Data assimilation with correlated observation errors: experiments with a 1-D shallow water model

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Stewart, L. M., Dance, S. orcid id iconORCID: https://orcid.org/0000-0003-1690-3338 and Nichols, N. K. orcid id iconORCID: https://orcid.org/0000-0003-1133-5220 (2013) Data assimilation with correlated observation errors: experiments with a 1-D shallow water model. Tellus A, 65. 19546. ISSN 1600-0870 doi: 10.3402/tellusa.v65i0.19546

Abstract/Summary

Remote sensing observations often have correlated errors, but the correlations are typically ignored in data assimilation for numerical weather prediction. The assumption of zero correlations is often used with data thinning methods, resulting in a loss of information. As operational centres move towards higher-resolution forecasting, there is a requirement to retain data providing detail on appropriate scales. Thus an alternative approach to dealing with observation error correlations is needed. In this article, we consider several approaches to approximating observation error correlation matrices: diagonal approximations, eigendecomposition approximations and Markov matrices. These approximations are applied in incremental variational assimilation experiments with a 1-D shallow water model using synthetic observations. Our experiments quantify analysis accuracy in comparison with a reference or ‘truth’ trajectory, as well as with analyses using the ‘true’ observation error covariance matrix. We show that it is often better to include an approximate correlation structure in the observation error covariance matrix than to incorrectly assume error independence. Furthermore, by choosing a suitable matrix approximation, it is feasible and computationally cheap to include error correlation structure in a variational data assimilation algorithm.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/32638
Identification Number/DOI 10.3402/tellusa.v65i0.19546
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > National Centre for Earth Observation (NCEO)
Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Co-Action Publishing
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar