucosa

In contrast to the decreases observed in IgA and IgM in the

supplemented animals, there were significantly greater num-

bers of mast cells in the small intestine (P,0·001) of animals

which received B. lactis NCC2818 (n 7) when compared

with the control (Fig. 5).

Systemic antibody

Primary systemic response to novel fed protein at weaning

was increased following Bifidobacterium lactis NCC2818

administration. At weaning, there was a significant increase

in IgG2 anti-soya antibody in animals which received a soya

diet with probiotic supplementation when compared with

both the animals fed soya without probiotic and the egg-fed

animals (P¼0·021; Fig. 6(a)). The supplemented animals also

mounted a significantly greater IgG1 antibody response to

soya compared with the egg-fed controls (P¼0·03), and a

greater response than the unsupplemented animals fed soya,

although this was not significant (Fig. 6(b)).
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Fig. 4. Fluorescence immunohistology of caecum crypts and lamina propria

from soya-fed piglets which received intraperitoneal ovalbumin priming and

recall (treatment groups B and E) and either (a) Bifidobacterium lactis

NCC2818 supplementation or (b) not; fluorescence indicates the binding of

anti-pig IgA monoclonal antibody. (c) IgA and (d) IgM fluorescence quantified

(P,0·0001 in all cases). Values are means, with their standard errors rep-

resented by vertical bars (n 7). B, B. lactis; A, control. (A colour version of

this figure can be found online at http://www.journals.cambridge.org/bjn)
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Primary and secondary responses to injected antigens

were increased following probiotic intervention at weaning.

Fig. 7(a) and (b) shows the increase in serum IgG1 and IgG2 anti-

body, respectively, during the primary and secondary responses

to systemically injected antigens (with the adjuvant). During the

primary response (3–5 weeks old), there were trends towards

an increased serum IgG1 and IgG2 anti-ovalbumin response in

the B. lactis NCC2818-fed animals (n 7) compared with the con-

trol group. During the secondary response (9–11 weeks old),

there was a significantly greater response in both isotypes in

the supplemented group (IgG1, P¼0·05 and IgG2, P¼0·02).

Discussion

The common definition of a probiotic (given by the WHO

in 2001) is ‘a live microorganism that when administered in

adequate amounts confers a health benefit on the host’. Thus,

the definitive outcome measure necessary when testing novel

strains for probiotic activity is health: in normal or diseased

humans or animals, this may be measured, for example,

by susceptibility to disease. However, understanding the

mechanisms by which probiotics function requires detailed

measurement of a wider range of immunological and physio-

logical parameters, which may then also be used as proxy

measures of health. The strain of B. lactis NCC2818 used in

the present experiments has been identified as having probiotic

activity, as defined above, in human subjects and in rodent

models. These benefits include reducing pathogen load and

prevention or reduction of antibiotic-associated diarrhoea(38,39).

However, the effects of probiotics, including B. lactis NCC2818,

on immune development at weaning, a time when the resident

microbiota is changing rapidly, are largely unknown. The

immunological measures reported here, then, relate to the

mechanisms of action of the probiotic strain and to the iden-

tification of proxy measures of the probiotic effect. The results

presented clearly demonstrate that administration of B. lactis

to piglets at weaning had marked effects on the structure and

function of the mucosal immune system. In that respect, the

present results are comparable with mechanistic experiments

in rodents and with the data from human clinical trials.

In our system, intervention with B. lactis NCC2818 resulted

in reduced IgA in mucosal-associated lymphoid tissues

(associated with a reduction in plasma cell numbers by immu-

nohistology). In contrast, preterm infants, which received

B. lactis NCC2818 for 3 weeks following birth, showed a

2-fold increase in faecal IgA levels from 2 weeks onwards(40),

and IgA production by MLN and PP cells from adult mice was

increased when cultured in the presence of Bifidobacterium

bifidum (41). In a mouse study, IgA in the intestinal fluids of

the supplemented animals was also higher than that in the

controls. In these and previous studies, elevated secretory

IgA has been presumed to be a mechanism or a proxy

measure for a beneficial effect of probiotics(42), presumably

by increasing the potential for neutralisation of allergens or

pathogen, thus preventing or reducing disease. The disparity

between the present results and those reported in human sub-

jects and rodents may be more apparent than real. Where

intervention has resulted in increased IgA levels in vivo, it

should be noted that faecal IgA levels and total intestinal

washes, as normally carried out in these species, may be

more reflective of jejunal and/or colonic mucosal IgA levels,

where there was no effect of supplementation in pigs of the

present study, rather than the MLN, PP and caecum, where

there was an effect. In addition, studies in human subjects

have frequently involved compromised individuals(40),
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whereas the present study used normal, outbred healthy pig-

lets. While an increase in faecal IgA has been correlated with

protection, the same correlation has not been established for

local tissue IgA. Interestingly, an increase in intestinal IgA

can be linked to various disease states in humans(43–45), and

a local increase of IgA in a healthy individual can also be an

indication of the loss of barrier function. We thus suggest

that the present observation that probiotic supplementation

decreased, rather than increased, local IgA production in intes-

tinal tissue reflects a reinforcement of the intestinal barrier

(preventing exposure to luminal antigens) rather than a sup-

pression of mucosal immunity, and a breakdown in barrier

function is often associated with disease. It also suggests that

while elevated IgA in the faeces is accepted as a proxy

measure for health, the same interpretation cannot necessarily

be applied to local IgA production in tissues.

Similarly, although elevated numbers of mast cells have

been associated with allergic sensitisation(46), the increases

in mast cell numbers seen here were within the normal

ranges previously reported in young piglets(47,48), and are in

line with physiological numbers in adult pigs(49) and were

not comparable with those seen in disease states(50,51). An

increase in mast cell numbers within the normal physiological

range may be a consequence of increased recruitment to the

intestinal mucosa, decreased mast cell exit or the inhibition

of mast cell degranulation. Previous studies have suggested

that mast cell degranulation contributes to impaired barrier

function after weaning in young piglets, and several

probiotic species have been shown to reduce IgE-mediated

degranulation in an RBL-2H3 cell line(39,51). A reduction in

antigen-induced mast cell degranulation may also occur as a

consequence of elevated IgG antibody responses to fed and

injected antigens in probiotic supplemented animals: elevated

serum IgG antibody responses to food proteins have been

associated with decreased susceptibility to IgE-mediated aller-

gic disease in human subjects and to post-weaning diarrhoea

in pigs(52,53). Further, since active, primary responses to

intestinal antigens are largely mediated through PP(54) while

tolerance is mediated by the transfer of antigens from the

intestinal mucosa to the MLN(55), stronger responses to fed

antigens in supplemented piglets may also indicate reduced

uptake across the intestinal epithelium compared with PP.

The present results strongly suggest caution in interpreting

specific measures of the immune system (in this case, IgA pro-

duction, mast cell numbers and antibody to food proteins) as

linear, proxy measures for the health benefit of probiotic sup-

plementation in the diet without taking the specific animal

model and, more importantly, the specific intervention

window into account.

Mechanistically, the present results are largely consistent

with B. lactis NCC2818 intervention, increasing barrier func-

tion between the lumen and the intestinal lamina propria.

Specifically, a reduction in IgA production in organ fragment

cultures is entirely consistent with a reduced exposure of the

mucosal immune system to antigens derived from the intesti-

nal lumen. Previously, certain probiotics, including bifidobac-

teria, have been shown to enhance the barrier function of

human intestinal epithelial cells in vitro (56), but not in vivo,

in part by the stabilisation of tight cell junctions(57).

B. bifidum, for example, was demonstrated to increase barrier

integrity in a rat model of neonatal necrotising enterocolitis(58).

In conclusion, the present results demonstrate clear effects

of probiotic supplementation in the weaning diets of conven-

tionally reared animals which do not have any diseases or

unusual pathology. Mechanistically, these effects are consist-

ent with increased barrier function. However, the results also

strongly suggest that while measures of the effect of probiotic

supplementation on the immune system are of value in devel-

oping an understanding of the mechanism of action, we may

need to interpret with caution. While studies of health benefits

are appropriately conducted in human subjects, mechanistic

studies require tractable animal models from which sufficient

tissue samples can be easily recovered. Such mechanistic

studies should, perhaps, be carried out in several mammalian

species in order to establish generally applicable principles for

predicting the activities of probiotic strains.
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