Review of the formulation of present‐generation stratospheric chemistry‐climate models and associated external forcings

[thumbnail of Morgenstern2010.pdf]
Preview
Text - Published Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Morgenstern, O., Giorgetta, M. A., Shibata, K., Eyring, V., Waugh, D. W., Shepherd, T. G. orcid id iconORCID: https://orcid.org/0000-0002-6631-9968, Akiyoshi, H., Austin, J., Baumgaertner, A. J. G., Bekki, S., Braesicke, P., Brühl, C., Chipperfield, M. P., Cugnet, D., Dameris, M., Dhomse, S., Frith, S. M., Garny, H., Gettelman, A., Hardiman, S. C., Hegglin, M. I. orcid id iconORCID: https://orcid.org/0000-0003-2820-9044, Jöckel, P., Kinnison, D. E., Lamarque, J. -F., Mancini, E., Manzini, E., Marchand, M., Michou, M., Nakamura, T., Nielsen, J. E., Olivié, D., Pitari, G., Plummer, D. A., Rozanov, E., Scinocca, J. F., Smale, D., Teyssèdre, H., Toohey, M., Tian, W. and Yamashita, Y. (2010) Review of the formulation of present‐generation stratospheric chemistry‐climate models and associated external forcings. Journal of Geophysical Research, 115. D00M02. ISSN 0148-0227 doi: 10.1029/2009JD013728

Abstract/Summary

The goal of the Chemistry‐Climate Model Validation (CCMVal) activity is to improve understanding of chemistry‐climate models (CCMs) through process‐oriented evaluation and to provide reliable projections of stratospheric ozone and its impact on climate. An appreciation of the details of model formulations is essential for understanding how models respond to the changing external forcings of greenhouse gases and ozonedepleting substances, and hence for understanding the ozone and climate forecasts produced by the models participating in this activity. Here we introduce and review the models used for the second round (CCMVal‐2) of this intercomparison, regarding the implementation of chemical, transport, radiative, and dynamical processes in these models. In particular, we review the advantages and problems associated with approaches used to model processes of relevance to stratospheric dynamics and chemistry. Furthermore, we state the definitions of the reference simulations performed, and describe the forcing data used in these simulations. We identify some developments in chemistry‐climate modeling that make models more physically based or more comprehensive, including the introduction of an interactive ocean, online photolysis, troposphere‐stratosphere chemistry, and non‐orographic gravity‐wave deposition as linked to tropospheric convection. The relatively new developments indicate that stratospheric CCM modeling is becoming more consistent with our physically based understanding of the atmosphere.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/31607
Identification Number/DOI 10.1029/2009JD013728
Refereed Yes
Divisions No Reading authors. Back catalogue items
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher American Geophysical Union
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar