Why is the global warming proceeding much slower than expected?

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Bengtsson, L., Roeckner, E. and Stendel, M. (1999) Why is the global warming proceeding much slower than expected? Journal of Geophysical Research, 104 (D4). p. 3865. ISSN 0148-0227 doi: 10.1029/1998JD200046

Abstract/Summary

Upper air observations from radiosondes and microwave satellite instruments does not indicate any global warming during the last 19 years, contrary to surface measurements, where a warming trend is supposedly being found. This result is somewhat difficult to reconcile, since climate model experiments do indicate a reverse trend, namely, that upper tropospheric air should warm faster than the surface. To contribute toward an understanding of this difficulty, we have here undertaken some specific experiments to study the effect on climate due to the decrease in stratospheric ozone and the Mount Pinatubo eruption in 1991. The associated forcing was added to the forcing from greenhouse gases, sulfate aerosols (direct and indirect effect), and tropospheric ozone, which was investigated in a separate series of experiments. Furthermore, we have undertaken an ensemble study in order to explore the natural variability of an advanced climate model exposed to such a forcing over 19 years. The result shows that the reduction of stratospheric ozone cools not only the lower stratosphere but also the troposphere, in particular, the upper and middle part. In the upper troposphere the cooling from stratospheric ozone leads to a significant reduction of greenhouse warming. The modeled stratospheric aerosols from Mount Pinatubo generate a climate response (stratospheric warming and tropospheric cooling) in good agreement with microwave satellite measurements. Finally, analysis of a series of experiments with both stratospheric ozone and the Mount Pinatubo effect shows considerable variability in climate response, suggesting that an evolution having no warming in the period is as likely as another evolution showing modest warming. However, the observed trend of no warming in the midtroposphere and clear warming at the surface is not found in the model simulations.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/31669
Identification Number/DOI 10.1029/1998JD200046
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar