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ON THE NEED FOR A NEW PLAYING DIE

ANDREW D. IRVING,∗ University of Manchester

EBRAHIM L. PATEL,∗∗ University of Reading

Abstract

We model the rolling of a standard die, using a Markov matrix. Though a die

may be called ‘fair’, its initial position influences a roll’s outcome. This being

undesirable, a simple solution is proposed.
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1. Introduction

Markov chains, which are used to model stochastic processes, have been widely

employed in fields as diverse as speech recognition [3] and landscape ecology [1]. A

Markov chain uses an initial distribution vector in conjunction with a transition matrix

to compute the probability that a system will enter a certain state, at a particular stage

in the system’s evolution. The initial distribution of the system’s possible states is

given by a row vector whose jth entry denotes the probability that the system is in

state j initially. Possible transitions of the system between its various states are given

by a matrix whose i jth entry signifies the probability that the system will be in state j,

given it had been in state i at the previous stage [2]. Here we propose a simple model

for a rolling die which evolves into any one of its various states with equal probability

(our basic assumption). Even so, features of the system’s evolution remain of interest.
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Figure 1: One tilt of a die can result only in the transitions shown.

1.1. Digraph

In the rolling of a playing die, such as is used in board-games and gambling, let

a ‘tilt’ be the smallest movement of a die such that the upper-most face changes. By

definition, one tilt of a die can result in a transition between adjacent faces only. On

a standard cubic die, each face has a score from 1 to 6 and four adjacent faces. Hence

we know all of the possible transitions that can be achieved through a single tilt.

These transitions can be described using a graph (see Figure 1), which we shall call

‘G’. The nodes of G represent the possible scores on a die’s upper-most face, whilst

its edges represent the possible transitions between faces that can result from a single

tilt. Simply put, one tilt from score r could yield score s if there is an arrow whose tail

meets r and whose head meets s in Figure 1.

2. Transition matrix

Assuming that the probabilities of the 4 possible tilts of a rolling die are equal to

1/4, the Transition matrix T = [ti, j] for the 6 possible states is given by,

T =










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






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0 1/4 1/4 1/4 1/4 0

1/4 0 1/4 1/4 0 1/4

1/4 1/4 0 0 1/4 1/4

1/4 1/4 0 0 1/4 1/4

1/4 0 1/4 1/4 0 1/4

0 1/4 1/4 1/4 1/4 0
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Each ti, j here denotes the probability of a transition (from score i to score j) over the

course of a single tilt of our die. But what about the case of multiple tilts, as would

occur if a die were rolled? We use a well-known property of transition matrices:

consider the kth power of our transition matrix, i.e. Tk =

[

t(k)
i, j

]

(where k ∈ Z+), then

each entry t
(k)
i, j

gives the probability that our die, starting on score i, will have score j

after k tilts. Therefore, to model a roll involving k tilts, we raise our matrix T to the

power k. So, for example, an entry in row i and column j of the matrix,

T2
=




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
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




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
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
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






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



1/4 1/8 1/8 1/8 1/8 1/4

1/8 1/4 1/8 1/8 1/4 1/8

1/8 1/8 1/4 1/4 1/8 1/8

1/8 1/8 1/4 1/4 1/8 1/8

1/8 1/4 1/8 1/8 1/4 1/8

1/4 1/8 1/8 1/8 1/8 1/4
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


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






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
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
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





would represent the probability of a transition from score i to score j over the course

of a two-tilt roll of our die.

Remark 2.1. Here we have allowed a die to ‘change direction’ over the course of a roll.

For example, T2 shows that the probability of starting on a score of ‘1’, then moving

to another score before returning to ‘1’ is 1/4. Such a transition could not take place if

we did not allow a die to ‘go back on itself’. At first, this seems to require a strange

sort of die - one that can reverse its own momentum at will. But with Casino games

such as Craps, dice are thrown into a wall which causes a change in the direction of

their momentum. Our model considers a die rolled within a structure similar to that

used in Casino Craps but scaled-down, say, in a flat-bottomed bowl.

2.1. Early observations

Perhaps the first thing we notice is that, just as with T1, values on the main diagonal

of T2 match those on the counter-diagonal. We also observe here that, just as with

T1, values which do not lie on either of these diagonals match one another, but take a

distinct value to the 12 which lie on the main and counter diagonals.
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Theorem 2.1. For any integral power n ≥ 2,
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α β β β β α

β α β β α β

β β α α β β

β β α α β β

β α β β α β

α β β β β α
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
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

where x ∈ R≥0, y ∈ R+(y , x) and α, β ∈ R+(α , β). We call this statement P(n).

Proof. A proof by induction comprises two steps: (1) a basis step and (2) an inductive

step.

(1) The basis step (base case) of a proof by induction requires a proof that P(n) is

true for minimal n (i.e. for n = 2). For P(2), we have the statement,
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



































































2

=


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2x2 + 4y2 2y2 + 4xy 2y2 + 4xy 2y2 + 4xy 2y2 + 4xy 2x2 + 4y2

2y2 + 4xy 2x2 + 4y2 2y2 + 4xy 2y2 + 4xy 2x2 + 4y2 2y2 + 4xy

2y2 + 4xy 2y2 + 4xy 2x2 + 4y2 2x2 + 4y2 2y2 + 4xy 2y2 + 4xy

2y2 + 4xy 2y2 + 4xy 2x2 + 4y2 2x2 + 4y2 2y2 + 4xy 2y2 + 4xy

2y2 + 4xy 2x2 + 4y2 2y2 + 4xy 2y2 + 4xy 2x2 + 4y2 2y2 + 4xy

2x2 + 4y2 2y2 + 4xy 2y2 + 4xy 2y2 + 4xy 2y2 + 4xy 2x2 + 4y2












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
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




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














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

where both 2x2 + 4y2 and 2y2 + 4xy are clearly positive, real numbers given our

definitions of x and y. But can we show that 2x2 + 4y2
, 2y2 + 4xy? If we suppose that

2x2 + 4y2 = 2y2 + 4xy, we find that,

2x2
+4y2

= 2y2
+4xy =⇒ 2x2

+2y2
−4xy = 0 =⇒ 2(x2

+y2
−2xy) = 0 =⇒ 2(x−y)2

= 0 =⇒ (x−y)2
= 0

which is impossible for our x and y. Therefore the supposition 2x2 + 4y2 = 2y2 + 4xy

leads to a contradiction - thus 2x2 + 4y2
, 2y2 + 4xy. Hence we have proven the basis

step - P(2) is true.

(2) The inductive step of a proof by induction requires us to prove that P(n) is true for
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n = q + 1 if it is assumed true for n = q. For P(q + 1), we have the statement,


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
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
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
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







x y y y y x

y x y y x y

y y x x y y

y y x x y y

y x y y x y

x y y y y x
























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
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


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q+1

=














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




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
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
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
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
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


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x y y y y x
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x y y y y x
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
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


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


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


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1

but our assumption that P(q) is true allows us to simplify the right hand side above to

give,
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

x y y y y x
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y y x x y y

y y x x y y

y x y y x y

x y y y y x
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q+1
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
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


















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α β β β β α

β α β β α β

β β α α β β

β β α α β β

β α β β α β

α β β β β α
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



noting that the right hand matrices commute (and so the order of their multiplication

does not affect the outcome) - these matrices can be multiplied out to give the simplified

equation,

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
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
















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








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
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

x y y y y x

y x y y x y

y y x x y y

y y x x y y

y x y y x y

x y y y y x
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


















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
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q+1
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
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
















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


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
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




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















R S S S S R

S R S S R S

S S R R S S

S S R R S S

S R S S R S

R S S S S R


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
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


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
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







































where both R = 2αx + 4βy and S = 2αy + 2βx + 2βy are clearly positive, real numbers

given our definitions of x, y, α and β. But can we show that R , S? If we suppose that

R = S, we find that,

2αx+4βy = 2αy+2βx+2βy =⇒ 2αx+2βy = 2αy+2βx =⇒ 2α(x−y) = 2β(x−y) =⇒ α = β

(noting that we can divide by 2(x − y) because it is non-zero by our definitions of x

and y). But α = β is impossible since, by our earlier definition, α , β. Therefore the
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supposition R = S leads to a contradiction - thus R , S. Hence it has been shown that

P(q+ 1) holds if P(q) is true. Thus, both the basis and inductive steps are proven - P(n)

is true for all n ≥ 2 by induction.

Corollary 1. Any two positive integral powers of our transition matrix T commute.

Proof. Consider any two positive integral powers, say Tn1 and Tn2 . Using Theo-

rem 2.1, we can infer the structure of any positive integral power of T. Hence, we can

say that,

Tn1 .Tn2 =





































































g1 h1 h1 h1 h1 g1

h1 g1 h1 h1 g1 h1

h1 h1 g1 g1 h1 h1

h1 h1 g1 g1 h1 h1

h1 g1 h1 h1 g1 h1

g1 h1 h1 h1 h1 g1









































































































































g2 h2 h2 h2 h2 g2

h2 g2 h2 h2 g2 h2

h2 h2 g2 g2 h2 h2

h2 h2 g2 g2 h2 h2

h2 g2 h2 h2 g2 h2

g2 h2 h2 h2 h2 g2





































































=





































































λ1 λ2 λ2 λ2 λ2 λ1

λ2 λ1 λ2 λ2 λ1 λ2

λ2 λ2 λ1 λ1 λ2 λ2

λ2 λ2 λ1 λ1 λ2 λ2

λ2 λ1 λ2 λ2 λ1 λ2

λ1 λ2 λ2 λ2 λ2 λ1





































































for some g1, g2 ∈ R≥0 and h1, h2 ∈ R
+. Here λ1 = 2g1g2+4h1h2 and λ2 = 2g1h2+2h1g2+

2h1h2. What about Tn2 .Tn1 ?

Tn2 .Tn1 =





































































g2 h2 h2 h2 h2 g2

h2 g2 h2 h2 g2 h2

h2 h2 g2 g2 h2 h2

h2 h2 g2 g2 h2 h2

h2 g2 h2 h2 g2 h2

g2 h2 h2 h2 h2 g2









































































































































g1 h1 h1 h1 h1 g1

h1 g1 h1 h1 g1 h1

h1 h1 g1 g1 h1 h1

h1 h1 g1 g1 h1 h1

h1 g1 h1 h1 g1 h1

g1 h1 h1 h1 h1 g1





































































=





































































λ1 λ2 λ2 λ2 λ2 λ1

λ2 λ1 λ2 λ2 λ1 λ2

λ2 λ2 λ1 λ1 λ2 λ2

λ2 λ2 λ1 λ1 λ2 λ2

λ2 λ1 λ2 λ2 λ1 λ2

λ1 λ2 λ2 λ2 λ2 λ1





































































Therefore, it has been shown that any two positive integral powers of our transition

matrix T commute.

What else do we notice about the structure of T2? While there is much that is similar

between this structure and that of T, we observe one clear difference. For one tilt of the

die, 12 of the possible 36 transitions had no chance of happening (see T). Yet we find

that, for two tilts of the die, these same 12 transitions actually have a greater chance of

occurring than the rest, as shown in T2.

Closer examination of Figure 1 shows why this is the case. For example, over two-tilts,
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there are twice as many ways to make the transition from a score of 1 to a score of 6

(one of the afore-mentioned 12 transitions) as there are ways to make a transition from

the scores 1 to 2 (not one of the afore-mentioned 12). Hence the former transition is

twice as likely to occur as the latter and this is reflected by T2 entries. We highlight the

contrast of this example in Figure 2 (by showing the relevant subgraphs of Figure 1).

1 2

3

45

6

(a) 1 2

3

45

6

1 2

3

45

6

1 2

3

45

6

1 2

3

45

6

(b) 1 2

3

45

6

Figure 2: (a) All ways to go from 1 to 6 using two-tilt rolls. (b) All ways to go from 1

to 2 using two-tilt rolls.

Is this sort of phenomenon typical? That is, does the number of tilts involved in

the roll of a die always have such a significant effect on the relative chances of each

transition? Are we, for example, to find that an even number of tilts makes the

aforementioned 12 transitions the most likely of the 36, whilst an odd number of tilts

makes them the least likely? Consideration of three-tilt and four-tilt rolls,

T3
=





































































1/8 3/16 3/16 3/16 3/16 1/8

3/16 1/8 3/16 3/16 1/8 3/16

3/16 3/16 1/8 1/8 3/16 3/16

3/16 3/16 1/8 1/8 3/16 3/16

3/16 1/8 3/16 3/16 1/8 3/16

1/8 3/16 3/16 3/16 3/16 1/8





































































T4
=





































































3/16 5/32 5/32 5/32 5/32 3/16

5/32 3/16 5/32 5/32 3/16 5/32

5/32 5/32 3/16 3/16 5/32 5/32

5/32 5/32 3/16 3/16 5/32 5/32

5/32 3/16 5/32 5/32 3/16 5/32

3/16 5/32 5/32 5/32 5/32 3/16





































































seems to indicate that the answer could very well be yes. In fact we can prove that

this is so, noting that we have shown that it is true for k ≤ 4.

Theorem 2.2. For any positive integral power of our transition matrix T, say f , the 12 entries
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which lie on the main and counter diagonal of T f are greater than the other 24 entries of T f

when f is even, but smaller than the other 24 entries of T f when f is odd.

Proof. For an even number of tilts, say p ∈ Z+ (p > 4), the possible transitions from

one face to another occur with the probabilities given by the pth power of our transition

matrix T, i.e. Tp. Any such Tp can be expressed as the following product, Tp
= T

p
2 .T

p
2 .

Therefore we know (using Theorem 2.1) that Tp can always take the form,





































































a b b b b a

b a b b a b

b b a a b b

b b a a b b

b a b b a b

a b b b b a









































































































































a b b b b a

b a b b a b

b b a a b b

b b a a b b

b a b b a b

a b b b b a





































































=





































































X Y Y Y Y X

Y X Y Y X Y

Y Y X X Y Y

Y Y X X Y Y

Y X Y Y X Y

X Y Y Y Y X





































































for some a, b ∈ R+ where a , b. On the right hand side here, X = 2a2 + 4b2 and

Y = 2b2 + 4ab. For p = 2 and p = 4, we have seen that X > Y. But suppose that, for all

other p, X ≤ Y. Then we find that,

X ≤ Y =⇒ 2a2
+ 4b2

≤ 2b2
+ 4ab =⇒ 2a2

+ 2b2
− 4ab ≤ 0 =⇒ 2(a− b)2

≤ 0 =⇒ (a− b)2
≤ 0

which is impossible for our a and b. Therefore the supposition X ≤ Y leads to a

contradiction - thus X must be greater than Y for all p.

For an odd number of tilts, say m ∈ Z+ (m > 4), the possible transitions from one

face to another occur with the probabilities given by the mth power of our transition

matrix T, i.e. Tm. Any such Tm can be expressed as the following product, Tm =

T
m−1

2 .T
m−1

2 .T1. Therefore we know (using Theorem 2.1) that Tm can always take the

form,




































































c d d d d c

d c d d c d

d d c c d d

d d c c d d

d c d d c d

c d d d d c









































































































































c d d d d c

d c d d c d

d d c c d d

d d c c d d

d c d d c d

c d d d d c









































































































































0 1/4 1/4 1/4 1/4 0

1/4 0 1/4 1/4 0 1/4

1/4 1/4 0 0 1/4 1/4

1/4 1/4 0 0 1/4 1/4

1/4 0 1/4 1/4 0 1/4

0 1/4 1/4 1/4 1/4 0





































































=





































































V W W W W V

W V W W V W

W W V V W W

W W V V W W

W V W W V W

V W W W W V




































































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for some c, d ∈ R+ where c , d. On the right hand side here, V = 2d2 + 4cd and

W = c2 + 3d2 + 2cd. For m = 3, we have seen that V < W. But suppose that, for all

other m, V ≥W. Then we find that,

V ≥W =⇒ 2d2
+4cd ≥ c2

+3d2
+2cd =⇒ 0 ≥ c2

+d2
−2cd =⇒ 0 ≥ (c−d)2

=⇒ (c−d)2 < 0

which is impossible for our c and d. Therefore the supposition V ≥ W leads to a

contradiction - thus V must be less than W for all m.

2.2. Fairness of a roll

Here we assume our die is ‘fair’ - the probability of rolling a particular score is, in

principle, 1 in 6 for all scores of our cubic die. But are some rolls ‘fairer’ than others?

According to Theorem 2.1, the initial position of a die affects a roll’s outcome (since

there are distinct entries in Tk). Thus, we propose that a roll would be more ‘fair’

when the distinct entries of Tk are closer in value. When is this the case?

The first four positive integral powers of our transition matrix (i.e. Tk for k ∈ [1, 4])

indicate that, as the number of tilts involved in a roll increases, the chances of all

possible 36 transitions become increasingly similar. For example, we observe that the

difference between the chances of one-tilt transitions can be as high as 1/4 (see T)

whilst the difference between the chances of four-tilt transitions cannot exceed 1/32

(see T4). Generally, it would appear that this difference halves when k (the number of

tilts in a roll of our die) increases by one. In fact we can prove this, noting that it has

been shown for k ≤ 4.

Theorem 2.3. For any positive integral power of our transition matrix T, say f , the maximal

difference between any 2 of its entries is half the maximal difference between any 2 entries of

T f−1 (when ( f − 1) ∈ Z+).

Proof. For Theorem 2.3, there are only 2 cases: (1) where f is odd and (2) where f is

even. We need to prove that Theorem 2.3 holds for both.

(1) As seen in the proof to Theorem 2.2, any Tp (where p is even, p ∈ Z+ and p > 4)
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takes the form,




































































X Y Y Y Y X

Y X Y Y X Y

Y Y X X Y Y

Y Y X X Y Y

Y X Y Y X Y

X Y Y Y Y X





































































where X = 2a2
+ 4b2 (for some a, b ∈ R+, where a , b) is greater than Y = 2b2

+ 4ab.

Therefore the maximal difference between any two entries in Tp (p even) can be

expressed in the form,

X − Y = (2a2
+ 4b2) − (2b2

+ 4ab) = 2a2
+ 2b2

− 4ab = 2(a − b)2.

Probabilities for the next step, i.e. for p+ 1 tilts, are given by entries of the matrix Tp+1

(where p + 1 is odd) where,





































































Y (X + Y)/2 (X + Y)/2 (X + Y)/2 (X + Y)/2 Y

(X + Y)/2 Y (X + Y)/2 (X + Y)/2 Y (X + Y)/2

(X + Y)/2 (X + Y)/2 Y Y (X + Y)/2 (X + Y)/2

(X + Y)/2 (X + Y)/2 Y Y (X + Y)/2 (X + Y)/2

(X + Y)/2 Y (X + Y)/2 (X + Y)/2 Y (X + Y)/2

Y (X + Y)/2 (X + Y)/2 (X + Y)/2 (X + Y)/2 Y





































































since Tp+1 = Tp.T1. From Theorem 2.2, we know that (X+Y)/2 > Y here and therefore

the maximal difference between any two entries in Tp+1 can be expressed in the form,

[(X + Y)/2] − Y = (a2
+ 3b2

+ 2ab) − (2b2
+ 4ab) = a2

+ b2
− 2ab = (a − b)2

which is half the maximal difference of any two entries in Tp. Therefore, it has been

shown that the maximal difference of any two entries in Tp+1 is half the maximal

difference of any two entries in Tp, where p is even.

(2) As seen in the proof to Theorem 2.2, any Tm (where m is odd, m ∈ Z+ and m > 4)
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takes the form,




































































V W W W W V

W V W W V W

W W V V W W

W W V V W W

W V W W V W

V W W W W V





































































where V = 2d2 + 4cd (for some c, d ∈ R+, where c , d) is less than W = c2 + 3d2 + 2cd.

Therefore the maximal difference between any two entries in Tm (m odd) can be

expressed in the form,

(c2
+ 3d2

+ 2cd) − (2d2
+ 4cd) = c2

+ d2
− 2cd = (c − d)2.

Probabilities for the next step, i.e. for m+1 tilts, are given by entries of the matrix Tm+1

(where m + 1 is even) where,

Tm+1
=





































































W (V +W)/2 (V +W)/2 (V +W)/2 (V +W)/2 W

(V +W)/2 W (V +W)/2 (V +W)/2 W (V +W)/2

(V +W)/2 (V +W)/2 W W (V +W)/2 (V +W)/2

(V +W)/2 (V +W)/2 W W (V +W)/2 (V +W)/2

(V +W)/2 W (V +W)/2 (V +W)/2 W (V +W)/2

W (V +W)/2 (V +W)/2 (V +W)/2 (V +W)/2 W





































































since Tm+1 = Tm.T1. From Theorem 2.2, we know that W > (V + W)/2 here and

therefore the maximal difference between any two entries in Tm+1 can be expressed in

the form,

W−(V+W)/2 = (W−V)/2 = [(c2
+3d2

+2cd)−(2d2
+4cd)]/2 = [c2

+d2
−2cd]/2 = [(c−d)2]/2

which is half the maximal difference of any two entries in Tm. Therefore, it has been

shown that the maximal difference of any two entries in Tm+1 is half the maximal

difference of any two entries in Tm, where m is odd.

Corollary 2. For a positive integral power of our transition matrix T, say f > 1, T f has the
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form,





































































δ (γ + δ)/2 (γ + δ)/2 (γ + δ)/2 (γ + δ)/2 δ

(γ + δ)/2 δ (γ + δ)/2 (γ + δ)/2 δ (γ + δ)/2

(γ + δ)/2 (γ + δ)/2 δ δ (γ + δ)/2 (γ + δ)/2

(γ + δ)/2 (γ + δ)/2 δ δ (γ + δ)/2 (γ + δ)/2

(γ + δ)/2 δ (γ + δ)/2 (γ + δ)/2 δ (γ + δ)/2

δ (γ + δ)/2 (γ + δ)/2 (γ + δ)/2 (γ + δ)/2 δ





































































where γ ∈ R≥0 and δ ∈ R+(δ , γ) are entries of T f−1 such that,

T f−1
=





































































γ δ δ δ δ γ

δ γ δ δ γ δ

δ δ γ γ δ δ

δ δ γ γ δ δ

δ γ δ δ γ δ

γ δ δ δ δ γ





































































.

Proof. See the proof to Theorem 2.3, together with Tk, k ∈ [1, 4].

Corollary 3. For any positive integral power of our transition matrix, say Tk, the maximal

difference between any 2 of its entries is (1/2)k+1 (where k is the number of tilts in a roll of our

die).

Proof. Let ∆k equal the maximal difference between any two entries in Tk. From

Theorem 2.3, we can infer the recursive formula,

∆k =
1

2
∆k−1.

We can replace ∆k−1 by again using Theorem 2.3,

∆k =
1

2

[

1

2
∆k−2

]

=⇒ ∆k =

(

1

2

)2

∆k−2.

but to find∆k we need to compute not just some, but all, of its previous terms. However,

it is clear that, for any positive integer µ (µ < k),

∆k =

(

1

2

)µ

∆k−µ.
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Therefore, for µ = k − 1, we can find ∆k in terms of ∆1 since,

∆k =

(

1

2

)k−1

∆k−(k−1) =⇒ ∆k =

(

1

2

)k−1

∆1

where, from T, it is clear that ∆1 = 1/4. Thus, substitution of ∆1 = 1/4 into our

equation gives the required result, i.e.

∆k =

(

1

2

)k−1 (1

4

)

=⇒ ∆k =

(

1

2

)k−1 (1

2

)2

=⇒ ∆k =

(

1

2

)k+1

.

We find that, even when using a fair die, its initial position (i.e. its upper-most face at

the dawn of a roll) plays a highly significant role in the outcome of a roll. As one would

expect (noting Theorem 2.3 and Corollary 3), this role diminishes for more ‘thorough’

rolls (i.e. those involving a greater number of tilts). Thus, the more ‘thoroughly’ one

rolls a die, the more ‘fairly’ one rolls it.

3. Final thoughts

An object’s motion is almost invariably affected by its structure. Here we have

seen the significance of a die’s shape with respect to the evolution of its movements.

This significance is perhaps seldom more apparent than in the matrix associated with

those transitions which can be achieved through a single tilt (see T). The distinct

entries of T convey a simple fact - not all faces of a standard cubic die are adjacent.

Is it this property of a standard die which produces interesting results here (e.g. the

significance of whether the number of tilts involved in a roll is odd or even)? Not

entirely.

The kinds of bias seen here (towards different transitions) for a standard die do not

result from the number of its faces, so much as from the manner in which those faces

are labelled. That is, each one of a standard die’s faces has its own distinct label (a

score from ‘1’ to ‘6’). But what if this were not the case? What if a standard die had

just two distinct labels associated with its six faces? Say we used the labels ‘1’ and

‘2’ only, where scores on opposite faces summed to three (giving us a die with three

faces labelled ‘1’ and their opposing faces labelled ‘2’). Then our transition matrix -
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say T̂ =
[

t̂i, j

]

- for single tilts of our ‘relabelled’ die is given by,





































































Score 1 2 1 2 1 2

1 0 1/4 1/4 1/4 1/4 0

2 1/4 0 1/4 1/4 0 1/4

1 1/4 1/4 0 0 1/4 1/4

2 1/4 1/4 0 0 1/4 1/4

1 1/4 0 1/4 1/4 0 1/4

2 0 1/4 1/4 1/4 1/4 0





































































= T̂.

Whilst entries of T̂ match those of our earlier transition matrix T, note the labelling of

T̂’s borders which corresponds to our proposed ‘new scores’ for a standard die’s six

faces. Our relabelled die can yet experience 62 = 36 facial transitions (as shown in T̂

where each t̂i, j signifies the probability that a single tilt of our relabelled die could result

in a change from face i to face j), but with only two distinct scores - ‘1’ and ‘2’ - our

die enables only 22 = 4 possible transitions between scores. Indeed, the conditional

probabilities of these four transitions are communicated by t̂i, j, e.g. the transition from

a score of ‘1’ to a score of ‘2’ via one tilt occurs with probability t̂1,2 + t̂1,4 + t̂1,6 (and

equally t̂3,2 + t̂3,4 + t̂3,6 or t̂5,2 + t̂5,4 + t̂5,6). Thus the following transition matrix can be

derived from T̂,

















Score 1 2

1 1/2 1/2

2 1/2 1/2

















= P

where P =
[

pi, j

]

. Each pi, j gives the probability that our relabelled cubic die undergoes

a transition from a score of i to a score of j. Each entry of Pk =

[

p
(k)
i, j

]

(where k ∈ Z+)

gives the probability of a transition from score i to score j over k tilts of our relabelled

die. And it is easy to see that all positive integral powers of P are equal to P itself,

i.e. that p(k)
i, j
= pi, j for all i, j and k. Therefore, since all pi, j are equal, we can say that

a transition between any two scores (be they equal or distinct) over the course of any

number of tilts occurs with the same probability when using our relabelled die. So

although our relabelled die experiences the same kinds of bias as a standard die with

respect to its facial transitions (see T̂), it is free from the bias involved in the transitions

between a standard die’s scores (see P). Unlike those of a standard die, all rolls of our
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relabelled die are ‘fair’. Our relabelled die therefore seems preferable for general use.

References

[1] Baker, W. L. (1989). A review of models of landscape change. Landscape Ecology 2,

111 – 133.

[2] Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and

their applications. Biometrika 57, 97 – 109.

[3] Rabiner, L. R. (1989). A tutorial on hidden markov models and selected

applications in speech recognition. Proceedings of the IEEE 77, 257 – 286.


