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ABSTRACT: On the 8" January 2005 the city of Carlisle in northwest England was
severely flooded following two days of almost continuous rain over the nearby hills.
Orographic enhancement of the rain through the seeder-feeder mechanism led to the
very high rainfall totals. This paper shows the impact of running the Met Office
Unified Model (UM) with a grid spacing of 4 and 1 km compared to the 12 km
available at the time of the event. These forecasts, and forecasts from the Nimrod
nowcasting system, were fed into the Probability Distributed Model (PDM) to predict
river flow at the outlets of two catchments important for flood warning. The results
show the benefit of increased resolution in the UM, the benefit of coupling the high-
resolution rainfall forecasts to the PDM and the improvement in timeliness of flood
warning that might have been possible.

High-resolution NWP  hydrological modelling flood prediction orographic rainfall
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1. Introduction

On the 8™ January 2005 widespread flooding affected the county of Cumbria in
northern England. Heavy continuous rain over a prolonged period gave exceptional
rainfall totals, with Honister in the Lake District recording 213 mm in the 48 hours
ending at 12 UTC on the 8" January. The resulting floods affected around 2600
properties in the region and caused significant damage to infrastructure and the local
economy. The estimated scale of the losses is in excess of £450 million
(Environment Agency, 2005, 2006).

The city of Carlisle was badly affected by the River Eden and its tributaries (primarily
the Caldew and Petteril) overtopping defences. Over 1900 properties were flooded in
Carlisle alone and tragically two people died. The same storm system also caused
serious flooding at many other locations including the Conwy Valley in Wales, the
Upper Ouse and Upper Tyne in northeast England and the rivers Tay and Ness in
Scotland.

A significant part of the reason why so much rain fell on this occasion was due to the
effect the Cumbrian mountains had on enhancing the rainfall rates locally over a
sustained period of time. The orographic enhancement is thought to have occurred
primarily because of the so-called ‘seeder feeder’ mechanism (Bader and Roach,
1977; Browning, 1980; Lean, 2002) in which frontal rain becomes heavier as it falls
through lower-level orographically produced cloud. It happens mostly in the warm
sectors of depressions near to the cold-frontal zone, as was the case here, and is
thought to account for a large proportion of the orographic rainfall in the UK.

In these types of flood-risk situation, it is vital to be able to provide as much advance
warning as possible. To do this depends on having both accurate rainfall forecasts
and accurate prediction of river flow based on those forecasts. Often, rainfall
forecasts are not accurate enough because the skill of advection ‘nowcasting’
methods (e.g. the Met Office Nimrod system (Golding, 1998)) usually only extends to
a few hours and Numerical Weather Prediction (NWP) model forecasts, even if skilful,
have had insufficient resolution to represent local orographic effects or provide
information on the scales required by hydrological models. It is hoped, therefore, that
an improvement in the accuracy and applicability of rainfall forecasts can be
achieved by an increase in the resolution of NWP models. This should be particularly
true for situations like the one discussed here in which stratiform rain is modulated by
orography. Westrick and Mass (2001) used output from 36, 12 and 4 km NWP model
simulations as input into a hydrological model and showed that for an orographically
enhanced stratiform rainfall event in the northwest of the USA, the 4 km forecasts
gave the best results. They attributed this mostly to a more accurate representation
of the orography. Convective rainfall, on the other hand, presents more serious
difficulties and should be treated in a much more probabilistic framework (Roberts
and Lean, 2008), and is outside the scope of this paper.

High-resolution NWP models (grid spacing less than 5 km) are now becoming
standard for short-range forecasting. The Met Office Unified Model (UM) (Davies et
al., 2005) is now run operationally with a horizontal grid-spacing of 4 km. The finest
resolution available operationally in January 2005 was 12 km. Implementation of a
~1.5 km model is expected by the end of the decade.
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The vision for the future is that automated end-to-end systems that feed high-
resolution NWP rainfall forecasts into hydrological models will become a standard
part of the flood warning procedure. This paper will examine the impact of increasing
horizontal and vertical resolution of NWP model forecasts on predictions of river flow
for this particular event and draw some more general conclusions from those results.
To do this, rainfall forecasts from the Met Office Unified model run with a grid spacing
of 12, 4 and 1 km were fed into the Probability Distributed Model (PDM) rainfall-runoff
model (Moore, 1985, 2007) for two selected river catchments.

The paper is organised as follows. In section 2 the case study and the seeder-feeder
mechanism will be described in more detail; in section 3 the NWP model
configurations will be described and results from the model forecasts presented; in
section 4 the PDM model and the selected catchments will be discussed and the
results from feeding NWP forecasts into the PDM presented, and in section 5
conclusions will be drawn.

2. What happened

During the 7" and through into the early hours of the 8" of January 2005 the
northwest of England was under the influence of a warm and very moist south-
westerly air flow. A quasi-stationary waving frontal system brought a period of almost
continuous rain to much of Cumbria (Figure 1). Very large quantities of rain were
measured over the mountains of the Lake District and the Pennines. Honister in the
Lake District (see location in Figure 2) received the highest recorded total of 213 mm
in the 48 hours ending at 12 UTC on the 8" January, of which 112.6 mm fell in the
12-hour period between 12 UTC on the 7" and 00 UTC on the 8". Another dozen
sites recorded more than 150mm in the 48-hour period. It was both the persistent
nature of the synoptic pattern and the enhancement of the rainfall over hills that led
to the very high rainfall totals and flooding. River flows in the Eden peaked at
approximately 1500 m3s™ and at Eden Bridge the river level was about 1 m higher
than the 1822 flood mark. Flooding was extensive causing property damage and loss
of life in the vicinity of Carlisle.
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Figure 1. Synoptic chart for 18 UTC 7" January 2005, courtesy of the National Climate
Information Centre (NCIC)
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The observed rainfall for the 24-hour period starting 00 UTC on the 7™ is shown in
Figure 2. The largest total in that period was 173 mm at Honister (for location see
Figure 2b). It is noticeable that the rainfall amounts estimated by the radar network
were generally less than that measured by gauges and distributed somewhat
differently. The disadvantage the radar network has over the Cumbrian region is that
there are no radars nearby. This means that the horizontal resolution is necessarily
limited to 5 km squares. Also, the radar scans are too high to see low-level
precipitation, and this can result in a significant underestimation of the rainfall when
there is orographic enhancement through the seeder-feeder mechanism (see section
2). Because of this, the radar estimate includes an allowance for orographic
enhancement, but this appears to have been insufficient on this occasion..

The most accurate measurements of the true rainfall totals should therefore come
from the rain gauge data, and for that reason, the hand analysis of the raingauge
data was constructed (Figure 2a). Despite the inevitable spatial uncertainty within the
more data-sparse areas, we think this analysis gives a satisfactory picture of the
rainfall distribution.
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Figure 2. Rainfall accumulationsover the 24-hour period starting 00 UTC 7 January 2005 from
(a) hand contouring through the highest recording rain gauges, located at the base of each ‘V’
(the question mark indicates the possibility of higher totalsin that data-void area) (b) radar
(including orographic enhancement) on a5 km grid. The dashed squar e marksthe ar ea shown
later in Figure9.

2.1 The seeder-feeder mechanism

The orographic enhancement of the rain was largely due to the seeder-feeder
mechanism (Bader and Roach, 1977; Browning, 1980; Lean and Clark, 2003). A
schematic of this is shown in Figure 3. Cloud forms when a flow of very moist low-
level air is forced to rise over hills. This layer of stratus cloud will typically not be deep
enough to produce much rain in the time it takes the air to cross the hills. However, if
rain is falling from higher-level (e.g. frontal) cloud it will capture cloud droplets as it
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falls through this low-level orographic cloud. In doing so the rainfall will be
considerably enhanced at ground level. Such enhancement happens mostly in the
warm sectors of depressions near to the cold-frontal zone and is thought to account
for a large proportion of the orographic rainfall in the UK. On this occasion, all the
necessary ingredients were in place: a strong and almost saturated low-level south-
westerly flow with a high wet-bulb potential temperature (for wintertime) was forced to
ascend over the Cumbrian mountains beneath a precipitating frontal zone. This
situation persisted for more than 36 hours.

Seeder cloud

Figure 3. A schematic of the seeder-feeder mechanism adapted from the Met Office Forecasters
Reference Book. Seetext for more information.

3. The NWP model forecasts

3.1 The NWP model setup

The NWP model used was the Met Office Unified Model (UM) (Davies et al., 2005).
The UM is non-hydrostatic and includes a comprehensive set of parametrizations,
including surface exchange (Essery et al., 2001), boundary layer (Lock et al., 2000),
mixed phase cloud microphysics (Wilson and Ballard, 1999) and convection (Gregory
and Rowntree, 1990). Since their first implementation there have been additions to
these parametrizations; most notable for this study is the inclusion of a prognostic
rain variable in the microphysics scheme (which allows rain to be blown horizontally
by the wind as well as falling vertically). The model runs on a rotated
latitude/longitude horizontal grid with Arakawa C staggering, and, a terrain-following
hybrid-height vertical coordinate with Charney-Philips staggering.

The UM was run with a horizontal grid spacing of 12, 4 and 1 km on the domains
shown in Figure 4. The 12 km domain is the same as that used operationally at the
time (the mesoscale model). It has now been superseded by the 12 km North Atlantic
European (NAE) model, which covers much of the north Atlantic and western Europe.
The 4 km domain is the same as that used for the UK 4 km model, which went fully
operational in summer 2007 (so was not available at the time of this event). The 12
km and 4 km configurations were run with 38 vertical levels that are spaced a few
tens of metres apart near the surface and separate out to a few hundred metres
apart in the mid-troposphere. The 1 km model had 76 vertical levels, doubling the
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vertical resolution. The 12 km forecasts supplied the boundary conditions for the 4
km forecasts, which in turn supplied the boundary conditions for the 1 km forecasts.

12 km

4 km 1(
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Figure5. The orography used in (a) the 12 km model and (b) the 1 km model. The 1 km
orogr aphy was smoothed with a Raymond filter using avalue of 4 for & (Raymond, 1988).

It is known that the UM dynamics and cloud microphysics scheme are capable of
representing the seeder-feeder mechanism (Lean, 2002), and therefore the
orographic enhancement of rainfall. However, the particular advantage a finer-
resolution model has is a much more accurate representation of the orography
(Figure 5) and for that reason should give more accurate rainfall forecasts in this type

Page 6 18/03/2008



of situation, especially on more local scales and over smaller river catchments. Part
of the purpose of this work was to investigate whether that was indeed the case for
the January 2005 event.

3.2 The model runs

Five sets of forecasts (FC1 to FC5 in Figure 6) were run starting from 18 UTC on the
6" January, and 00, 06, 12, 18 UTC on the 7" January. Each set consisted of a 12, 4
and 1 km forecast. The 12 km model is essentially the same as the 12 km mesoscale
model that was operational at the time. It used operational 3D-Var (Lorenc et al.,
2000) and latent heat nudging (Jones and Macpherson, 1997) data assimilation
techniques to obtain the best fit to observations at the start. The 4 and 1 km models
both used fields interpolated from the 12 km model 1-hour into the 12 km forecast
with no additional data assimilation (i.e. for a 12 km forecast starting from 00 UTC,
the 4 and 1 km forecasts started from the 12 km fields at 01 UTC).

Since the 4 and 1 km models had to ‘spin up’ from coarser resolution information, the
first two hours of the forecasts were not examined. This does not affect the
usefulness of the results, since, in an operational context, the first 2 to 3 hours of a
forecast are not usually available to decision makers anyway because of the time it
takes to run the forecasts and disseminate the information.

—— > |
i FC2 ? i
T > | i
! | — | !
| FC3 L i
: : g :
§ FC4 N
: [ —] i
| | FC5 N
i D L
6l
Mean hourly
rainfall
accumulation
(mm)
18 00 06 12 18 00 06 UTC
6th 7th 8th

Figure 6. A schematic of thefive sets of forecast runs (arrows), labelled FC1 to FC5. Each
forecast set consistsof a 12, 4 and 1 km model run. The grey bars show the parts of each forecast
set extracted for the 24-hour rainfall accumulation composites discussed in section 3.3. The bold
partsof thearrowsin FC3, FC4 and FC5 indicate the rainfall accumulationsthat wereinput into
the PDM model (section 4). The graph showsthe hourly rainfall accumulations during the 31-
hour period starting 00 UTC 7 January 2005 over an area sightly smaller than shown in Figures
2,5,7 & 8. Seetext in section 3 for moreinformation.
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The forecasts were examined in two ways. Firstly, the forecast rainfall accumulations
were compared with radar and rain gauge estimates over the 24-hour period starting
00 UTC on the 7" January. To do this, the periods shown by the grey bars in Figure 6
(for each of the sets of forecasts) were extracted and pieced together. The resulting
composite was used to assess the performance of the predicted rainfall at each
resolution for the 3- to 9-hour forecast period. Secondly, the predicted rainfall was fed
into the Probability Distributed Model (PDM) rainfall-runoff model in order to assess
the performance when used for river flow forecasting (discussed later in section 4).
For this, the three consecutive forecast-sets FC3, FC4 and FC5, depicted by the
thicker arrows in Figure 6, were used as input. The use of individual forecasts (rather
than a composite forecast) is closer to the way the model would be used in an
operational situation, and they cover the period when most of the rain fell.

3.3 Results from the UM forecasts

The composite 24-hour accumulations from each of the model resolutions are
presented in Figure 7 together with estimates from rain gauges and radar. The 12 km
model clearly produced too little rain and the highest totals fell too close to the south
and west coasts rather than over the hills. In contrast, the 4 km model gave a much
more accurate distribution of the rainfall. The rainfall totals were also much closer to
those observed, although the highest amounts were probably somewhat too low. The
1 km model produced, probably, the most accurate distribution of the highest totals,
although it appears to have generated too much rain in general.

An informative view of the radar and modelled rainfall totals is given by the more
detailed comparison with rain gauges in Figure 8. Firstly we see that, even with the
orographic enhancement included, the radar estimates were too high over the wind-
facing up-slopes and too low over and towards the lee of the high ground.

The 12 km model produced around 30 to 50% too little rain over the high ground
(Figure 8b); in particular over the highest areas where the model orography is most
inadequate. In a seeder-feeder situation the rainfall responds to the gradient in the
orography and in the 12 km model this is steepest closer to the south and west
coasts rather than further inland where the hills actually rise. This explains why the
rainfall maximum is positioned too far south and west as shown in Figure 7b.

The 4 km model gave 10 to 20% too little rain over the central peaks, but further to
the southeast around 50% too much and over the northern peaks around 40% too
much (Figure 8c). This pattern can also be partly explained by the orography in the 4
km model (not shown), which, although much more realistic than at 12km, is still too
smooth. The smoothing acts to reduce the heights of the central peaks more than
elsewhere because there is more variability in the height of the terrain in that area. In
general (apart from over the central peaks), the 4 km forecasts tended to produce too
much rain.

The differences between the 1 km model and gauge measurements (Figure 8d)
showed less spatial variability than was the case for the 4 km model (Figure 8c),
indicating that the 1-km model had a more accurate distribution of the rain (as was
seen in Figure 7d). This is expected because of the more accurate orography.
However, it generated too much rain on average. This excess ranged between
around 10% too much over the central peaks to 30 to 40% too much further
southeast and 40 to 50% too much over the northern peaks.
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Figure 7. Map of rainfall accumulation over the 24-hour period starting 00 UTC 7 January 2005
from (a) hand contoured rain gauge measur ements superimposed on radar (from Figure 2) , (b)
to(d) 12,4 and 1 km model composites from the forecasts FC1to FC5 (grey barsin Figure 6)

It is a concern that the 1 km forecasts produced too much rain as it may be indicative
of a systematic bias. If there is such a bias, it cannot be detected from just one case
study. However, there are other factors involved here. It is not just the response to
the orography that has to be correct. The positioning and activity of the fronts, along
with the characteristics of the low-level flow impacting the mountains are also
important. The degree to which the amount of rain falling from the frontal ‘feeder’
cloud is correct or the humidity or strength of low-level flow is represented will have a
major impact on the accuracy of the forecast (Lean, 2002). A comparison of the
rainfall rates from the three models against radar over the Irish Sea upwind of
Cumbria (where the seeder-feeder mechanism was not operating) revealed that the
radar was giving only 60 to 70% of the rainfall predicted by the models over the same
24-hour period. This implies that all three model resolutions were producing too much
large-scale (frontal) rain (assuming the radar to be reasonably reliable over that area).
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The problem, therefore, has got just as much to do with getting the mesoscale
dynamics correct in the initial conditions as it is the response to the orography.

b

J-I I

Figure 8. Map of percentage differencesfrom rain gauge valuesfor rainfall accumulations over
the 24-hour period starting 00 UTC 7 January 2005 from (a) radar, (b) to (d) 12, 4and 1 km
model composites from the forecasts FC1to FC5 (grey barsin Figure 6). The square marksthe
area shown in Figure 9.

It is clear from these results that the 12 km model will be incapable of getting the
correct distribution of the rainfall in a seeder-feeder situation over Cumbria because
of its inadequate representation of the orography. In this case it is possible that the
under-prediction over the hills would have been even worse if the frontal rain had
been more accurate (lighter). It is also probable that the over-prediction of the frontal
(feeder) rain played a large part in the over-prediction of the 1 km forecasts in this
case and that the orographic enhancement associated with the seeder cloud was
actually well represented.
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4. Combining with the PDM rainfall-runoff model

4.1 Theriver catchments

The current flood forecasting model for the Eden catchment (circa 2300 km?)
provides a reliable 4 hour lead-time for the city of Carlisle when using only observed
river level and flow data, making use of the time-of-travel from headwater river
gauging stations. Longer lead-times out to 12 hours can be achieved by using
observed and forecast rainfalls as input to a network of rainfall-runoff and river-flow
routing models. Of course the added lead-time gained through this modelling
approach, in relation to a warning based on river observations, has a trade-off
through the uncertainties associated with the forecast rainfalls and the rainfall-runoff
model. Here, our interest is in assessing the benefit of using high resolution NWP
rainfalls with rainfall-runoff models for flood warning. Benefits will be expected to be
greatest for catchments where times-of-travel are too short to forecast downstream
levels with sufficient lead time.

With these considerations in mind, two adjacent tributaries of the River Eden,
draining from the Cumbrian uplands northwards to Carlisle, have been chosen for
rainfall-runoff modelling. The flood warning areas of these catchments cover 363 of
the 4628 Carlisle properties at risk in a 1 in 1000 year flood. The Caldew catchment
to the west has strong orography whilst the Petteril catchment to the east is low-lying
over much of its extent (Figure 9). Thus the contrasting effects of orography on the

Legend
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Figure 9. Location map for the adjacent River Caldew (west) and River Petteril (east) catchments
and associated hydrometric network.

NWP rainfalls, from models of differing resolution, should become apparent in their
forecast flood responses.

The catchment boundaries delineated in Figure 9 are for river gauging stations on the
two tributaries: the Caldew at Cummersdale (246 km?) and the Petteril at Harraby
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Green (160 km?). These stations serve an important flood warning function. The area
displayed in Figure 9 corresponds to the squares in Figures 7 & 8.

The Caldew catchment has an altitude range from 23 to 926 m and the steep
headwaters make for a responsive hydrograph. The river gauging station at
Cummersdale is situated just southwest of Carlisle, approximately 4.5 km upstream
of the confluence of the Caldew with the Eden. The flood peak stage of 3.15 m
recorded during the flood event at 03:15 8 January 2005 is the highest on record
(from 1977) and is just above the bankfull level.

The long and narrow Petteril catchment has its headwaters in the moorland west of
Penrith and flows north towards Carlisle. It is less steep over much of its length than
the Caldew and has a slower catchment response (see Figure 9). Altitude ranges
from 20 to 366 m. The gauging station at Harraby Green in the south of Carlisle is
about 2 km upstream of the confluence with the Eden. The flood peak stage of 1.86
m recorded during the flood event at 07:30 8 January 2005 is the highest on record
(from 1970).

Both river gauging stations are used to support flood warning for areas within Carlisle
(see Environment Agency, 2005). The rating equations (used to convert river level
measurements to flow) applied in this study are those that were in use at the time of
the January 2005 event. These equations have since been reviewed and revised
(Environment Agency, 2007).

The flooding mechanisms which caused the initial onset of flooding during the
January 2005 event on the Caldew were complex and included surcharging of
sewers in the Willow Holme area and flooding due to blockages at South Vale
footbridge. This caused the onset of flooding earlier than would be predicted using a
real-time flood forecasting model, reducing the lead-time provided by model forecasts.
As is currently the case operationally, forecasts in this study only consider flooding
from main river and do not consider blockages.

4.2 PDM model description

The Probability Distributed Model (PDM) of Moore (1985, 2007) is a conceptual
rainfall-runoff model which converts rainfall and potential evaporation input time-
series data to flow at the outlet of a river catchment (if gauged, historical records can
be used for model assessment). Runoff production resulting from rainfall is controlled
by assigning a probability density function to represent the variability of the
absorption capacity of the canopy, surface and soil across the catchment. Translation
to the catchment outlet of this ‘direct runoff’ together with ‘soil drainage to
groundwater’ is represented by fast and slow storage functions. These act in parallel
to give the surface runoff and baseflow components of the total river flow. The PDM
has been widely used throughout the world and has now evolved to become a
practical toolkit for rainfall-runoff modelling and forecasting. The PDM’'s runoff
production component has also been incorporated into MOSES, the Met Office
Surface Exchange Scheme (Essery et al., 2001), for use in the Nimrod nowcasting
system (Smith et al., 2006).

4.2.1 Calibration of the PDM model

Data for the years 2004 and 2005 were analysed for suitable model calibration
events that excluded the flood event of interest. Three periods were chosen of
varying length and season. They were:
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1. 09:00 30 January 2004 — 09:00 12 February 2004
2. 09:00 1 August 2004 — 09:00 1 November 2004
3. 09:00 9 October 2005 — 09:00 24 November 2005

The calibration process was split into two parts. Firstly, the process model
parameters were calibrated in simulation-mode where the model deterministically
calculates simulated flow using only the input data (rainfall and potential evaporation),
completely ignoring the observed flow (except for model initialisation). Secondly,
when considering the real-time flood forecasting application the model was run in
forecast-mode which aims to emulate real-time application in an off-line environment.

When the PDM model simulations for both catchments were compared to observed
flows it was found that the calibrations were good at both sites with a particularly
good calibration for the Caldew. This gave confidence in the results that might be
obtained for the January 2005 Carlisle flood case (even though more extreme).

4.3 The forecasts used

Rainfall accumulations every 15 minutes were input to the PDM from the 12, 4 and 1
km Unified Model forecasts that started at 06, 12 and 18 UTC on the 7" January
(FC3, FC4 and FC5 in Figure 6). The information provided to the PDM began three
hours into the forecasts (two hours into the 4 and 1 km grid-length simulations) at 09,
15 and 21 UTC and was fed in for ten hours. This is depicted in Figure 6 by the thick
arrows drawn to highlight the relevant parts of forecasts FC3, FC4 and FC5.

In addition, 15-minute accumulations on a 5 km grid from the Nimrod nowcasting
system were fed in; starting at the same times, but only running for 6 hours (as
operationally). The nowcasting system is expected to be reasonably accurate for a
few hours, but have limited usefulness after that. The current best practice for flood
forecasting and warning within the Environment Agency employs rain gauge rainfall,
Nimrod rainfall forecasts out to 6 hours and NWP forecasts beyond this.

4.4 Results

Figure 10 shows a comparison of catchment averages calculated from the UM,
Nimrod and rain gauge data over the three 10 hour forecast periods for the Caldew
and Petteril catchments respectively. A spatial distribution of the rain gauge data was
obtained by using a multiquadric surface fitting technique (Moore et al., 1989;
Balascio, 2001; Moore et al., 2007). The rain gauge catchment average provides a
valuable observation reference against which the UM and Nimrod forecasts may be
compared.

The main result to come from the comparison of the different UM forecasts is the
large difference between the 12 km forecast and the finer resolutions. The 1 and 4
km forecasts were in considerably better agreement with the observed rain gauge
rainfall than the 12 km mesoscale model. This agrees with the previous findings from
the 24-hour accumulation period (section 3). The 1 km model generally produced
more rain than the 4 km model, which also agrees with the results in section 3. The
most noticeable difference between the 1 and 4 km model results was in the Caldew
catchment, which reflects the greater orographic influence that affects the Caldew
(see Figure 9), and fits with where the greatest 24-hour accumulation differences
were seen (Figures 7 and 8).
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The other clear signal that comes from Figure 10 is the similarity between the 12 km
model and Nimrod. This is not surprising as the Nimrod prediction system used the
12 km model for orographic enhancement of rainfall and increasingly blended in the
12 km model as forecast time increased (Golding, 1998).

The PDM forecasts are presented in Figure 11 for the Caldew and Petteril
catchments respectively. The four types of rainfall forecast previously discussed (12,
4 and 1 km UM and Nimrod rainfall forecasts) were used to produce river flow
forecasts out to 16 hours. These are compared to a reference forecast containing
rain gauge data which acts as a ‘perfect knowledge’ of the future catchment rainfall
up to 10 hours ahead. To obtain the 16 hour lead-time flow forecasts, 6 hours of zero
rainfall appends the NWP and rain gauge forecasts whilst 10 hours append

the Nimrod rainfall forecast.

09:00 07 01 2005 — Caldew 09:00 07 01 2005 — Petteril

mmh™'
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Time (Hours) Time (Hours)
1km NWP 4km NWP 12km NWP
Raingauge Nimrod

Figure 10. NWP model, Nimrod and rain gauge hyetographsfor the Caldew and Petteril
catchments, over 10 hour periods starting at the date shown. Note that the Nimrod forecast is
only 6 hourslong.

The first thing to notice is that the flow from the rain gauge reference forecast is
generally in agreement with the observed flow. A comparison of the PDM forecasts
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from the different UM resolutions shows that the 1 km forecasts almost always
produced the highest river flows, followed by the 4 km forecasts, with the 12 km
forecasts significantly lower. Focussing first on the Caldew catchment, this meant
that the 15 and 21 UTC PDM forecasts using the 1 km and 4 km UM gave an over-
prediction of river flow; the 1 km more so than the 4 km. However, the PDM forecast
from 09 UTC using the 1 km model was extremely close to the observed flow. The
PDM flows obtained using the 12 km UM and Nimrod rainfalls were generally similar
over the Nimrod forecast period and they were both too low by a significant amount.
The results from the Petteril catchment were broadly similar, with the 4 and 1 km
forecasts giving considerably better results than the 12 km UM and Nimrod forecasts
over all three periods.

09:00 07 01 2005 — Caldew 09:00 07 01 2005 — Petteril
200 7
~ 150
E 100
2 1
2 1
= 50
ol — L
0 6 12 18 24 30 36 42 0 6 12 18 24 30 36 42
15:00 07 01 2005 — Caldew
250 1 100 ]
2001 80 1
tE/ 150 f 60 1
% 100 f 40
[ ] ]
50 A 204
0] 0]
0 6 12 18 24 30 36 42 0 6 12 18 24 30 36 42
21:00 07 01 2005 — Caldew 21:00 07 01 2005 — Petteril
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Time (Hours) Time (Hours)
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Figure 11. PDM river flow forecasts out to 16 hoursfor the Caldew and Petteril catchmentsusing
NWP model, Nimrod and rain-gauge rainfall forecasts. The solid dotsindicate the start and end
time of therainfall forecast data. Note that the Nimrod forecast isonly 6 hourslong compared to
10 hoursfor the other forecast types. The horizontal dashed lineisthe ‘flood warning’ level.

Having seen that the high resolution NWP forecasts were substantially different to
the 12 km model, it is worthwhile to consider what this might have meant in an
operational context if they had been available at the time. A closer inspection of the
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PDM forecasts from 15 UTC shows the potential benefit high resolution NWP
rainfalls can have for flood warning. The 6 hour lead time of the Nimrod forecast is
not sufficient to predict the flood peak or even cross the ‘flood warning’ threshold.
The longer lead-time of the mesoscale 12 km model does improve the PDM forecast
and just approaches the ‘flood warning’ threshold for both catchments. However, the
greater accumulations predicted by the higher resolution 1 and 4 km models mean
that the PDM simulations cross the ‘flood warning’ threshold by some margin and
could have allowed a flood warning to be issued for parts of Carlisle around 12 hours
earlier than happened in practice. Clearly, flood forecasts based on high resolution
NWP rainfall in combination with rainfall-runoff models would need to be shown to be
reliable over a range of events before being accepted to support operational
decisions at long lead-times (before observed river levels have confirmed their
forecast is sound). Through continuing improvements in such prediction tools, and
their extension to include estimates of forecast uncertainty, they can be expected to
play an increasing role in the complex decision-making underlying flood warning and
emergency response coordination.

Whilst it could be argued that the over-prediction of the 1 km model helped in this
instance, it should be remembered that the frontal rain was too high at all three
resolutions. If the frontal precipitation had been less, the totals would have decreased
in all the forecasts, but this is unlikely to have significantly delayed the time at which
the flood warning threshold was exceeded from the 1 and 4 km rainfall forecasts. It
would however have meant that the flow from the 12 km forecast would have missed
the warning threshold for the Petteril as well as the Caldew catchments. Therefore use
of high-resolution forecasts could still have allowed an improvement in flood-warning
lead time of around 12 hours or more for the January 2005 event.

5. Conclusions

The flooding in Carlisle on the 8" January 2005 came about as the result of a
prolonged period of orographically enhanced rain over Cumbria in northwest
England. Although this was an unusual event in terms of the quantity of rain that fell,
the orographic enhancement of rain from the seeder-feeder mechanism is not
unusual for that area, and can be represented in NWP models provided that the hills
are sufficiently well resolved.

It has been shown that forecasts from the Met Office Unified Model with a grid
spacing of 1 or 4 km were capable of producing more accurate predictions of the
rainfall than the 12 km model operational at the time. The rainfall forecasts from the
12, 4 and 1 km models along with nowcasts from the Nimrod system were then used
as input to the PDM rainfall-runoff model to predict river flows at two gauging stations
important for flood warning. The results show the clear benefit of coupling high-
resolution NWP model output with a hydrological model and confirmed the
improvement in the prediction of the event from the 4 and 1 km forecasts. Had the 1
or 4 km models been available for input to the PDM at the time, a flood warning could
have been issued to parts of Carlisle around 12 hours earlier than happened in
practice. Confidence in both the NWP rainfalls and the flood forecasting model would
need to be developed, however, before such an approach could form a routine part
of the flood warning process. The Carlisle flood provides an indication of the potential
benefits of such warnings: for the areas affected by the lower Petteril and Caldew as
many as 363 properties were at risk.

Although this was only one case (with deficiencies), we still believe it demonstrates
the value of kilometre-scale NWP rainfall forecasts for flood warning. When used as
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input to appropriate hydrological models, such rainfall forecasts can provide earlier
flood warnings (up to ~12 hours ahead for this type of situation) than was possible
back in January 2005 when only the 12 km model rainfalls were available. Our
confidence comes from a belief that, over a short forecast period, current NWP
forecast models are sufficiently reliable on the mesoscale (location of fronts, etc.).
The orographic enhancement will be well represented because the orography is
adequately resolved. Beyond ~12 hours ahead, the mesoscale uncertainty becomes
increasingly important, and a more probabilistic approach becomes increasingly
desirable, but still using high-resolution NWP forecasts. Convective situations will
present more difficulty because they are typically less predictable on these scales
and a probabilistic approach will be required from shorter forecast lead times.

The Met Office now operationally runs a 4 km NWP model and it is planned to
improve this to 1.5 km for the turn of the decade. So the time is now right to make
greater use of NWP rainfall forecasts with hydrological models in flood warning
systems, with the prospect of earlier warnings and better preparedness leading to
reduced flood damage costs.
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