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Abstract. Global flood hazard maps can be used in the as-
sessment of flood risk in a number of different applications,
including (re)insurance and large scale flood preparedness.
Such global hazard maps can be generated using large scale
physically based models of rainfall-runoff and river routing,
when used in conjunction with a number of post-processing
methods. In this study, the European Centre for Medium
Range Weather Forecasts (ECMWF) land surface model is
coupled to ERA-Interim reanalysis meteorological forcing
data, and resultant runoff is passed to a river routing algo-
rithm which simulates floodplains and flood flow across the
global land area. The global hazard map is based on a 30 yr
(1979–2010) simulation period. A Gumbel distribution is fit-
ted to the annual maxima flows to derive a number of flood
return periods. The return periods are calculated initially for
a 25× 25 km grid, which is then reprojected onto a 1× 1 km
grid to derive maps of higher resolution and estimate flooded
fractional area for the individual 25× 25 km cells. Several
global and regional maps of flood return periods ranging
from 2 to 500 yr are presented. The results compare reason-
ably to a benchmark data set of global flood hazard. The de-
veloped methodology can be applied to other datasets on a
global or regional scale.

1 Introduction

Global flood hazard maps are an important tool in assessing
global flood risk (Di Baldassarre et al., 2011, 2012; Hagen
and Lu, 2011). They are used in reinsurance, large scale flood
preparedness and emergency response and can also be used
as benchmarks for future flood forecasting or climate impact
assessment (e.g. Kappes et al., 2012; Willis, 2012; SwissRe,
2012).

Flood hazard maps are often only routinely compiled at a
national level or river catchment level (see e.g. Hagen and
Lu, 2011; Prinos et al., 2009; FEMA, 2003; Porter and De-
meritt, 2012), and the uncertainties in these maps are rec-
ognized and made explicit to varying degrees (see review
by Prinos et al., 2009, or Merwade et al., 2008; McMillan
and Brasington, 2008). These smaller scale maps must then
be aggregated to larger units, such as continents, in order to
gain the large scale perspective (an example for such an ini-
tiative is EXCIMAP, 2007; van Alphen et al., 2009). In many
countries across the globe such flood hazard maps are not
available at the national level (Hagen and Lu, 2011). In addi-
tion, the tiling of maps generated by differing methods con-
structed with varying observations or other data can create
considerable inconsistencies, and the resulting uncertainties
are not always clear from the finalised product (van Alphen
et al., 2009; Prinos et al., 2009). These issues of combin-
ing data sets with different provenance and uncertainty are
commonly encountered in flood modelling over administra-
tive and political boundaries and can be problematic if not
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4144 F. Pappenberger et al.: Deriving global flood hazard maps

carefully considered (Pappenberger et al., 2011; Thielen et
al., 2009a; Bartholmes et al., 2009). The use of large scale
hydrological models and atmospheric land surface schemes
for producing global scale hydrological products is of in-
creasing interest (Cloke and Hannah, 2011) and have been
employed on continental scale to derive flood hazard maps
(see for example Barredo et al., 2007)

In this work we derive global maps of flood return pe-
riods using a homogenous approach across the globe. Pro-
ducing “consistent” maps of flood hazard can be a first step,
for instance, in understanding flood risk at the global scale,
although they cannot and should not replace local detailed
information for local flood risk studies where it exists. The
global hazard maps can then be used in conjunction with
vulnerability and impact information to produce global es-
timates of flood risk which are key information for disas-
ter preparedness (WMO, 2011). Global flood hazard maps
are often computed based on geomorphological regression,
which uses non-linear regression of easily available geomor-
phological catchment attributes such as distance to river and
upstream catchment area (Mehlhorn et al., 2005; SwissRe,
2012). Such methods have the considerable advantage of be-
ing able to calculate flood hazard zones to a very fine resolu-
tion using readily available data. An alternative method com-
bines discharge observations with a simple river routing al-
gorithm and flood outline observations (Herold et al., 2011).
This method also uses regression to derive properties for un-
gauged catchments in which no observations exist. In addi-
tion, the Dartmouth Flood Observatory has produced global
hazard maps based on observations (Brakenridge, 2012).

However, these methods do not exploit available global-
scale hydrological data, such as global time series of pre-
cipitation, and they also lack in application of hydrological
understanding; such as the hydrological processes operating
in a river catchment, available spatial information and related
physical understanding of land surface properties. They also
make an implicit assumption that the method is transferable
across a hydrologically and hydraulically diverse global land
area. Such knowledge can, however, be included into a cas-
cade of process-based models, using meteorological, hydro-
logical and hydraulic models. The concept of using a model
cascade for global flood hazard prediction has been discussed
by Winsemius et al. (2012). Physically based model cascades
have been successfully employed in short-range, medium-
range, monthly and seasonal forecasting of floods (Pappen-
berger et al., 2005, 2011; Alfieri et al., 2012; Voisin et al.,
2011; Thielen et al., 2009b), as well as projections of cli-
mate impact on flooding (Cloke et al., 2010, 2012). Barredo
et al. (2007) employed this technique on a European conti-
nental level to derive flood hazard maps.

In this paper we derive a modelled global flood haz-
ard map using the cascading models simulation approach
with the European Centre for Medium Range Weather Fore-
casts (ECMWF) land surface and river routing model, ERA-
Interim reanalysis meteorological data (using a corrected

precipitation). The overall aim is to evaluate the derivation
of globally consistent flood hazard maps to a resolution of
625 km2 and 1 km2 with ECMWF products. This is also a
novel approach in evaluation and understanding of a coupled
hydro-meteorological system on a global scale as previous
studies have either focused on discharge (e.g. Pappenberger
et al., 2010) or on observed flooded inundation fraction (e.g.
Decharme et al., 2008, 2011; Dadson et al., 2010; Yamazaki
et al., 2011). This paper describes a proof-of-concept ex-
ercise and we carefully consider the limitations of this ap-
proach.

1.1 Method

In this study we derive global flood hazard maps using a cas-
cading model simulation approach combined with ECMWF
products and modelling systems. This cascade comprises
four steps: (I) derivation of meteorological forcing data; (II)
physically based model chain; (III) extreme value theory to
derive return periods; (IV) remapping of results to required
resolution. Each component of this cascade has been thor-
oughly tested with multiple calibration and validation stud-
ies.

1.2 Derivation of input data: ERA-Interim
GPCP forcing

ERA-Interim (hereafter ERAI) is the latest global atmo-
spheric reanalysis produced by ECMWF. ERAI covers the
period from 1 January 1979 onwards, and continues to
be extended forward in near-real time (Berrisford et al.,
2009). ERAI data are freely available for access to re-
searchers via ECMWF’s webpage (http://www.ecmwf.int/
research/era). Dee et al. (2011) present a detailed description
of the ERAI model and data assimilation system, the obser-
vations used, and various performance aspects. Balsamo et
al. (2011) performed a scale-selective rescaling procedure to
improve ERAI precipitation. The procedure corrects ERAI
3-hourly precipitation in order to match the monthly accu-
mulation provided by the Global Precipitation Climatology
Project (GPCP) v2.1 product (Huffman et al., 2009) at grid-
point scale. The method uses information from GPCP v2.1
at the scale for which the dataset was provided (for a spatial
resolution of 2.5◦ × 2.5◦) and rescales the ERAI precipita-
tion at full resolution (about 0.7◦ × 0.7◦). The advantage of
this procedure is that small scale features of ERAI (for in-
stance related to orographic precipitation enhancement) can
be preserved while the monthly totals are rescaled to match
GPCP (see Balsamo et al., 2011, and Szczypta et al., 2011).

1.3 Land surface model HTESSEL

In this study the Hydrology Tiled ECMWF Scheme of Sur-
face Exchanges over Land (HTESSEL; Balsamo et al., 2009,
2011) is used. HTESSEL computes the land surface response
to atmospheric forcing, and estimates the surface water and
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energy fluxes and the temporal evolution of soil tempera-
ture, moisture content and snowpack conditions. At the in-
terface to the atmosphere each grid box is divided into frac-
tions (tiles), with up to six fractions over land (bare ground,
low and high vegetation, intercepted water, shaded and ex-
posed snow). Vegetation types and cover fractions are de-
rived from an external climate database, based on the Global
Land Cover Characteristic (Loveland et al., 2000). The grid
box surface fluxes are calculated separately for each tile,
leading to a separate solution of the surface energy balance
equation and the skin temperature. The latter represents the
interface between the soil and the atmosphere. The surface
albedo is similar for all land tiles within a grid box except
for those covered with snow. Below the surface, the vertical
transfer of water and energy is performed using four verti-
cal layers to represent soil temperature and moisture. Soil
heat transfer follows a Fourier law of diffusion, modified to
take into account soil water freezing/melting (Viterbo et al.,
1999). Water movement in the soil is determined by Darcy’s
Law, and surface runoff accounts for the sub-grid variability
of orography (Balsamo et al., 2009). In the case of a partially
(or fully) frozen soil, water transport is limited, leading to a
redirection of most of the rainfall and snow melt to surface
runoff when the uppermost soil layer is frozen. The snow
scheme (Dutra et al., 2010) represents an additional layer on
top of the soil, with an independent prognostic thermal and
mass content. The snowpack is represented by a single snow
temperature, snow mass, snow density, snow albedo, and a
treatment for snow liquid water in the snowpack. Part of the
liquid precipitation is directly intercepted by the canopy (that
is evaporated at a potential rate), and the remaining infil-
trates into the soil, when snow is not present. When snow is
present, liquid water is intercepted by the snowpack, and can
freeze. Solid precipitation accumulates on the surface. The
first soil layer receives liquid water from excess precipitation
as well as melted snow that was not intercepted in the canopy
or snowpack. Surface runoff is generated when the first soil
layer is partially saturated. In the lowest model layer (2.89 m,
constant globally) the boundary condition is free drainage,
that produces the sub-surface runoff. Water is extracted from
the soil via direct bare ground evaporation (only in the first
soil layer), and by vegetation evapotranspiration (coupled to
the surface energy balance).

HTESSEL is part of the integrated forecast system at
ECMWF, with operational applications ranging from the
short-range to monthly and seasonal weather forecasts. HT-
ESSEL is mainly used for operational forecasts coupled with
the atmosphere, but it can also simulate the land surface
evolution and exchanges with the atmosphere in stand-alone
mode (commonly referred as “offline mode”). In offline
mode, the model is forced with sub-daily (at least 3-hourly)
near-surface meteorology (temperature, relative humidity,
wind speed and surface pressure), and radiative (downward
solar and thermal radiation) and water fluxes (liquid and solid
precipitation). This offline methodology has been widely

explored and calibrated in research applications using HT-
ESSEL and other land surface and large scale hydrological
models (e.g. Dutra et al., 2011; Haddeland et al., 2011). Bal-
samo et al. (2012) present a detailed description of the simu-
lations set-up and general performance evaluation.

1.4 River routing CaMa-Flood

There are many different river routing algorithms which have
been developed on a global scale (e.g. Miller et al., 1994;
Arora and Boer, 1999; Ducharne et al., 2003) some of which
include the explicit representation of flood plains and stor-
age (Decharme et al., 2008, 2011; Dadson et al., 2010). The
evaluation of these models either focuses on the impact of
flood plains on discharge (e.g. Decharme et al., 2011; Pap-
penberger et al., 2010) or compares modelled flooded inun-
dation fraction with satellite observations (e.g. Dadson et al.,
2010). ECMWF has successfully employed several routing
algorithms based on the TRIP model (Balsamo et al., 2011,
and Pappenberger et al., 2010). Yamazaki et al. (2011) de-
veloped this global routing methodology further by includ-
ing flood plains into the routing algorithm through sub-grid
parameterization of the floodplain topography. The sub-grid
parameterization is based on a 1 km Digital Elevation Model
and all horizontal water transport is modelled by a diffusive
wave equation to account for backwater effects. Yamazaki
et al. (2011) showed that this new model formulation (called
CaMa-Flood) compares favourably to daily measurements of
river flow gauging stations across the globe as well as indi-
cating a good agreement between modelled and satellite ob-
served flooded area. Water level simulations by CaMa-Flood
in the amazon basin also show a good agreement with remote
sensing altimetry (Yamazaki et al., 2012).

The river network construction, river parameters and sub-
grid scale floodplain profiles are derived by the Flexible
Location of Waterways (FLOW) method (Yamazaki et al.,
2009). This method is used to upscale a high-resolution flow
direction map at 1 km (Global Drainage Basin Database,
GBDB, Masutomi et al., 2009) into a coarse-resolution river
network map, which is used in the global-scale river rout-
ing model. The SRTM30 digital elevation model (30 arc s
DEM developed in the Shuttle Radar Topography Mission by
NASA) is the DEM input for the FLOW method to derive the
sub-grid scale topographic parameters. In the present config-
uration, the river network map was created at 25×25 km res-
olution (hereafter model grid). This relationship is shown in
Fig. 1. The outlet on the model grid is indicated by a circle.
The routing characteristics are based on the upstream catch-
ment, which may span several 25× 25 km cells. The FLOW
method generates catchments with an outlet pixel lying over
the model grid, but their areas do not necessarily coincide,
depending on the local topography. One of the characteris-
tics is elevation profile which is shown in the bottom panel
of Fig. 1, where the topographic height is plotted against the
fraction which would be flooded at this height. The FLOW
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Fig. 1. Illustrating the sub-grid parameterization. The coarse grid on
the top figure represents the 25×25 km cells. The catchment eleva-
tion map is shown on a 1×1 km grid. The outflow is indicated by a
red circle. The river routing properties for the cell with this outflow
are derived from the 1× 1 km grid. Such a property is shown in the
bottom plot in which elevation vs. catchment fraction is plotted.

method provides an automatic upscaling of the following pa-
rameters: channel length (L, m), surface altitude, distance
to downstream cell, catchment area and elevation profile. In
addition to these parameters, the channel width (W , m) and
bank height (B, m) are also necessary to calculate the river
water storage (S = L × W × D, whereD is the river water
depth) and other derived parameters like the river bed slope.
Channel width and bank height cannot be resolved globally
from existing databases, and were derived empirically fol-
lowing a power law of the climatological runoff estimates
accordingly to Yamazaki et al. (2011). The daily HTESSEL
simulated surface and sub-surface runoff, at approximately
80×80 km resolution, is interpolated to the river network res-
olution using a nearest neighbour approach.

1.5 Extreme value theory to estimating return periods

The return period estimation is based on the annual maxima
of the river water storage produced by CaMa-Flood. There
are many different statistical distributions which can be used
in the estimation of flood frequency, ranging from general
logistics distributions in countries such as the UK (Reed et
al., 2002) to the log Pearson Type III in the USA (IACWD,
1982). In this study, the aim was to apply the same modelling
method across the globe constrained by data availability (e.g.
time series of only 30 yr available from ERA-Interim) and
computational resources (e.g. requirement for dynamic dis-
tribution fitting in every cell across the global land area).
Therefore the Gumbel distribution (EV1), estimated using L-
moments, was chosen whose two parameters can be easily
estimated by the method of moments and which allows the
cheap computation of confidence limits for the fitted data.
The method is described in detail in Shaw et al. (2011). The
EV1 distribution was computed for the river water storage
annual maxima on the model grid and 2, 5, 10, 20, 50, 75,
100, 200, 500 yr return periods calculated. The respective
river water storages (S) were converted to river water lev-
els (D) using the river network parameters, river length (L)
and width (W ):

D =
S

WL
.

The river water levels could then be used to establish whether
the river has gone out of bank and whether cells are flooded
or not flooded.

1.6 Remapping of required resolution

The river water storage produced by CaMa-Flood is repre-
sentative of a sub-catchment whose parameters, in particu-
lar the floodplain elevation profile (Yamazaki et al., 2009),
are integrated in the model. These sub-grid parameters are
derived from the 1× 1 km cells. Therefore, the river water
level can be remapped into the 1× 1 km grid consistently
with the model structure and assumptions. The river water
level in each model grid is remapped to the 1× 1 km grid,
allowing the identification of flooded and not-flooded pix-
els (as displayed in Fig. 1). The approach in this paper is
equivalent to a volume filling approach as shown by Win-
semius et al. (2012), with the additional advantage that the
sub-grid topography was an integral component of the river
routing model, influencing the river water storage simula-
tions. This information is then upscaled to the model grid
to derive fractional coverage by re-aggregating all respective
1× 1 km cells.

Hydrol. Earth Syst. Sci., 16, 4143–4156, 2012 www.hydrol-earth-syst-sci.net/16/4143/2012/
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1.7 Evaluation of hazard maps

1.7.1 Benchmark data set

A global flood hazard map has been produced for the
2011 Global Assessment Report on Disaster Risk Reduction
(Herold et al., 2011; Herold and Mouton, 2011). In this re-
port, peak flow values for 100 yr return periods were esti-
mated for gauged sites and regionalized by clustering ob-
servations from river gauging stations and using regression
to estimate return periods for ungauged sites. Peak flow val-
ues were routed through the catchments to derive flooded ar-
eas. These data have then been merged with data from ac-
tual flood events observed by the Dartmouth Flood Obser-
vatory (www.dartmouth.edu/∼floods/) to derive maps indi-
cating different return periods. A description of the proce-
dure is given in Herold and Mouton (2011), where some ver-
ification for individual catchments is also shown. All data
can be downloaded from the Global Risk Data platform
(http://preview.grid.unep.ch/). Please note that we do not as-
sume “correctness” of the data set and rather use this data set
as a benchmark to establish whether the methodology used
in this paper leads to similar results. This benchmark data set
is currently used by agencies around the world (UNISDR,
2011).

1.7.2 Benchmark comparison score

In this study, the global flood hazard results are compared
to the benchmark data set using three scores which are
designed to evaluate extremes: the Equitable Threat Score
(ETS, Hogan et al., 2010; Doswell III et al., 1990; Gandin
and Murphy, 1992), the Extreme Dependency Score (EDS,
Stephenson, 2008) and the Frequency Bias (FB, Gandin and
Murphy, 1992).

The ETS is based on a contingency table (see Table 1) and
compares the hits and correct negatives events of the bench-
mark data set to the hits+ correct negatives events of the
data set created in this study. The score ranges from−1/3
to 1 (perfect score) with 0 indicating that there is no skill
(skill indicated by random chance). The score takes account
of false alarms and missed events.

The EDS evaluates the association between forecasted and
observed rare events based on hits and misses (not explic-
itly evaluating false alarms). It ranges from−1 to 1 (perfect
score) with 0 indicating that there is no skill. The EDS is not
sensitive to bias and thus needs to be complemented by the
frequency bias.

The FB measures whether the frequency of the two data
sets is similar. A FB> 1 indicates that there is a positive
bias (over forecasting) of the data set computed in this study
in comparison to the benchmark data set (and vice versa). It
ranges from 0 to∞, with 1 indicating a perfect score.

1 2

3

4
5

6

8 9

25

23

21

19

22

18

17
16151413

20
24

10

11

12

26

Paci�c Ocean Atlantic Ocean Indian Ocean

Paci�c Ocean

7

North America
1 Yukon
2 Mackenzie
3 Nelson
4 Mississipi
5 St. Lawrence

South America
6 Amazon
7 Paraná

Europe
25 Danube

Africa and  West Asia
8 Niger
9 Lake Chad Basin
10 Congo
11 Nile
12 Zambezi
26 Orange
24 Euphrates and Tigris 

Asia and Australia
13 Volga
14 Ob
15 Yenisey
16 Lena
17 Kolyma
18 Amur
19 Ganges and Brahmaputra
20 Yangtze
21 Murray Darling
22 Huang He
23 Indus

Fig. 2. Major World River Catchments (reproduced from UNEP;
WCMC; WRI; AAAS; Atlas of Population and Environment,
2001).

Table 1.Contingency table.

Benchmark data set

Yes No

Data set produced in Yes Hit False Alarm

this study No Miss Correct Negative

2 Results

2.1 The global flood return period maps

Figure 2 shows the major river basins of the world to aid
interpretation and discussion of the results. The total area
of floodplains given by a 1000 yr return period is calcu-
lated as 1.9× 106 km2, which is within the limits of other
global estimates ranging from 0.8–2× 106 km2 (Mitsch and
Gosselink, 2000; Ramsar and IUCN [World Conservation
Union], 1999). In Fig. 3, the areal fraction of coverage of
flooding occurring in the model grid is shown for a 50-yr
return period. 1 means that the cell is completely flooded
across its area, 0.5 means that 50 % of the area within the
cell is flooded and 0 means that the area is not flooded at all.
A minimum threshold of 5 % has been set for display pur-
poses. As would be expected, flood hazard at a 50 yr return
period shows up as a wide-spread phenomenon occurring at
many locations on the globe and many major catchments can
be clearly seen in Fig. 3. In addition, some lakes such as
the Great lakes in Northern America, which are not explic-
itly modelled within the routing component, show as 100 %
flooded. There are also delta areas which can be clearly seen,
for example the Mississippi in North America, the Yangtze
and Huang He in China, the Indus on the Indian subconti-
nent as well as the Ganges and Brahmaputra, the Euphrates

www.hydrol-earth-syst-sci.net/16/4143/2012/ Hydrol. Earth Syst. Sci., 16, 4143–4156, 2012
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Fig. 3. Fractional coverage of flooding of 25 km by 25 km cells.
1 means that the cell is flooded to 100 %, 0.5 means that the area
within the cell is flooded to 50 % and 0 means that the area is not
flooded at all. The figures shows the 50 yr return period.

and Tigris and the Murray Darling in Australia. In Africa the
upper Niger catchment, the Lake Chad catchment as well as
the Congo show not only in the in the delta area, but par-
ticularly inland. In South America, the Amazon and Parana
catchments are dominant. Many other areas with high frac-
tional coverage can be seen in Asia (e.g. Volga into the Black
Sea or the Kolyma).

Figure 4 shows how flood hazard increases with return pe-
riod for the 20 largest catchments calculated as the average
area of floodplains flooded (maximum extent of floodplains
are estimated from computing a 1000 yr return period). The
figure shows an average flooding of around 45 % of all flood-
plains within all major catchments to over 90 % at higher re-
turn periods. This information could be used in the calcula-
tion of the number of people or properties affected by a flood
event of a certain return period and the analysis of this on a
global or continental scale (see e.g. Winsemius et al., 2012).

It is of particular interest in many applications to anal-
yse these maps at the continental scale. Figure 5a displays
the fractional coverage for a 50 yr return period for Europe.
To aid in the interpretation of the results, some of the major
rivers of Europe are overlaid as blue lines. The flooded area
follows those lines fairly closely (see for example the rivers
Po and Danube), indicating that the resulting maps have
some credibility. Even smaller rivers which are not explicitly
plotted as major rivers can be seen (e.g. the Tisza). The effect
of lakes can also be seen as was the case for the global results.
These maps are derived from 1 km2 re-projections, which are
shown as an example in Fig. 5b. The similarities between
Fig. 5a and Fig. 5b are encouraging, although Fig. 5b clearly
shows more detail. It would be possible in theory to inter-
polate to even finer topographic resolutions (e.g. 90 m of the
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Fig. 4. Average flooded area of the largest 20 catchments. The 5th
and 95th percentile derived from the estimation of the Gumbel dis-
tribution is displayed as dotted lines.

SRTM data set as in Herold and Mouton, 2011), however,
given the coarse resolution and uncertainties in the many
other data inputs, this course of action is not recommended
as the uncertainties would be very high, even though a higher
resolution image would of course look more attractive (see
discussion on hyperresolved modelling in Beven and Cloke,
2012). In all modelling exercises an appreciation of the un-
certainties involved is paramount (Pappenberger and Beven,
2006). We demonstrate this uncertainty in Table 2 and Fig. 4.

Figure 5c shows the 50 yr return period map for South
America, focusing on the Amazon catchment in particular.
As for Fig. 5a, the major rivers are followed, but here the
complexity of the channel network in the Amazon basin
can be clearly seen. This is encouraging, as such complex-
ity demonstrates the value of sub-grid representation of the
channel network. Note that the major lakes such as the Titi-
caca and Poopo are identified as flooded pixels.

Table 2 shows the average percentage of floodplain
flooded for individual river catchments. It is obvious that
the fraction increases with increasing return period as seen
in Fig. 4. One should take particular notice of the uncer-
tainty bounds around the median. These uncertainty bounds
increase with increasing return period, however, they are
not very large. This may be explained by the fact that a
large uncertainty in discharge does not translate to an equally
large uncertainty in extent because of the valley filling phe-
nomenon of floods over a certain magnitude (Schumann et
al., 2009; Pappenberger et al., 2006). Uncertainty in the es-
timation of the return period has to be large enough to cover
individual 1 km cells, which may require significant jumps in
water level. These findings are also illustrated when the av-
erage over all 20 catchments is displayed (Fig. 4). This phe-
nomenon was also observed in previous work on a smaller
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Table 2. Percentage of floodplain flooded in 20 major catchments (25 km global grid) and multiple return periods. The table shows the
median and the 5th and 95th percentile.

Id Catchment
Return Period

(Fig. 2) 2 5 10 20 50 75 100 200 500

1 Yukon 57.78± 0.02 66.53± 0.09 71.49± 0.05 76.38± 0.19 83.00± 0.05 85.24± 0.12 87.01± 0.09 91.27± 0.17 96.88± 0.23
2 Mackenzie 53.36± 0.01 61.91± 0.09 67.55± 0.11 72.88± 0.06 79.61± 0.16 82.41± 0.18 84.31± 0.17 88.98± 0.21 95.52± 0.20
3 Nelson 37.23± 0.01 47.60± 0.15 54.57± 0.10 60.46± 0.11 69.03± 0.25 72.62± 0.31 75.72± 0.26 82.85± 0.39 92.67± 0.48
4 Mississippi 33.82± 0.04 44.74± 0.12 52.37± 0.12 59.15± 0.18 68.54± 0.31 72.61± 0.25 75.75± 0.28 82.99± 0.33 92.81± 0.45
5 St Lawrence 56.69± 0.03 64.28± 0.08 69.46± 0.13 74.08± 0.05 79.81± 0.15 82.28± 0.17 84.39± 0.29 88.98± 0.11 95.35± 0.15
6 Amazon 40.74± 0.07 49.60± 0.09 55.56± 0.13 61.64± 0.15 69.97± 0.21 73.61± 0.23 76.29± 0.23 82.99± 0.30 92.43± 0.41
7 Parana 33.21± 0.04 43.61± 0.11 50.69± 0.09 57.70± 0.17 66.99± 0.24 71.15± 0.23 74.34± 0.30 81.83± 0.28 92.17± 0.41
8 Niger 28.27± 0.02 35.85± 0.08 42.60± 0.07 49.68± 0.22 60.12± 0.28 65.26± 0.32 68.83± 0.28 77.79± 0.37 90.49± 0.51
10 Congo 36.05± 0.06 45.80± 0.07 52.11± 0.14 58.78± 0.18 67.73± 0.25 71.64± 0.22 74.61± 0.29 82.04± 0.38 92.09± 0.41
11 Nile 49.28± 0.02 56.05± 0.04 60.97± 0.07 66.48± 0.15 73.80± 0.18 77.12± 0.22 79.38± 0.23 85.40± 0.24 93.75± 0.35
12 Zambezi 28.58± 0.05 41.22± 0.09 49.16± 0.21 56.20± 0.18 65.81± 0.30 70.38± 0.28 73.81± 0.29 81.16± 0.40 91.32± 0.33
13 Volga 39.22± 0.05 49.79± 0.10 56.64± 0.11 63.39± 0.17 71.78± 0.14 75.12± 0.21 77.94± 0.27 84.49± 0.29 93.24± 0.39
14 Ob 43.03± 0.06 51.99± 0.06 58.31± 0.15 64.23± 0.17 72.41± 0.25 76.06± 0.23 78.69± 0.20 85.05± 0.27 93.45± 0.33
15 Yenisey 55.40± 0.04 64.21± 0.03 69.82± 0.09 74.78± 0.08 80.96± 0.12 83.64± 0.23 85.42± 0.14 90.01± 0.16 95.82± 0.20
16 Lena 52.73± 0.03 62.88± 0.12 68.72± 0.09 73.81± 0.11 80.29± 0.19 83.06± 0.15 85.08± 0.17 89.91± 0.28 95.63± 0.23
17 Kolyma 60.11± 0.03 68.40± 0.12 73.88± 0.12 78.48± 0.12 84.30± 0.06 86.51± 0.10 88.14± 0.15 92.02± 0.09 96.78± 0.24
18 Amur 40.87± 0.12 52.58± 0.14 59.72± 0.12 66.18± 0.20 74.30± 0.23 78.03± 0.28 80.52± 0.30 86.52± 0.34 94.25± 0.18
19 Ganges and 34.44± 0.05 44.09± 0.05 50.84± 0.10 58.34± 0.19 67.42± 0.19 71.52± 0.25 74.36± 0.27 81.68± 0.31 91.92± 0.28

Brahmaputra
20 Yangtze 55.94± 0.05 63.88± 0.05 68.99± 0.14 73.56± 0.11 80.09± 0.17 82.63± 0.11 84.74± 0.26 89.47± 0.22 95.63± 0.28
21 Murray Darling 23.38± 0.03 33.83± 0.04 41.45± 0.09 49.57± 0.25 61.47± 0.25 65.99± 0.31 69.30± 0.30 77.80± 0.53 90.21± 0.51
22 Huang He 46.85± 0.09 58.85± 0.02 67.29± 0.07 73.59± 0.17 80.94± 0.06 84.16± 0.43 86.31± 0.27 90.49± 0.05 96.16± 0.22
23 Indus 47.60± 0.08 56.50± 0.03 62.00± 0.05 67.78± 0.28 75.09± 0.16 78.21± 0.18 80.50± 0.15 86.27± 0.28 93.60± 0.46
24 Euphrates and 39.06± 0.08 48.00± 0.04 55.25± 0.15 62.51± 0.22 70.98± 0.13 74.93± 0.26 77.73± 0.35 84.79± 0.33 93.68± 0.54

Tigris
25 Danube 49.22± 0.04 58.86± 0.07 64.84± 0.10 71.02± 0.21 78.36± 0.21 81.37± 0.18 83.28± 0.31 88.33± 0.22 94.98± 0.27
26 Orange 31.72± 0.02 41.43± 0.23 48.67± 0.12 55.43± 0.23 64.69± 0.30 69.30± 0.42 73.17± 0.45 81.34± 0.46 91.16± 0.29

scale (McMillan and Brasington, 2008) and should not be
seen as equivalent to a reduction in flood risk. Indeed McMil-
lan and Brasington (2008) show that when such information
is translated into risk (e.g. number of houses flooded), the
uncertainties are large. The reason being that it was just at
this point, on the edge of the natural floodplain, that hous-
ing/infrastructure densities increased, as they were perceived
as safe from frequent flooding. This is a good illustration of
the importance of considering the end use of the information.

2.2 Comparison with Benchmark data set

The benchmark data set is shown in Fig. 6a and b for a 50 yr
return period, which is equivalent to the representations of
the model cascade flood hazard depicted in Fig. 5a and b.
A comparison of Figs. 6a and 5a shows that the benchmark
data set displays greater detail but has a lower intensity of
flooding depicted for a 50 yr return period. Figure 6b shows
a far more detailed river network than Fig. 5b because it has
been computed by a river routing algorithm on a finer scale
(90 m SRTM data). However, it also indicates a much lower
extent of individual floodplains, which suggests that the 50 yr
return period river discharges are calculated to be greater in
this study than in the benchmark. This is probably a result of
the longer time series in this study or alternatively, may be
reasoned by different representations of floodplain and chan-
nel storage.

Major rivers are as equally well represented in the bench-
mark data set as in the data set of this study. Figure 7 directly
compares the global flood hazard results with the benchmark
set for major catchments (comparison is limited to the return
periods, which can be extracted from the benchmark data set
< = 75 yr). It is encouraging to observe some clear correla-
tion between the modelled and observed data, as they have
been derived by considerably different methodologies. This
correlation is shown by the high number of hits and correct
negatives, which always exceed false alarms and misses. It is
important to note that neither the benchmark nor the present
results represent the truth and this exercise seeks to compare
them in order to identify differences and allow the explo-
ration of the properties of the data set produced in this study.
There are also more hits than false alarms, but more false
alarms than misses at higher return periods, which suggests
that the methodology in this paper produces larger areas of
flooding than the benchmark data set.

The values of the contingency table (hits, misses and false
alarms) shown in Fig. 7 can be used to calculate an agree-
ment between the two data sets using scores such as the Eq-
uitable Threat Score (ETS). The ETS is displayed in Fig. 8 as
an average over the largest 20 catchments. The ETS reaches
an optimal score at 1 and is skilful in comparison to a ran-
dom guess for values above 0. It is reassuring to observe that
the ETS is above 0 for all return periods although the flat-
tening of the curve at higher return periods indicates that a
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Fig. 5a. Fractional coverage of flooding of 25 km by 25 km cells
for a 50 yr return period focusing on Europe only. 1 means that the
cell is flooded to 100 %, 0.5 means that the area within the cell is
flooded to 50 % and 0 means that the area is not flooded at all. Major
European rivers are shown as blue lines. All white areas indicate a
percentage of flooding of less than 5 %.

random benchmark is not too difficult to beat in this case.
The ETS peaks at a return period of 20 yr, indicating that the
maps are in closest agreement at this return period. The Ex-
treme Dependency Score does not illustrate this peak. This
is explained by the fact that it does not explicitly incorporate
false alarms which increase with increasing return period. It
is influenced by a continuous increase in hits and decrease in
misses. The score is always above 0, indicating skill at all re-
turn periods. This skill maybe purely topographically driven.
The Frequency Bias is below 1 for the 2 and 5 yr return period
and above 1 for higher return periods. This indicates that the
benchmark has a higher number of flooded cells for a return
period of 2 and 5 yr, and a lower number of flooded cells than
this study’s results for larger return periods in comparison to
the data set computed in this study.

2.3 Discussion

2.4 What did we learn?

This proof-of-concept study has demonstrated the potential
for using the products of a modern Numerical Weather Pre-
diction Centre to produce relevant global information on
flood hazard. Using a relatively simple but globally consis-
tent methodology produced an encouraging global hazard
data set with information on return periods at 25 and 1 km
scale, respectively. All tools and products are available for
free for research purposes and can be downloaded from var-
ious sources on the internet. The global flood hazard maps
derived by different methods produce broadly similar results.
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Fig. 5b. Flooding of 1 km by 1 km cells for a 50 yr return period
focusing on Europe only (binary map). Major European rivers are
shown as blue lines.
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Fig. 5c.Fractional coverage of flooding of 25 km by 25 km cells for
a 50 year return period focusing on South America only. 1 means
that the cell is flooded to 100 %, 0.5 means that the area within the
cell is flooded to 50 % and 0 means that the area is not flooded at all.
All white areas indicate a percentage of flooding of less than 5 %.

The uncertainty in the estimation of flood extent is not dom-
inated by the uncertainty in the estimation of the extreme
value distribution deployed, but instead it is likely dependent
on the parameter uncertainty and model processes. Further
definition of the characteristic uncertainties of the maps will
be required.

2.5 How useful are the results?

A global picture of flood hazard will be very useful for cur-
rent and future understanding of flood risk. However, this can

Hydrol. Earth Syst. Sci., 16, 4143–4156, 2012 www.hydrol-earth-syst-sci.net/16/4143/2012/



F. Pappenberger et al.: Deriving global flood hazard maps 4151

-20 -10 0 10 20 30 40
30

35

40

45

50

55

60

65

70

75
a b

-20 -10 0 10 20 30 40
30

35

40

45

50

55

60

65

70

75

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6a. Fractional coverage of flooding of 25 km by 25 km cells
for the benchmark data set focusing on Europe only. 1 means that
the cell is flooded to 100 %, 0.5 means that the area within the cell
is flooded to 50 % and 0 means that the area is not flooded at all.
Scandinavia contains no data in this data set. Major European rivers
are shown as blue lines.

only be supported by a thorough understanding of the limi-
tations involved. This study ignores many important compo-
nents such as operating rules of dams and reservoirs, pro-
tection structures and so forth. Although reasonably compli-
cated to undertake at a global scale, such effects could be
included by sub-grid parameterization. Herold et al. (2011)
demonstrates the point with the example of the Bihar floods
in 2008, in which a dyke breach causes significant difference
between the modelled and observed flood outlines. Herold
et al. (2011) carries the clear warning that global models
should not be used for local planning. The price of global
consistency is local accuracy (for an interesting discussion
about the drivers for consistency in flood mapping please see
Porter, 2010). However, although results may be wrong on
a local scale, they can have a useful credibility on a global
scale for large scale assessment. This usefulness and credi-
bility comes through the averaging or coarse graining which
is achieved in this study. One should not analyse the be-
haviour of individual cells but of a group of cells (i.e. catch-
ment). This will then enable going beyond the quantification
of hazard, to the derivation of risk and impact maps. Such
maps could be used for insurance purposes or the direction
of global investment, for example deriving priority regions
in which an upgrading of river defence structures may result
in the highest return in terms of impact. This information on
its own has limited value, although it is essential for com-
bination with other information to produce increased value
as one could, for example, not compute hazard without flood
frequency. These global maps have an additional advantage
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Fig. 6b. Flooding of 1 km by 1 km cells for a 50 yr return period
focusing on Europe only (binary map) for the Benchmark data set.
Scandinavia contains no data in this data set. Major European rivers
are shown as blue lines.

of allowing for the provision of initial information about un-
known areas. These maps also have some scientific value in
that they will allow us to explore global links between flood
hazards and global changes and human impacts on flood haz-
ards.

One of the main motivations in the application of the
global framework was to achieve globally consistent maps,
meaning that a grid point value in Honduras has been de-
rived in the same way as one in Nepal. This is of course only
partially true as, for example, the quality and behaviour un-
derlying meteorological forcing is dependent on the local ge-
ography (a similar argument can be made for the hydrology).
However, this approach still provides a homogeneous frame-
work allowing for the flexibility to improve locally when and
where necessary.

2.6 Future improvements

This is a proof-of-concept study, which seeks to calculate
global flood hazard maps with a coherent methodology using
global scale models and data sets. Future work will focus on
improving the individual components of the model cascade.

In stage I (derivation of forcing data), the data set used
in this study may be substantially improved by using an en-
hanced correction routine or better correction data (see e.g.
Weedon et al., 2012). The ERAInterim reanalysis is too short
to properly calculate high return periods and would be better
replaced by a longer reanalysis data set, such as the forth-
coming ERA-CLIM, (www.era-clim.eu/). A longer time se-
ries would be able to capture more extreme events and hence
allow for an improved estimation of extremes. The use of
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stochastic weather generators and downscaling could also be
a way to increase the quantity/quality of the input data set.

There are many aspects of the land surface scheme of
stage II (physically based models) that could be improved
(e.g. representation of ground water table see ECMWF,
2010, or consideration of hydrological parameter uncertainty,
Cloke et al., 2011). This is valid for the land surface compo-
nent as well as the river routing model, which may bene-
fit from additional calibration, regionalisation and inclusion
of sub-grid representations. For example, important compo-
nents of the river routing, such as the underlying high res-
olutions flow direction and DEM, and the river section area
(empirically derived), are associated with large uncertainties.
Alternative physical and non-physical hydrological schemes
could be considered. The physical model cascade has another
additional clear disadvantage as it includes a larger number
of parameters in comparison to the simpler geomorphologi-
cal regression. Such complexity leads to considerable uncer-
tainties and equifinalities in the model parameters and struc-
ture (Beven and Binley, 1992). In this study we solely esti-
mated uncertainties stemming from the fitting of the extreme
value distribution, which will clearly underestimate the to-
tal uncertainty. Future studies have to take greater care in
the quantification of this uncertainty, which may be difficult
given the large number of models and processes involved.

In this study one simple extreme value distribution was as-
sumed forstage III(extreme value theory to derive return pe-
riods). Hydrological understanding of flood generating pro-
cesses suggests that mixed distributions should be used (Woo
and Waylen, 1984; Merz and Bloeschl, 2005). Future devel-
opments may need to apply a host of different distributions.
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Fig. 8. Equitable Threat Score of different return periods with a
benchmark model as “observations”. An ETS of larger than 0 is
skilfull and the higher values are better.

Table 3.Sources of Uncertainty within the physical modelling cas-
cade.

Source of Uncertainty Example Potential

Meteorological forcing Precipitation field High
Model Structure (hydrology and Representation of groundwater Medium
hydraulic), factors and
parameters
Numerical Accuracy and Solver e.g. Fixed-step explicit methods Medium

(see Kavetski and Clark, 2010)
Other boundary conditions (e.g. River channel geometry High
topography, input data)
Post-processing and re-mapping Relation between the coarse Low
of results model grid and high resolution

DEM
Observation data set for Global Flood Inundation Maps High
comparison

An alternative method may be possible through extending the
data set as mentioned above for stage I. Such an extension
would allow the estimation of return periods using contin-
uous simulations (see e.g. Blazkova and Beven, 2002), and
this would allow stage III (extreme value theory to derive re-
turn periods) to be omitted from this estimation cascade and
reduce a major source of uncertainty.

Re-mapping ofstage IVto the required resolution in this
study is done by interpolating a particular sub-grid parame-
terisation. Re-mapping requires careful balancing of what is
possible (e.g. a 90 m resolved flood hazard map) with what
is scientifically justifiable, accepting that resolution alone
does not increase the information content (Beven and Cloke,
2012). Future studies should attempt to push the resolution
boundary whilst not pretending to be able to do the impossi-
ble.

Comparison has been performed against a single global
benchmark data set and further comparison is ideally re-
quired (also with other methods as mentioned in the introduc-
tion). Future analysis should use local data for comparison
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and employ further scores. In addition, the physical processes
that determine the dynamics of flood inundation behaviour
should be included in future versions.

Our suggestions of improvements indicate the major
sources of uncertainty which are in this modelling chain.
These sources are summarized in Table 3 as well as a qual-
itative ranking of their importance (for a more detailed con-
sideration of uncertainties involved in this type of modelling
exercise see Beven, 2012).

Many of the improvements discussed above are areas of
active research, which also illustrates the strength of this
methodology. Most of the individual components are active
parts of operational forecasting chains with clear commit-
ments by individual organisations (such as ECMWF) to im-
prove them. This means that there is a continuous develop-
ment on the individual components of this system.

We assume by no means that this is the only possibil-
ity to derive maps on a global scale. One could also em-
ploy probabilistic envelope curves (see e.g. Castellarin et al.,
2009; Padi et al., 2011) combined with regionalisation for un-
gauged catchments (e.g. Blöschl and Sivapalan, 1997; Merz
and Bl̈oschl, 2008). In addition, approaches which are cur-
rently employed on regional scale could be upscaled (for a
review see Prinos et al., 2009).

3 Conclusions

The aim of this paper is to demonstrate a methodology to de-
rive global flood hazard maps which are derived by a consis-
tent approach across the globe. This study is based on prod-
ucts of the European Centre for Medium range Weather Fore-
casts and uses models and data which are freely available.
The application of a methodology on a global scale naturally
includes many assumptions and therefore this study has to be
seen as a proof of concept.

In this paper the flood hazard maps for different return pe-
riods are derived from a cascade of models and data. The ma-
jor source of the atmospheric forcing is derived from reanal-
ysis data (ERA Interim) corrected with observations (GPCP
data). These inputs are used as boundary conditions to an
operational land surface scheme (HTESSEL) whose results
in turn are fed into a river routing algorithm which sim-
ulates and represents floodplains (CaMa-Flood). A map of
global river water storage on a 25 km scale is produced (the
25 km contains sub-grid parameterization from a 1 km re-
solved grid). Return periods up to 1000 yr are computed by
fitting a Gumbel distribution to the river water storage. River
water storage is converted into river water level (through the
river cross section parameters and channel length) and flood-
ing is remapped onto a 1 km grid. We demonstrate that the
resulting maps are physically plausible by showing the analy-
ses of global and continental maps of the 50 yr return period.
Uncertainty in this study is estimated from the fitting of the
distribution and is relatively low compared to that expected.
This is explained by the fact that uncertainty in river water

storage is somewhat dampened if mapped into a flood inun-
dation. This study also compares the results to a benchmark
produced by Herold and Mouton (2011) using a different
methodology. In general, the benchmark has a higher number
of flooded cells for a return period of 2 and 5 yr and a lower
number of flooded cells for larger return periods (> 20 yr) in
comparison to the data set computed in this study.

The results of this study indicate that the approach in this
paper is feasible and can produce realistic global flood haz-
ard maps of various return periods. It can be used to both
gain a global overview and prompt further research on the
local scale. Limitations can be overcome by addressing each
component of the system individually. The approach has the
great advantage that it benefits from continuous model devel-
opments and improvements as most components are part of
an operational forecast chain.
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