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Nonlinear Saturation of Baroclinic Instability. Part I: The Two-Layer Model
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(Manuscript received 4 August 1987, in final form 22 December 1987)

ABSTRACT

A rigorous bound is derived which limits the finite-amplitude growth of arbitrary nonzonal disturbances to
an unstable baroclinic zonal flow within the context of the two-layer model. The bound is valid for conservative
(unforced) flow, as well as for forced-dissipative flow that when the dissipation is proportional to the potential
vorticity. The method used to derive the bound relies on the existence of a nonlinear Liapunov (normed)
stability theorem for subcritical flows, which is a finite-amplitude generalization of the Charney-Stern theorem.

For the special case of the Phillips model of baroclinic instability, and in the limit of infinitesimal initial
nonzonal disturbance amplitude, an improved form of the bound is possible which states that the potential
enstrophy of the nonzonal flow cannot exceed ¢8%/3, where ¢ = (U — Usu)/Ua is the (relative) supercriticality.
This upper bound turns out to be extremely similar to the maximum predicted by the weakly nonlinear theory.
For unforced flow with ¢ < 1, the bound demonstrates that the nonzonal flow cannot contain all of the potential
enstrophy in the system; hence in this range of initial supercriticality the total flow must remain, in a certain

sense, “close” 10 a zonal state,

1. Introduction

Ever since the pioneering work of Charney (1947)
and Eady (1949), the theory of baroclinic instability
has occupied a prominent position in dynamical me-
teorology. These early studies demonstrated that the
existence of synoptic-scale cyclone waves in the at-
mosphere could be explained in terms of the linear

" instability of a baroclinic zonal flow to wavy distur-
bances. The linear theory has since been developed by
many workers, too numerous to mention here. As with
all linear instability theories, however, the results of
these studies are only valid so long as the wave ampli-
tude remains sufficiently small, and they must even-
tually break down.

A crucial question therefore concerns the ultimate
equilibration of baroclinic instabilities and the deter-

. mination of the maximum wave amplitude. Beginning
with Pedlosky (1970) and Drazin (1970) these matters
have been addressed within the context of weakly non-
linear theory. Such theory provides detailed informa-
tion on initial wave saturation and on whether the
equilibrated state is steady or oscillatory. Apart from
the formidable algebraic complexity of this approach,

however, the results are subject to significant restric-

tions. In particular, the unstable flow must be only
slightly supercritical. Because the perturbation expan-
sions which are employed are asymptotic rather than
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convergent, one must ultimately resort to numerical

. calculation in order to determine the range of validity

of the solutions. Perhaps most seriously, these weakly
nonlinear theories implicitly enforce spatial (i.e. modal)
truncations by their choice of initial conditions, thus
precluding “inter alia”—the irreversible spectral cas-
cades that will generally occur in a system with an in-
finite number of degrees of freedom. Klein and Ped-
losky (1986) have recently found in this context that
at O(1) supercriticality, severely truncated systems give
qualitatively unreliable results; cf. also Mak (1985).
An alternative approach for treating the nonlinear
dynamics of baroclinic flow is provided by geostrophic
turbulence theory (Charney 1971; Rhines 1977
Salmon 1978; Herring 1980). In such theory the flow
is usually presumed to develop into a state of horizontal
and (rescaled) vertical homogeneity and isotropy, a
presumption which effectively amounts to an assump-
tion of randomization or dynamical ergodicity. (In a
channel, of course, geostrophic turbulence theory
would have to take account of the fact that the bound-
ary conditions preclude a complete breakup of the
zonal flow, and this is a nontrivial matter. But in dou-
bly-periodic geometry, to which the results of this paper
equally apply, one could choose a frame of reference
with zero net zonal momentum, and then the turbu-
lence arguments described above apply directly.) How-
ever, it has recently been shown (Shepherd 1987) that
two-dimensional flow on a beta-plane is provably non-
ergodic for sufficiently small wave steepness, and that
the arguments of turbulence theory must therefore be
used with caution in that problem. The ergodic hy-
pothesis is, after all, only a hypothesis, and is not uni-
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versally valid. The possibility exists that a similar result
might hold with respect to baroclinic flow, namely that

an unstable zonal flow with sufficiently small super-

criticality might be prevented from breaking up into
geostrophic turbulence.

This paper addresses the question of finite-amplitude
saturation within a fully nonlinear context. The idea
is disarmingly simple, but apparently quite powerful,
and relies on the existence of a nonlinear Liapunov
(normed) stability theorem for disturbances to a baro-
clinic zonal basic flow. It may seem odd that a stability
theorem for subcritical flow can constrain the behavior
of supercritical flow, but such is indeed the case. The
point is that a (possibly infinitesimal) wavy disturbance
to a supercritical zonal flow may be regarded as a finite-
amplitude disturbance (including a zonal-mean com-
ponent) to a subcritical basic flow, and is then con-
strained by the nonlinear stability theorem. By mini-
mizing the bound over the class of subcritical flows, a
rigorous bound on the amplitude of the wavy part of
the flow can be obtained.

In this study, the method outlined above is applied
to the problem of baroclinic instability in a two-layer
fluid. The governing equations for conservative flow
are reviewed in section 2, and the generalized Charney-
Stern theorem for this system derived in section 3. In
section 4 the theorem is used to obtain a rigorous bound
on the growth of wavy disturbances to an unstable flow.
The results are applied to the Phillips (1954) model of
baroclinic instability in section 5; in the special case
of an initially infinitesimal wavy disturbance, the
tightest bound takes the form (5.5). It is also shown
that for a certain choice of a constant of integration,
it is possible for the zonal flow to satisfy the boundary
conditions while having zero potential enstrophy;
therefore, all of the potential enstrophy is available, at
least in principle, to the eddies. In section 6, the gen-
eralized Charney-Stern theorem and the resulting non-
linear saturation bounds are shown to apply to forced-
dissipative flow in the case where the dissipation is pro-
portional to the potential vorticity in section 6. A
comparison of the bound (5.5) with the predictions of
weakly nonlinear theory for single-wave equilibration
is made in section 7, and the agreement found to be
quite close. In a final section, some implications of
these results are considered. The case of continuously
stratified flow will be treated in Part II of this study.

2. Governing equations for the two-layer model

Perhaps the simplest system exhibiting the phenom-
enon of baroclinic instability is that of the two-layer
model, considered first by Phillips (1954). A thorough
treatment of the system can be found in Pedlosky
(1979 §6.17, §7.11), whose notation is largely followed
here. The flow is governed by conservation of quasi-
geostrophic potential vorticity in each layer, namely

D;P;

=0, i= ,
D1 i=1,2

2.1
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ie.
a<1> oP; 0%;0P;

oP; 6P

T+J(<I>,,P) + o 5
where i = 1 and i = 2 refer to the upper and lower
layers, respectively, ®; is the geostrophic streamfunc-
tion, and

P=V2® + By + (-1YA®, — ®). (22)

Here V? is the two-dimensional Laplacian operator, §
the (linear) gradient of the Coriolis parameter, and F-
the internal rotational Froude number (a measure of
the static stability of the system); equal layer depths
are assumed. The domain is infinite in the zonal co-
ordinate x but bounded in the meridional coordinate
¥, with boundary conditions

0®; ®;

x % e 0 @ v=OoL

where the overbar refers to a zonal average

(2.3)

f= hm T f S(x)dx.

The system described by (2.1) possesses certain in-
tegral invariants. It is straightforward to check that the
integral of (kinetic plus available potential) energy,

E=1{|V&/|*+ V&> + F® - 2%} (24)

is conserved in time, and it is obvious that any function
of P, and P, is likewise conserved, Less obviously, per-
haps, the integral of what we shall (following the usage
of Charney 1971) call the potential enstrophy

By’}

=P — B + (P~

= (V&) + (V@) + F(@ — &

+ F(®, — 3,)(V2®; — V2&,) (2.5)

is also a global invariant in this geometry. Conservation
of Z follows from the relation

[L@2+PPay= [ 240
+8 [ y8, + Ray + 62 [van. o

because the last term of (2.6) is a constant of the ge-
ometry, while the penultimate is just 8 times Kelvin’s
impulse, which is separately conserved in the zonally-
symmetric problem considered here.'

! In a closed geometry, of course, conservation of Kelvin’s impulse
would be lost because of the broken zonal symmetry, and so the
potential enstrophy would not be a conserved quantity.
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Now introduce a basic state (®, P) = (¥, Q) con-
sisting of a steady zonal flow Ui(y) = —d¥,;/dy, with
associated potential-vorticity gradients

dg, &, i
= 0i) =~ 3+ B~ (IR, -

U,). (2.7)

It is well known that a sufficient condition for linear
stability of the basic state is that the gradients (2.7)
both have the same sign; for a given flow this must
occur for sufficiently large 3, in which case the basic
state is referred to as ‘subcritical’. If we now consider
the total flow to consist of this basic state plus a dis-
turbance (¢, g), viz.

&=V, +¢;, P=Q:+q, (2.8)

with
= V3 + (~1)F

~¥a), 2.9)

then noting that the basic flow (being zonal) is itself '

" an exact steady solution to (2.1) it follows that the dis-
turbance potential vorticity is governed by the exact
nonlinear equation

Dag;
Dt

in each layeri = 1, 2.

DiQ;

Di (2.10)

= I, Q) == ==

3. The finite-amplitude generalized Charney-Stern
theorem

The method presented in this paper for bounding
the growth of disturbances to a supercritical baroclinic
flow relies on the existence of a finite-amplitude Lia-
punov stability theorem for disturbances to a subcritical
basic flow, stated as follows: the (disturbance) potential
enstrophy at any time ¢ is bounded in terms of its value
at ¢t = 0 according to

fh?+?mw

IQ 1Q1(Y) | max
IQ (M min

valid whenever the basic-state potential-vorticity gra-
dients (2.7) both have the same sign. Equation (3.1) is
in effect a statement of Liapunov (normed) stability,
the norm in this case being just the square root of the
disturbance potential enstrophy. It may be considered
the finite-amplitude generalization of the Charney-
Stern stability theorem, and is related to the generalized
Rayleigh theorem recently derived by Mclntyre and
Shepherd [1987, Eq. (6.28)] and used by Shepherd
(1987) to examine the ergodicity of two-dimensional
flow on a beta-plane. The essential method leading to
(3.1) is originally due to Arnol’d (1966), who used it
in the context of two-dimensional nonparallel flow to
derive his two nonlinear stability theorems. A general
discussion of Arnol’d’s method together with a com-

[1@+@ow, 6
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pendium of applications is provided by Holm et al.
(1985) and Abarbanel et al. (1986).

Although the proof of (3.1) may be inferred from
the previous papers referred to above, the direct proof
for the two-layer model is so straightforward that, for
the sake of completeness, it is worth presenting here.
Moreover, some of the intermediate steps will be re-
quired when the forced-dissipative case is considered
in section 6.

We start with a zonal basic state (¥, Q) and distur-
bance (¢, q) as defined in section 2, and assume that
Q/i(y) are of definite sign. The x-invariance of the basic
state Q;(y) allows the definition of the inverse function
Y;(Q). Now introduce the second-order disturbance
quantity

q
4(Q. 9 = —J; {Yi(Q+ 9~ YD)}dq, (3.2)

which is of definite sign because of the hypothesis on

.Qi(»). Note that in the limit of small disturbance am-

plitude,
440, 9) ~ — 5 VIO’ - N G
(@ 2000 &

which is just (the negative of) the linearized “Eliassen-
Palm wave activity” (Andrews and Mclntyre 1976;
Held 1985). It may be verified that

0d; ,
56 = —Y{Q + g) + Y{(Q) + qY Q)
34;

i —Y(Q + g) + Yi(Q),

and thence, using (2.10), that

o420 IQI aAiQi_qi
6Q, Dt aq,- Dt

- 4¥10 X 01

2R

9 [0 i
+8y{8x ay]+F‘h ax’

D; _
-D—t A(Qi, @) =

3.4)

with the last step involving the use of (2.9) and inte-
gration by parts, and the subscript j = 1 when i = 2,
and vice versa. When averaged in X, this is just the two-
layer quasi-geostrophic version of the generalized
Eliassen-Palm theorem of Killworth and Mclntyre
[1985, Eq. (5.17)]. The flux divergence terms on the
right-hand side of (3.4) vanish under a zonal average
and integration across the channel, using (2.3). Then
adding the equations for both layers together, the re-
maining two terms on the right-hand side can be
grouped together into a term 3(Fyy,)/dx, which sim-
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ilarly vanishes under a zonal average. One thus arrives
at the global conservation law

4 [ @@ o+ 4@ @y =0. (35

One may consider the integrand of (3.5) to be the den-
sity of a pseudomomentum; see McIntyre and Shep-
herd (1987, §7) for a discussion of how such a conser-
vation law is related to the symmetry properties of the
basic state.

To complete the derivation, it suffices to note the
inequalities

Ta—(_y)l_ le(Q)lmquq |40, 9l

[

< Y; maxddqd = =7,

0 l ‘(Q)! wd |Qi(y)lmin

the min and the max being taken over all values of y
and over both layers, from which (3.1) follows directly.

4. Finite-amplitude saturation of unforced baroclinic
instability

We are now in a position to address the main prob-
lem at issue in this paper. Given an arbitrary nonzonal
disturbance to an initially supercritical (i.e., unstable)
zonal flow, can a bound be placed on the ultimate non-
linear growth of the disturbance? Obviously the growth
is constrained by the total energy and potential enstro-
phy in the system, but by using the result (3.1) it turns
out that the growth is in fact limited by a smaller quan-
tity, which for initially infinitesimal wavy disturbances
goes to zero in the limit of small supercriticality. The
proof now follows.

Consider an initial condition consisting of a zonal
flow

dd, 8
dy

_dh_
dy
plus an arbitrary nonzonal disturbance with stream-
function ¢;. We take g positive with a maximum of
unity (to give a westerly jet), and presume that g"(y)
< F/(1 + ¢) so that the initial zonal flow is barotropi-
cally stable (in the sense that dP;/dy is single-signed
within each layer). This is certainly not the most general
class of flows possible but it does cover the regime of
most interest in the present context. (A mddification
of the derivation for nonzero flow in the lower layer
would be straightforward.) Note that dP, /dy is always
positive (provided ¢ > —1), and that dP,/dy is positive
when ¢ < 0, but negative at the jet max when ¢ > 0.
We are of course interested in the supercritical case, ¢
> 0, and refer to € as the (relative) supercriticality.
Now introduce a subcritical basic flow

v =L - a0,

71180 4.1

U, = 0. (4.2)
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Nothing is lost by restricting attention to U; = 0, so §
< 1. The initial flow may be considered as a finite-
amplitude disturbance to this basic flow, the distur-
bance consisting of a wavy part ¥; = ¢; (the departure
from the zonal mean) together with a zonal-mean part
- 8 -
v =- ;(e +0)G(»), ¥.=0
[the integral of minus the difference between (4.1) and
(4.2)], where G(») = [ g(y)dy + X, and X is an (as yet
arbitrary) constant of integration. Thls finite-amplitude

disturbance to the stable basic flow (4.2) has potentlal
vorticity g; given at ¢ = 0 by

g1 (t = 0) = V¢, + F(¢, — 1)

+Be+ 9G0) -~ B+ 00, 439

@ (t = 0) = V2, + F(p, — ¢3) — Ble + 0)G(Y),
(4.3b)

and the generalized Charney-Stern theorem (3.1) evi-
dently places a constraint on the possible growth of g;
with time. In fact, we are particularly interested in
bounding the wavy (or nonzonal) part of the distur-
bance, ¢}, but this is obviously bounded by (3.1) as

well since
f qldy < f gldy.

The idea is now to choose 6 and A (which are arbitrary)
in such a way as to obtain the tightest constraint.
For the basic flow (4.2), we have

“;%' B+ 61— 0g0) ~ 21 - '), (44
sz = B8~ AL - D)), (4.4b)

from which it follows that
1010 | mex = B{2 — 6 + 7(1 —8), (453)
| Q) | min = (4.5)

with y = F~' max{—g"()} = 0.2 Usmg (4.3), the initial
disturbance potential enstrophy may be written as

fo 5 (@ + &) O)dy = B2AONe + OF + %o, (46)

where

1 1
AQ) = f Gy + L F? f g*dy
0 2 0
1
- F7! f Gg'dy, (4.7)
0

2 There is an implicit (but reasonable) presumption in (4.5a) that
—g"(y) takes its maximum where g() does.
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and
1 .
%EL%MWm+H%—®W

+ {V¢, + F(¢) — ¢2)}}dy  (4.8)

is the potential enstrophy of the nonzonal flow at ¢
= 0. We now take advantage of the arbitrariness of the
constant of integration A, and choose A so as to min-
imize A()) in (4.7). The point is that the ultirhate goal
is an upper bound on the potential enstrophy of the
nonzonal part of the flow, which is independent of A;
in general, however, the boundary conditions (2.3) re-
quire that the potential enstrophy of the zonal flow.can
never vanish, so it is advantageous to choose A (which
is equivalent to redefining the origin) in such 2 way as
to minimize the amount of potential enstrophy which
is unavailable to the eddies. (There is a helpful analogy
here in that while the total kinetic energy of the system
is dependent on the frame of reference, one is free to
perform one’s analysis in any frame of reference be-
cause of the Galilean-invariance of the underlying dy-
namics.) Setting

A = minA(})),
A

and defining 2, = 82Azy, the initial disturbance poten-
tial enstrophy (4.6) becomes

1 . - .
[ L@+ @0y = gaf(e+ o7 + 20}, 49)

Using (4.5) and (4.9), the right-hand side of (3.1), pro-
viding the bound on the enstrophy of the nonzonal
part of the flow, then takes the form

B85 @~ b+ 21 = (e + 8 + 2}

= 82Af(5, &, 7> Z0). (4.10)

For given ¢, v and zo, we seek the minithum of f{(3, ¢,
v, zo) over the interval 0 < & < 1. Noting that fdiverges
as & — 0, this minimum will either be a local minimum,
attained at some dmin < 1, or it will be attained at &
= 1; but in the latter case the bound is equal to the
total amount of potential enstrophy in the system,
namely

f Zdy = B2A{(1 + ¢ + z}.

Seeking the local minimum, setting 4/36 = O leads
to the cubic equation

(2 +7)}62 +

3 _ 2+7)
0 +{e 21T+ )

21 + %)

(€@ +2) = 0.
(4.11)

For sufficiently small z, (4.11) has three real roots, and
the minimum of fis attained at .
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Omin = 2p cos((¢ + 4m)/3) — p, (4.12)
where
_1f 2+
”_3{‘ 2(1+~,)]’
_2eHEY[ @FEDV e,
cosp = 2 (1+’Y)r{e 2(1_‘_7)] {e¢ + 2}~ 1

(see Bronshtein and Semendyayev, 1985, §2.4.2.3).
Figure 1 shows f(6min, € 7, Zo) as a function of ¢, for
various values of zo, for the two cases v = 0 and v
= 1. The total amount of potential enstrophy in the
system is also indicated.

An important special case is that where the initial
wavy disturbance has infinitesimal amplitude, viz.
the limit z, = 0. In that limit the cubic (4.11) is easily
seen to factor to

;_ Q2+ @+ |_
6+ e)[6 TET AT e} 0, (4.13)
_Q+y [, 81+ e

It is evident from (4.14) that for sufficiently small e,
Smin is Well approximated as dmin = €. In fact, numerical
calculation reveals that in using & = € the true minimum
of fis overestimated by no more than about 3% over
the useful range of e. The latter is the range for which
the upper bound on the wavy potential enstrophy is
less than | Zdy, namely f(3min, & 7> 0) < (1 + &
approximating f(8min, & v, 0) by fle, €, v, 0) the con-
dition on ¢ becomes '
4e(2—e+1/(l—e))<(1-ije)2 ]
e (5+4y)¢ — 23 +27)e+1>0, (4.15)

which is satisfied for
1
5+4y°

€< (4.16)

One may therefore write down the general bound

[L@+ Bray<pafvo. @in
valid in the limit z; — 0, where
f(v, 9 =f(=¢ €7, 20 = 0)
4¢[2 —e+y(1 —¢€)], e<(5+ 4v)!
- {(1 + €)%, e=(G+4y)
(4.18)

Equation (4.17) represents a rigorous upper bound on
the possible nonlinear growth of an infinitesimal wavy
disturbance to an unstable zonal flow (4.1) with su-
percriticality e. ,

For a given supercritical flow, taking the limit 8 —
0 also requires that e = oo; so in this limit the stability
theorem ceases to usefully constrain the flow evolution.
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F1G. 1. (a) The solid curves show the graph of f{(8min, €, 7, Zo) versus e for ¥ = 0 and for various
2y, as indicated. The upper dashed curve shows f(1, ¢, v, z), which represents the value of f
corresponding to the total amount of potential enstrophy in the system: (b) Same as in (a), except

fory = 1.

5. Application to the Phillips model

Attention is now restricted to the Phillips (1954)
model of baroclinic instability, for which the initial
zonal flow has no meridional shear, and the zonal-
mean potential vorticity gradients are therefore inde-
pendent of y (at least at ¢ = 0). This is a special case of
the class of flows considered above, with g(y) = 1, G(3)
=y+ A v =0,and A = Y, for the choice A = —j,.
The bounds for different z, given by (4.10) with (4.12),
using these values, therefore apply and are shown in
Fig. 1a. In the limit of an infinitesimal initial wavy
disturbance, zo = 0, the bound (4.17) takes the form:

[f@+ @<t e

where
A =f(y=0,¢= 4e(2 —¢), €<0.2 55
I=SO=09= 1 es02 ©O2

I. M. Held (personal communication, 1988) has
pointed out that the bound (5.1), (5.2) may be im-
proved upon by using, in place of (3.1),

=, = .
f 5 {at + a3} (0dy < | QY | maxA()
= | Qi) | maxA(0)
1 [=, Qi) _2]
=1z + 0)dy.
fz{m Q,z(y)lh (0)dy
Here A(?) is the absolute value of the integrated pseu-
domomentum, which for the special case of constant

Q;(y) is given by (6.5) below [and thereby leads to
(5.3b)]. This will evidently yield a tighter bound than

(5.3a)

(5.3b)

will (3.1). For the Phillips model in the limit zo = 0,
the right-hand side of (5.3b) takes the form

— 2 2 2
[1 +2—§}%(e+a)2=ﬁ—m)—- (5.4)

8 12 8
this quantity is minimized (within the interval 0 < §
<1)foréd=ewhene<1,and foré = 1 whene=> 1.
Therefore, the improved bound may be written

L2
L7, 2

[L@+ @<y
Eﬂz(l+e)2 for ‘e= 1.

(5.5)

Comparing (5.5) with (5.1), (5.2), it is evident that (5.5)
is indeed smaller for ¢ < 1, and is in fact twice as small
in the limit ¢ = 0. This last property could have been
anticipated directly by noting that for ¢ — 0,
Q1\(»)/Q%(y) is O(e™") while [ ¢3(0)dy and [ ¢3(0)dy
are equal (assuming z, = 0), and thus the right-hand
side of (3.1) is, asymptotically, twice as large as that
of (5.3b).

It may be instructive to write the bound (5.5) in
terms of the initial vertical shear, U = 8(1 + ¢)/F. This
yields

[ B
f5{43+qzz}dy

g(UF—ﬁ) for 1 <UF/B<2

A

(5.6)

—115 U?F? for UF/B = 2.
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From (5.6) it is clear that in the limit 8 — 0 the bound
simply equals the total amount of potential enstrophy
in the system, and the stability theorem is therefore
giving no useful information.

To this point, the upper bounds on the wavy poten-
tial enstrophy have been compared with f Zdy, the
total amount of potential enstrophy in the system
(which is a constant of the motion). It may, however,
be argued that since the boundary conditions (2.3) will

‘not generally permit the zonal flow to vanish, one
should really be comparing the bounds with something
smaller than [*Zdy. Indeed, one would ideally like to
have a prediction for the wavy potential enstrophy from
geostrophic turbulence theory; unfortunately however,
the boundary conditions (2.3) make such a calculation
rather nontrivial. In the absence of a precise theory,
let us make the rash but intuitively plausible hypothesis
that turbulence will act to minimize the amount of
potential enstrophy residing in the zonal flow. We may
then try to determine this minimum, in order to get
some idea of how much potential enstrophy is left for
the eddies.

It is useful to choose a frame of reference for which
the net zonal momentum vanishes (this does not affect
Z). The zonal flow, with streamfunction ®;, must then
satisfy the conditions

d _ U_ds,
P b OF

dy o _U_dbs

5 O30 (5.7)

In fact, there exists a zonal flow, with zero net mo-
mentum and satisfying (5.7), which has zero potential
enstrophy; viz.

BO) -2 (e e -, (58

&,(y) = ~&,(»), (5.8b)

with v = (2F)'2, Note that ®;(y) = 0 at y = ¥; (the
center of the channel), which corresponds to the choice
A\ = —: for the Phillips model since then G(y) vanishes
at y = % as well. Thus, for the Phillips model, all of
the total potential enstrophy 8%(1 + €)?/12 is, in prin-
ciple, available to the eddies, and for € < 1 the bound
(5.5) is indeed providing a useful constraint on the dy-
namics.

In the more general case represented by (4.1), it is
always possible to find a zonal flow whose baroclinic
part has zero potential enstrophy. This is because the
baroclinic contribution to Z, namely

%(VZ?)z + F%32 — F5v%7,
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where 7 = &, — &, is the baroclinic streamfunction,
will vanish identically for 7 of the form

F(y) = ae™ + be'¥ ™V, (5.9)
and the two constants a and b in (5.9) can always be
chosen to satisfy the boundary conditions on d7/dy at
y =0, 1. [The value of y for which (5.9) vanishes will
then determine the choice of A\.] Unlike the case of the
Phillips model, however, the barotropic part of Z can-
not generally be made to vanish without violating the
boundary conditions, and so there will generally be
part of the total potential enstrophy which is not avail-
able to the eddies.

6. The forced-dissipative case

In this section it is shown that the generalized Char-
ney-Stern theorem and the finite-amplitude saturation
bounds, derived for conservative flow, hold also for a
particular kind of forced-dissipative evolution. Suppose
that the dissipation in the flow is proportional to the
potential vorticity P;, but that the initial unstable flow
P; (t = 0) = P, [as given by (4.1) for example] is pre-
sumed to be an equilibrium solution. Hence the dis-
sipation is proportional to the disturbance potential
vorticity, where the disturbance is, for this purpose,
measured relative to the initial unstable flow. In that
case the governing equation (2.1) is replaced by

D;P;

=-rPitr
Dt '

(6.1)

where r is the dissipation coefficient. Although the —rP;
term in (6.1) is clearly dissipative, the second term is
not so, and can be thought of as a forcing. Indeed, in
a steady-state situation the two terms must balance
globally. The system given by (6.1) is that studied, for
example, by Pedlosky (1982b). Given the level of ab-
straction of the two-layer model, it is impossible to say
which kind of friction is most ‘realistic’. However, the
more conventional Ekman damping (proportional to
V2®;) is rather pathological because it distorts the curve
of marginal stability (e.g., see Pedlosky 1979, §7.12)
and the flow behavior is qualitatively sensitive to the

‘relative strength of the damping coefficients on the two

‘lids’ (Mak 1987). So (6.1) seems as reasonable a system
as any in this context.

The fact that the results carry over in the case of
(6.1) is proven in Shepherd (1988, §4.1) in the context
of two-dimensional flow and the extension of the proof
to the two-layer model is trivial. Rather than dupli-
cating the treatment presented there, we shall here give
explicit proof for the special case of the Phillips model,
where the basic-state potential-vorticity gradients
Qi(y) are independent of y (and positive), and refer
the reader to the aforementioned paper for the more
general case.
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For the Phillips model, (6.1) takes the form

DT;? = —rP,+ r{8 — (—=1YB(1 + 9}y

+2 1B+ 0
and then using (6.2) in place of (2 1), (2. 10) is replaced

6.2)

- _id0;

. 1
rg; — r(—=1)8(e + 5)(y - 5) .

(6.3)

[Note that the disturbance g; is again defined relative
to the subcritical basic state (4.2), as in the previous
sections.] In this special case of constant Qj(y), the
linearized approximation to the pseudomomentum
density, (3.3), is exact at finite amplitude and the pseu-
domomentum conservation law (3.5) now takes the

form
i E _ qi ;
[Q’n(y)+ Qz(y)] y= | {Q.(y) Q’z(y)]dy
1\— 1\—
(y - 5)41 (J’ - 5)‘12
[/} - K
+2r [ pe+) oo oo Y €Y

with the integrand on the left-hand side being the neg-
ative of twice the density of pseudomomentum. It is
not possible to show that the right-hand side of (6.4)
must always be negative. However, we require rather
less than this. In order for the saturation bound to hold,
it is evidently sufficient that

)
A0 =[5 [qu,(y) 20

1[ & [’7)
<J3 {Q'.(y) Qz(y)}(o)dy (6.5)

for any time ¢ = 0. (Note that A is necessarily positive.)

The proof of (6.5) is by contradiction, as follows.
Suppose that (6.5) does not hold, i.e., that A(¢) > A(0).
Then we have (even for finite ¢;)

1 — 1 —
—,l@fﬁzdy+mf422dy

1, , o 1
>[Q’|(y) Qz(y)}f Fletd) (y )dy, (6.6)

using (4.3) in this case with G(y)
= (. But

1
0<m][ 6(e+6)(y—-)]dy
1 1\)?
o5 f {qz + e + 6)(y - 5)} dy

}(t)dy

=y — Y% and g'(y)
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- 5'11(3 { f gdy + f B + 6)2(y - %)zdy
-2 f Be + 6)(y - %)Edy}
* 50 {f iy + [ e+ 6)2(y } %)zdy
+2 [ g+ a)(y - %)Wy}
<o [ [atay- [ sie+ 6)(y - %)Edy]
+ @—22(3 {f a%dy + f Ble + 5)(y - %)713“’)’] ’

using (6.6) to establish the last inequality. This implies
that the right-hand side of (6.4) is negative. In partic-
ular, the above reasoning shows that d.A/dt < 0 during
the time that A increased from JA(0) to A(f), which
is a contradiction. Therefore (6.5) holds, from which
it follows immediately that the saturation bounds re-
main valid for the forced-dissipative problem consid-
ered here.

7. Comparison with single-wave equilibration from
weakly nonlinear theory

The weakly nonlinear theory of Pedlosky (1970)
provides an explicit prediction of the time evolution
of a single-wave disturbance to marginally unstable flow
in the Phillips model. It is clearly of interest to see how
the maximum wave amplitude predicted by such the-
ory compares with the saturation bounds derived
above. As long as the weakly nonlinear theory remains
self-consistent, its predictions should be compatible
with the fully nonlinear theory described here. This is
because the predicted evolution is always a kinemati-
cally possible realization of the full system, and the
wave-mean interaction is properly accounted for in the
weakly nonlinear theory. For simplicity, the discussion
here is restricted to the case zo = 0 of an initially in-
finitesimal wavy disturbance.

For a given supercritical shear U, there is a range of
total wavenumbers « which are unstable according to
linear theory (see Fig. 2). The supercriticality e defined
by (4.1) represents the (relative) supercriticality with
respect to the minimum critical shear U,. For any « in
the unstable range, the absolute supercriticality A(x) is
given by .

A(k) = U — Ue(x), (7.1)
where the critical shear is
2BF
U.(x) = B (7.2)

K2(4F2 _ K4)l/2 M

It is the square root of this parameter A(x) which is
taken as the (small) expansion parameter for a given
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N

i
V2F
Range of
unstable waves

x

FI1G. 2. Schematic of marginal stabllny curve UC(K) indicating the
range of waves which are (linearly) unstable for a given supercntxcahty
e. Instability at minimum critical shear U = U occurs only at «*
= \3F. .

single wave « in Pedlosky’s theory. Note that at «2
= VEF, A(x) = Be/F (this is the most unstable wave
according to linear theory).

Pedlosky (1970) predicts, for inviscid evolution of
an initially infinitesimal disturbance, a maximum wave
amplitude of
_ 2
N 3
where A!2| 4| is the amplitude of the leading order
term in the expansion for the wavy part of the upper-
layer streamfunction. The cy; is the imaginary part of
the scaled phase speed, with

2 = 28%F? A

YT KR+ 2F)? AU, |
and N is the coefficient of the (stabilizing) cubic term
in the Landau equation,

- (8 + FU, Ua
8(U,+ U.— o)’CmPr*> + F )(K + 2F 2

| Al Zax (7.3)

(7.4)

X [(x2 — F)dm?*z* + 2F)
4mPx? tanh(F/2)\/? 75
(F/D)V2(2mPx? + F)}} (7.3

In the above, m is the meridional wavenumber (which
must be an integer), and

+ 2F? — x“)[l +

B* + F)
K(k® + 2F)°
To leading order in A" the potential vorticity of the
wavy part of the flow is given by

Uz—c=—%c (7.6)
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)= _ _BHFU_
U2+U_C
B FU,
U—c

[Pedlosky 1979, Eq. (7.16.21)], where @ is the phase
and

A Re{de” sin(mwy)},

A
2= -

A”z Re{47e” sin(mwy)}, (1.7)

K+F _ B+FU,
F FU,+U-—-¢o

It follows from (7.3) and (7.7) that the maximum po-
tential enstrophy of the wavy part of the flow, for this
weakly nonlinear solution, is to leading order,

2¢i [(_ B+ FU: ) | .,[B— FU,?

54 N {{U2+U —c] * { Uz—c]]’ (7.8)
which is to be compared with the bound (5.5).

It has been found that, for given 8, F, ¢, and «?, the
quantity given by (7.8) is maximized for the gravest
mendxonal mode m = 1. The dependence of (7.8) on
«%, with m = 1, is shown in Fig. 3 for various values
of ¢, taking 8 = 10 and F = 10. Note that withm =1
we must have % > 72, since k2 = m?x? + k® where k
is the zonal wavenumber; and, because of this, the in-
stability is suppressed for sufficiently small F. It can be
seen that as e increases, the maximum shifts from the
linearly most unstable wave x* = \/2F to longer wave-
lengths, as is well known.

It may be noted here that the theory of Pedlosky
(1970) leading to (7.3) breaks down at the point of
minimum critical shear, ¥ = ./ 2F. The technical rea-
sons for this are discussed by Pedlosky (1982a), where
it is shown that the 1970 theory nevertheless remains
self-consistent away from this point. The correct theory
at minimum critical shear is given by Pedlosky (1982b).
Numerical calculations by Boville (1981) suggest that,
for e = 0.1, the maximum amplitude |4 |*at«*> = \/2F
is underestimated by (7.3) by a factor of about two-
thirds. For sufficiently large ¢ however, Fig. 3 shows"
that the maximum is, in any case, attained well away
from «* = \/ 2F, where (7.3) should be reasonably re-
liable.

If (7.8) is maximized over all k¥ > =2, then the re-
maining parameters are 8, F, and e. Inspection of (7.8)
readily reveals that, for fixed F and ¢, it has precisely
the same dependence on 3 as does the rigorous non-
linear bound (5.5), namely like 82. On the other hand,
variations in § for fixed U would imply variations ‘in
¢. The other dependences of (7.8) are less obvious. Fig-
ure 4 compares the bound (5.5) over a range of ¢ with
the maximum of (7.8), for various F. (Boville’s 1981
maximum, for F = 8.7, is also indicated on Fig. 4.)
The agreement is seen to be quite close in many re-
spects. While the bound (5.5) is strictly independent
of F, the maximum of (7.8) is seen to have only a weak
dependence on F. Moreover, the dependence on ¢ is
rather similar in the two cases. [Note that for fixed «
(7.8) increases linearly with ¢, as does (5.5).] Quan-
titatively, over its useful range of ¢ < 1, the rigorous

~
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FiG. 3. Dependence of (7.8) on «? for various values of the super-
criticality ¢, taking 8 = 10, F = 10, and m = 1. Equation (7.8) rep-
resents the maximum potential enstrophy of growing single waves
according to Pedlosky’s (1970) weakly nonlinear theory.

upper bound overestimates the maximum potential
enstrophy from weakly nonlinear theory by less than
a factor of two. For ¢ = 1, it is evident that weakly
nonlinear theory must be overestimating the wave am-
plitudes, as the maximum of (7.8) exceeds the total
amount of potential enstrophy in the system, which
suggests that the theory has become invalid. Indeed, at
O(1) supercriticality maximum wave amplitudes are
known to be overestimated when wave-wave interac-
tions are suppressed (Klein and Pedlosky 1986).

8. Discussion

This paper addresses the question of finite-amplitude
saturation of baroclinic instability in a two-layer quasi-
geostrophic fluid. For an initial condition consisting of
an unstable zonal flow with supercriticality ¢ and an
infinitesimal wavy (i.e. nonzonal) disturbance, it has
been shown that the potential enstrophy of the growing
wave field is limited by a rigorous nonlinear bound,
(4.17), which is approximately linear in e for small e.
A rigorous upper bound for the case of initial nonzonal
disturbances of arbitrary magnitude is given by (4.10)
with 8 as in (4.12), and is shown in Fig. 1. These results
are valid not only for conservative (unforced) flow, but
also for forced-dissipative flow when the dissipation is
proportional to the potential vorticity (section 6). In a
comparison of the bound with the maximum wavy
potential enstrophy predicted by Pedlosky’s (1970)
weakly nonlinear theory of single-wave equilibration
for the Phillips model (section 7), the agreement was
found to be quite close, with the nonlinear bound giving
a value very similar to that obtained in weakly nonlin-
ear theory.

In the case of the Phillips model (section 5), a sug-
gestion by I. M. Held led to a significant improvement
of the bound, viz., (5.5) as compared with (5.1). (It is
of course a general difficulty with this method that one
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never knows whether a given bound could not be im-
proved upon.) In this case, the improvement appears
to depend on the stable basic state having Q(») con-
stant within each layer. However, even with variable
Q(y) one may still use (5.3a) but replace (5.3b) with

[L @+ Byoay

< l |Qll(y)|max"§
‘fz[lga(y)lmin"' " 1050) [

Q)| s ‘—]-%-](0) o 6D

In the limit e = 0, | @1(3)| max/ | @1()) | min is O(1) while
[ Q1)) max/ | Q%)) | min is O(e™"), s0 the second term
on the right-hand side of (8.1) will dominate and one
may expect to reduce the bounds obtained in section
4 by roughly a factor of two (as with the Phillips model).
Indeed, by using (8.1) in place of (3.1) in this limit, the
bound (4.10) will still apply but with A given by the
minimum of % [ G?dy [instead of (4.7)], and %, given
by the initial eddy potential enstrophy in the lower
layer alone [instead of (4.8)]. In any particular appli-
cation, one would clearly be well advised to consider
this sort of improvement to the bounds presented in
section 4. '

100
40 |-
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FIG. 4. Dependence on the supercriticality e of the nonlinear bound
(5.5) (thick solid curve); the total amount of potential enstrophy in
the system (dashed curve); and the maximum over «? of (7.8) for
various values of F (three thin solid curves), representing the maxi-
mum potential enstrophy for growing waves predicted by Pedlosky’s
(1970) weakly nonlinear theory. In all cases 8 = 10. Boville’s (1981)
numerical calculation (with F = 8.7) is indicated by a cross and has
been corrected to account for the different value of 8 that was used
in his study.
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Although the derived bounds are on the potential
enstrophy of the nonzonal flow, they can be turned
into bounds on the energy by using the existence of a
minimum wavenumber for nonzonal motions. To be
precise, for the channel 0 < y < 1 considered here one
has

i v :
[ (9917 + T99AT + Ft = vy

l —_— —
< [ L@+ Bay 62

(see Appendix), and therefore any bounds on the po-
tential énstrophy [« times the right-hand side of (8.2)]
imply bounds on the energy [the left-hand side of (8.2)]
as well. A more accurate bound on the energy could
be obtained in circumstances where something is
known about the spatial structure of the eddies.

Several applications of these upper bounds come to
mind. One is that they provide a useful constraint for
evaluating the validity of approximate (e.g. weakly
nonlinear or.low-order) theories. For example, in the
case of the Phillips model it was shown that the max-
imum poténtial enstrophy predicted by weakly non-

" linear single-wave equilibration exceeds the rigorous
nonlinear bound for O(1) supercriticality (Fig. 4). The
numerical experiments of Klein and Pedlosky (1986)
in such a regime have indeed found that wave ampli-
tudes are overestimated by the single-wave théory.

A second application is suggested by the fact that
the bounds give parameter dependences for finite-
amplitude saturation which (unlike those from weakly
nonlinear theory) are unconstrained by any assump-
tions about the nature of the initial wavy disturbance.
Because the bounds also appear to be quantitatively
reasonable, this means that they might well provide a
sound theoretical basis for obtaining eddy-amplitude
closures in transient-eddy parameterization schemes.
Naturally, it is important in this respect to determine
just how accurate the bounds are as predictois of eddy
amplitudes under fully nonlinear conditions, some-
thing which can only be decided by numerical simu-
lation.

A fascinating question concerns the relationship be-
tween these results and geostrophic turbulence theories.
At face value, at least, there is every possibility of a
discrepancy because the turbulence theories explicitly
neglect the material-conservation property of potential
vorticity from which the generalized Charney-Stern
theorem is derived. In the forced-dissipative case this
argument loses its force; nevertheless, it would be in-
teresting to study closure-model predictions under these
conditions to see whether they were consistent with the
rigorous bounds. For the case of conservative flow, to
which the above argument is more relevant, there is
(of course) no.quantitative turbulence theory for the
continuous (as opposed to spectrally truncated) equa-
tions. However, one might imagine performing the
usual kind of statistical-mechanical calculation for a
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given number of degrees of freedom, and then exam-
ining whether the fraction of potential enstrophy re-
siding ih the zonal flow tended to a limit as this number
tended to infinity. If such a limit existed, it could then
be compared with the minimum fraction permitted by
the rigorous bounds. Statistical mechanics predicts an
equipartition of potential enstrophy between all the
modes, subject to the boundary conditions. Because
the boundary conditions do not require that any of the
baroclinic part of the potential enstrophy reside in the
zonal flow (section 5), it therefore seems plausible that,
at least for sufficiently small supercriticality, such a
calculation would predict less potential enstrophy in
the zonal flow than was actually permitted by the sat-
uration bounds. It is clearly of interest to turn this con-
jecture into a more precise statement, but such a study
is beyond the scope of the present paper.

It will be evident that the present approach is not
restricted to the two-layer model. A generalized Char-
ney-Stern theorem .of the type (3.1) also exists in the
case of continuously stratified flow (cf. McIntyre and
Shepherd 1987, appendix B). In Part II of this study it
will be used to derive nonlinear saturation bounds for
the Charney model of baroclinic instability, as well as
for other more realistic profiles.
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APPENDIX
Proof of (8.2)

Let 7 = &, — &, be the baroclinic streamfunction,
as before, and ¢y = ®, + P, the barotropic stream-
function (not to be confused with the disturbance
streamfunction in each layer, ¥;). Then using (2.4), the
energy of the nonzonal flow, E’ say, may be written

E'=1{(IW]+ V715 +3 % (AD)

_Similarly, using (2.5) the potential enstrophy of the.

nonzonal flow, Z’ say, takes the form
Z'= L {(VY) + (VrP} + Fr? = Frvir. (A2)
Now, consider the boundary-value problem posed by
Vi + k%0 =0 (A3a)
in the channel domain, subject to the conditions
¢=0 at y=0,1 (A3b)
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[which is the relevant form of (2.3) for the nonzonal
flow]. The minimum eigenvalue « for (A3) is evidently
w. By expanding ¢’ in terms of the eigenfunctions of
(A3), noting that 2 > =2, and using the relation

| R | R
[ ™ora--[ vovay g

[which follows from the boundary conditions (A3b)],
one obtains

[[Pay>= [ VoTa. @)
0 0

Equation (AS5) is just Poincaré’s inequality for the
channel, and evidently applies to 7’ as well. It remains
to note that (A3a) directly implies

-V = e

then combining (A1), (A2), (AS) and (A6) yields

1 1 —_— —_—
[ Zay=# [ 4 (0V0T + 97 Piay

(A6)

v, 1__
+2F+ 7 f %Fr'zdy > f E'dy, (AT)
0 0
which is precisely equivalent to (8.2).
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