Robust abandoned object detection integrating wide area visual surveillance and social context

[thumbnail of PRLETTERS-D-12-00170.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Ferryman, J., Hogg, D., Sochman, J., Behera, A., Rodriguez-Serrano, J. A., Worgan, S., Li, L., Leung, V., Evans, M., Cornic, P., Herbin, S., Schlenger, S. and Dose, M. (2013) Robust abandoned object detection integrating wide area visual surveillance and social context. Pattern Recognition Letters, 34 (7). pp. 789-798. ISSN 0167-8655 doi: 10.1016/j.patrec.2013.01.018

Abstract/Summary

This paper presents a video surveillance framework that robustly and efficiently detects abandoned objects in surveillance scenes. The framework is based on a novel threat assessment algorithm which combines the concept of ownership with automatic understanding of social relations in order to infer abandonment of objects. Implementation is achieved through development of a logic-based inference engine based on Prolog. Threat detection performance is conducted by testing against a range of datasets describing realistic situations and demonstrates a reduction in the number of false alarms generated. The proposed system represents the approach employed in the EU SUBITO project (Surveillance of Unattended Baggage and the Identification and Tracking of the Owner).

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/31241
Identification Number/DOI 10.1016/j.patrec.2013.01.018
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Computer Science
Uncontrolled Keywords Wide area video surveillance; Behaviour analysis; Abandoned objects
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar