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Abstract

Evolutionary processes play a central role in the development, progression and

response to treatment of cancers. The current challenge facing researchers is to

harness evolutionary theory to further our understanding of the clinical progres-

sion of cancers. Central to this endeavour will be the development of experimen-

tal systems and approaches by which theories of cancer evolution can be

effectively tested. We argue here that the experimental evolution approach –
whereby evolution is observed in real time and which has typically employed

microorganisms – can be usefully applied to cancer. This approach allows us to

disentangle the ecological causes of natural selection, identify the genetic basis of

evolutionary changes and determine their repeatability. Cell cultures used in can-

cer research share many of the desirable traits that make microorganisms ideal

for studying evolution. As such, experimental cancer evolution is feasible and

likely to give great insight into the selective pressures driving the evolution of

clinically destructive cancer traits. We highlight three areas of evolutionary theory

with importance to cancer biology that are amenable to experimental evolution:

drug resistance, social evolution and resource competition. Understanding the

diversity, persistence and evolution of cancers is vital for treatment and drug

development, and an experimental evolution approach could provide strategic

directions and focus for future research.

Introduction

Recently, there has been a shift in current thinking among

cancer researchers that acknowledges the importance of

evolution in understanding cancer progression within a

host. This movement has been guided by an increasing

body of seminal work (e.g. Vogelstein and Kinzler 1993;

Leroi et al. 2003; Merlo et al. 2006; Attolini and Michor

2009; Sequist et al. 2011; Gerlinger et al. 2012; Greaves and

Maley 2012) reinvigorating old ideas (Nowell 1976) regard-

ing the evolution and ecology of cancers. Recent studies

have detected rapid evolution and spatially structured

genotypic and phenotypic diversity both within tumours

and between primary and secondary tumours (Frumkin

et al. 2008; Stoecklein et al. 2008; Sequist et al. 2011;

Gerlinger et al. 2012). The consideration of evolutionary

progression of cancers is therefore not just desirable it is

essential. Cells become cancerous when mutations arise

which increase their replication rate and survival advantage

compared with neighbouring cells; subsequently, natural

selection will act on these cells and ultimately ensure the

proliferation of the mutant lineage (for reviews, see Crespi

and Summers 2005; Merlo et al. 2006; Greaves and Maley

2012). Once cancerous traits have evolved, an elevated

mutation rate and metastatic potential may facilitate diver-

sification and persistence of the cancerous cells (Bielas

et al. 2006). Moreover, aggressive drug treatment of can-

cers will unavoidably select for resistant lineages, which

become increasingly difficult to treat. However, by under-

standing how the environment shapes the evolution of can-

cerous traits, we can begin to anticipate evolutionary

trajectories and apply a more proactive treatment strategy

(Cairns 1975; Aktipis et al. 2012; Yap et al. 2012).

There are a number of factors that will determine the fit-

ness of cancerous cells within a host. The immediate micro-

environment will present challenges for space and

resources, and the extended microenvironment will pro-

vide further challenges in the form of vascularization and

© 2012 The Authors. Published by Blackwell Publishing Ltd. This is an open access article under the terms of the Creative

Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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the realization of metastatic potential (that is the migration

and colonization of cancer cells to secondary sites within

the host). Although substantial effort has been conducted

into understanding mechanistic consequences of cell–cell
and cell–environment interactions, the evolutionary and

ecological outcomes have not been explicitly tested. These

have left fundamental questions regarding cancerous

behaviours unanswered, such as: How do competitive

interactions between cells determine disease progression?

What are the fitness costs of drug resistance? How do the

selective pressures between different environments effect

disease progression (e.g. liquid versus solid cancers)?

Answering these and other pressing questions in cancer

biology will require carefully designed experiments that

explicitly test competing evolutionary hypotheses of cancer

progression, which are led by observational data from clini-

cians highlighting the medically important traits.

In this article, we propose that to answer some of the

fundamental questions regarding the evolutionary progres-

sion of cancers, cancer biologists should adopt the powerful

techniques of experimental evolution. Seminal experimen-

tal evolution studies have fundamentally changed our

understanding of evolution in terms of adaptation (Lenski

et al. 1991), diversification (Rainey and Travisano 1998),

social evolution (Turner and Chao 1999; Velicer et al.

2000), evolutionary trade-offs and constraints (Novak et al.

2006; Blount et al. 2008), repeatability (Lenski et al. 1991;

Lenski and Travisano 1994; Cooper et al. 2003; Woods

et al. 2006; Barrick et al. 2009) and more besides; there is

strong potential for similar advancements in cancer biol-

ogy. Experimental evolution uses replicate populations of

organisms with fast generation times (typically microor-

ganisms) to study evolutionary processes in real time (for

review see, Elena and Lenski 2003). The experimenter con-

trols the environmental conditions under which evolution

occurs and monitors the effect of specific selective pressures

on traits of interest (Buckling et al. 2009). One major bene-

fit of this system is that evolved and ancestral lines, or mul-

tiple evolved lines, can be competed against each other to

measure fitness under defined ecological conditions, and

the accumulation of mutations can be followed in a rigor-

ously defined and time-directional manner over numerous

generations.

Cancer cells can conveniently be grown in vitro, and

these cancerous tissue cultures share many beneficial char-

acteristics with microbial model systems used for experi-

mental evolution studies (Table 1). A promising new area

of research therefore suggests itself: experimental cancer

evolution, which could provide new insights into disease

progression and aid the strategic development of new drug

therapies and treatment regimes.

Here, we discuss three general evolutionary problems

that have the potential to dramatically influence the evolu-

tion of cancerous traits, but remain to be rigorously

explored empirically: the evolution of drug resistance and

associated costs, cooperation and conflict between cancer-

ous and noncancerous cells, and resource competition as a

driver for the evolution of metastasis. Although all three

have already been successfully addressed using experimen-

tal evolution in microbes, cancers provide a new challenge

to understand how predictions derived from simpler bio-

logical systems translate to a more complex one. Cancers

have a comparably larger molecular ‘tool kit’ and a com-

plex relationship within the ‘cell community’. Noncancer-

ous cells are programmed for a multicellular lifestyle and

will thus act altruistically for the benefit of the host, but

Table 1. Features of microorganisms which make them an ideal model system for studying evolution experimentally (Elena and Lenski 2003) and

parallels in cancer cells.

Microorganisms Cancer cells Advantages for evolutionary experiments

Easy to propagate and enumerate Immortal lines can be easily grown, and lines

which have been used extensively in research

for decades are well enumerated

Cells can be grown at low cost and in high volumes.

Prior details of normal behaviour allow interesting

mutants to be identified

Fast replication Generation time of approximately 1 day Allows experiments to conceivably run for many

generations

Manipulable mutation rates Elevated mutation rate compared to

noncancerous cells

Facilitates variation by mutation within the population

Large populations exist in small spaces Billions of cells can be grown in tissue culture

flasks

Aids experimental replication

Stored easily and indefinitely in suspended

animation

Cells can easily be frozen and revived Enables comparisons between ancestral and evolved

lineages; lineages can be catalogued and revived

Asexual reproduction Cells divide mitotically Clonality assists experimental replication

Easily manipulated experimental conditions

and genetic composition of founding

populations

Culture resources and environment are easily

controlled

Allows identification of environmental and genetic

influences on evolutionary processes; advancements

in sequencing means genetic identification is easier

and more cost-effective than ever before

© 2012 The Authors. Published by Blackwell Publishing Ltd2
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cancer cells (which share the same signalling pathways)

have the ability to manipulate these altruistic cells for selfish

objectives. These factors have the potential to alter standard

predictions made from unicellular models, but importantly

will help to identify major issues which are likely to be key

in the context of disease progression. To account for these

differences between microbes and cancers (thus resulting in

more accurate predictions regarding evolutionary trajec-

tory), experimental evolution studies need to be conducted

which explicitly test evolutionary theory within the context

of cancer. A glossary is provided for definitions which

might not be familiar to both fields (Box 1).

Costs of resistance and trade-offs

The evolution of drug resistance is a process of adaptation

by natural selection and has been well described by popula-

tion genetics models (reviewed in, Levin et al. 2000; but see

also Read and Huijben 2009). In particular, the relationship

between mutation rate and the fitness effects of mutations

is key. Genetic instability is a trait which is considered a

hallmark behaviour (Hanahan and Weinberg 2011) of can-

cer. A high mutation rate is usually associated with a fitness

cost, because most mutations are deleterious. However, a

heterogeneous and frequently changing environment pro-

vides selection for phenotypes with elevated mutation rates,

because increased genetic variation allows faster adaptation

(Sniegowski et al. 1997). An accurate estimate of mutation

rates of cancerous cells in vivo is yet to be determined; how-

ever, this information is key if we hope to better understand

the predictability of resistance evolution. In particular, a

newly developed approach by Wielgoss et al. (2011) uses

whole genome sequencing combined with experimental

evolution to provide a highly accurate measure of bacterial

base-substitution rates – by sequencing several E. coli ge-

nomes after a 40 000 generation evolution experiment, they

were able to directly infer the point mutation rate based

accumulation of synonymous mutations. A similar

approach could be adopted using cancer cells to try and

identify why different cancers appear to vary in their muta-

tion rate, and what impact mutagenic chemotherapy drugs

have on baseline mutation rates (Loeb 2001).

Fitness effects of mutations are also crucial in determin-

ing their fate: resistance mutations are generally associated

with a reduced fitness in the absence of the drug – this

trade-off is termed the cost of resistance. Costs occur

because resistance is typically achieved through alteration

of the trait(s) targeted by the drug leading to impaired or

lost function. If resistant lines carry a fitness cost but are

still allowed to evolve in the presence of the drug, natural

selection will act to counterbalance the cost while preserv-

ing the resistance, and as such resistant mutants will

acquire new mutations which compensate for the fitness

decline. These compensatory mutations are important in

determining the probability of loss of resistance in a drug-

free environment, because the fitness of mutants which

have fixed compensatory mutations is conditional on the

presence of the resistant mutations for which they compen-

sate, thus in the absence of the resistance mutation, the

compensatory mutations may carry a fitness cost, therefore

reducing the likelihood of reversion (Schrag et al. 1997;

Maisnier-Patin and Andersson 2004).

Recent studies have seen rapid evolution of drug resis-

tance in cancers which occur due to mutations in the epi-

dermal growth factor receptors (EGFR), including non-

small-cell lung cancer (NSCLC) and colorectal cancers

(Kobayashi et al. 2005; Turke et al. 2010; Sequist et al.

2011; Diaz et al. 2012). EGFRs are essential for cell growth

and development, and highly conserved across all animals

(Bogdan and Kl€ambt 2001); for this reason, they are a com-

mon target site for cancer drugs, because by blocking the

EGFRs, it is possible to slow cell growth. Sequist et al.

(2011) found patients whose NSCLC had been treated with

an EGFR blocker (tyrosine kinase inhibitor; TKI) evolved

resistance within 12 months. To investigate the mechanism

of resistance, genetic and histological testing was carried

out on 37 patients with NSCLC treated with TKIs. It was

discovered that all 37 samples had acquired new mutations

related to the disruption of EGFR function, in addition to

the original EGFR mutations which had triggered cancer-

ous behaviour. This study clearly demonstrates that cancer

cells which modified their EGFRs to disrupt binding of

TKIs acquired resistance. However, changes to these recep-

tors are likely to have large negative fitness effects on the

cell, because they will be associated with less efficient cell

growth, but the actual costs of these fitness effects remain

to be explicitly measured. Competition experiments (Fig-

ure 1) could be used to quantify these costs and as such,

improve the predictive power of the evolution of resistance

to drugs which target EGFRs. Competition experiments

involve directly competing ancestral and evolved (i.e. sus-

ceptible and resistant) populations of cells in order to esti-

mate the relative fitness of each cell type. The likely large

costs associated with changes to the EGFR are further

exemplified in this study, because after some patients with

resistant cancers stopped treatment with TKIs, the resis-

tance mutations were lost, and their tumours once again

became sensitive to treatment by either the same or a dif-

ferent EGFR inhibitor. Reversion may occur if the cost of

the mutation conferring resistance is very high, but is unli-

kely if compensatory mutations have negated this cost.

Therefore, in this specific study, the cost of resistance

appears to be very high, and the effect of compensatory

mutations, low – a promising observation in terms of man-

aging drug resistance, and a measurable effect with in vitro

testing.

© 2012 The Authors. Published by Blackwell Publishing Ltd 3
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Similarly, rapid evolved resistance to TKIs is seen in

chronic myeloid leukaemia (CML) (Blagosklonny 2002;

Shannon 2002; Shah et al. 2007). Resistance is acquired via

point mutations to BCR-ABL (a gene responsible for con-

stitutive tyrosine kinase activity) that cause structural

changes which perturb binding of the drug (Gorre et al.

2001). Population genetics have been applied to clinical

data to try and gain an insight into how TKIs exert its ther-

apeutic effect in CML (Michor et al. 2005), finding that

TKIs dramatically reduces the rate at which cancer progeni-

tors are produced from the stem cells, but does not lead to

a decline of stem cells themselves. In addition, they found

the probability of evolving resistance increased with disease

progression, as a consequence of increased stem cell abun-

dance. This combined molecular and mathematical

approach shows promising and informative direction for

future development.

When resistance occurs, multiple drugs are commonly

administered in the hope that bombarding the cells will

mean full resistance is impossible (or at least improbable).

However, the success of such an approach requires a

detailed understanding of drug interactions: antagonistic

interactions between drugs (i.e. drugs which inhibit each

other’s effects) will most likely lead to a low rate of evolu-

tion of multidrug resistance, because a mutation that con-

fers resistance to one drug will be associated with only a

marginal benefit; however, when interactions between

drugs are synergistic (i.e. enhance each other’s effects),

resistance mutations will be associated with large benefits,

and rapid multidrug resistance is expected (Hegreness et al.

2008; MacLean et al. 2010). There has been much research

showing the importance of the microenvironment in deter-

mining cancer behaviour, and it is likely to be central in the

context of evolution of drug resistance. By administering

different drug strategies in the lab, which are known to be

antagonistic or synergistic in their actions, under different

environmental conditions (such as nutrient content, tissue

type or genetic variability of tumour mass) we can test pre-

(A)

(B)

Figure 1 The simple competition experiment is one of the most powerful tools in experimental evolution. It allows ancestral and evolved populations

to be directly competed to provide an estimate of relative fitness between populations under defined ecological conditions. Ancestral and evolved

populations are grown separately, and then mixed at a 1:1 frequency. They are allowed to grow and compete, after which the frequency of each

population is estimated by plating a subset of cells onto a hard media and counting each colony type (cells may need to be tagged to allow differenti-

ation). After Elena and Lenski (2003) and Buckling et al. (2009).

© 2012 The Authors. Published by Blackwell Publishing Ltd4
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dictions regarding the evolution of drug resistance and gain

a greater understanding as to what extent evolutionary tra-

jectories are predictable.

In microbes, there has been a drive to understand the

evolution of resistance due to the misuse of antibiotics

leading to widespread antibiotic resistance. As such many

techniques have been developed which measure the key

components of the evolution of resistance, such as muta-

tion rates, costs of resistance, compensatory evolution,

multidrug resistance, and selection gradients. For instance,

costs of resistance have been accurately measured using

competition experiments (Figure 1) whereby the ancestral

strain (which is susceptible to the antibiotic) and the resis-

tant strain are grown together in the absence of the antibi-

otic. A subset of the population is then plated onto agar

plates to allow growth of each strain type to be determined.

Comparing the ratio of ancestral and resistant colonies

enables fitness estimates to be made. This information

allows one to determine the effect of antibiotic use under

ideal conditions for microbial growth and predict conse-

quences for in vivo use, enabling calculated risk assessment

in antibiotic treatment. These experiments are all quick

and simple to conduct and cheap to run – and similar

experiments could be conducted using a cancer system.

In addition, a theoretical approach using adaptive walks

allows predictions to be made regarding the likelihood of

reversion of a resistance mutation to its susceptible ances-

tral genotype given a certain selection gradient and fitness

landscape. Microbial data suggest that compensatory muta-

tions are more likely than reversions, because there are sev-

eral possible compensatory mutations for each resistance

mutation (Poon et al. 2005). Moreover, compensatory

mutations may be harmful in the absence of the original

resistance mutation, further decreasing the chance of rever-

sion (Schrag et al. 1997; Maisnier-Patin and Andersson

2004; Andersson 2006). Current research suggests that

microbes cannot be relied on to lose resistance to an antibi-

otic if its use is discontinued (Andersson 2006; although

see, Andersson and Hughes 2010), and therefore, we might

predict that the rate of cancer cells losing resistance will

depend on the type of drug used, the strength of selection

and the degree of competition within the tissue (Komarova

and Wodarz 2005; Szakacs et al. 2006). However, evidence

from cancer research seems more promising. Several rever-

sions to susceptible phenotypes were observed in one study

(Sequist et al. 2011): but, how can we account for these

apparent differences?

We suggest that this difference is due to disparities in

drug action. Antibiotics can rapidly kill bacteria without

destroying human cells because they exploit the differences

between bacterial and eukaryotic cells. The differences

between cancerous and healthy human cells are, by con-

trast, subtle, involving quantitative differences in gene

expression (Zhang et al. 1997). Cancer treatment is there-

fore a more sensitive compromise between efficacy and

toxic side effects, involving longer courses of treatment,

typically several months. This means selection for drug

resistance in cancer cells is weaker, but more prolonged,

than selection for antibiotic resistance; mutations confer-

ring resistance will be favoured, but any pleiotropic delete-

rious effects on fitness must be minimal. When bacteria are

challenged with an antibiotic, however, selection pressures

are strong, so mutations conferring resistance can fix even

if they have considerably deleterious pleiotropic effects.

Potential compensatory mutations are therefore more

advantageous, and fix more rapidly. This hypothesis is test-

able using microbes and cancer cell lines.

Social evolution: conflict and cooperation

The social environment – the behaviour of an organism’s

neighbours – can have a direct impact on fitness. These

interactions are often thought of as negative: for instance,

individuals that are competing for scarce resources will

reduce each other’s fitness. However, social interactions

can also provide benefits if, for example, mutually secreted

enzymes free up nutrients for neighbouring cells (Lee and

Schneewind 2001; Nadell et al. 2010). Under these circum-

stances, the behaviour can be considered cooperative

because the action benefits both the actor and the recipient

(West et al. 2007). Cooperation can be split into two sub-

groups: mutualism, whereby both individuals contribute to

a behaviour to which both gain benefit; and altruism,

whereby an action benefits the recipient but comes at a cost

to the actor. Altruism in particular posed a problem for

evolutionary biology: how can a behaviour evolve which

appears costly to the individual but beneficial to others

(Maynard Smith and Szathm�ary 1995; Hamilton 1996)?

Hamilton (1964) explained the evolution and maintenance

of altruistic behaviours through relatedness, whereby coop-

erative interactions can evolve if the benefit from such an

interaction is most likely received by a kin member. This is

because improving the fitness of a kin member helps to

propagate the shared genes between the helper and the

helped – thus an indirect benefit is gained. Mutual benefit

cooperation on the other hand provides a direct benefit to

all contributors, and therefore can evolve in the absence of

high relatedness.

The evolution of multicellularity is considered one of the

major evolutionary transitions in the history of life on earth

(Maynard Smith and Szathm�ary 1995). For multicellularity

to evolve, cells are required to transition from unicellular

individuals acting selfishly to proliferate their own survival,

to being part of a group where survival is maximized

between many cooperating individuals. For this to occur,

competition between selfish entities must be repressed, and

© 2012 The Authors. Published by Blackwell Publishing Ltd 5
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individual cell fitness aligned with group cell fitness (Leigh

1977), otherwise there will be a selective drive to defect

from a multicellular lifestyle in favour of a solitary one

(Frank 2003; K€ummerli et al. 2010). In our own bodies,

individual somatic cells cooperate to maximize lifetime

reproductive success, and thus transmission of the genes

which are shared by every cell in our body. Cancer cells

undergo this major transition in reverse, and abandon a

cooperative existence to selfishly outgrow normal cells. At

this point, the focused level of selection (in terms of under-

standing disease progression) shifts from the group to the

individual cell (Klein 2003; Gardner and Grafen 2009).

However, this transition poses some interesting ques-

tions as to how these rogue cells interact with their social

environment given that they possess the machinery to

manipulate their competitors. Cell–cell interactions are

vital in disease progression, resulting in complex hetero-

typic interactions where tumour cells interact with each

other in addition to the normal stromal cells within the tis-

sue microenvironment and vice versa (Weaver and Gilbert

2004; Axelrod et al. 2006). Noncancerous cells use signal-

ling networks and mutually secreted enzymes in normal cell

growth; however, cancer cells use these same pathways and

signals for abnormal cell growth. Cancer cells are known to

interact with each other and with cells from the tumour

microenvironment – recruiting noncancerous cells to facili-

tate proliferation (Hanahan and Coussens 2012), and

recent research has noted the conceptual similarities

between cancer and bacteria in terms of social behaviours

(for review see Ben-Jacob et al. 2012). There is evidence

that certain hallmark behaviours (Hanahan and Weinberg

2011) of cancer cells require the excretion of products

(sharable resources) which will be beneficial to other cancer

cells within the vicinity (Stetler-Stevenson et al. 1993;

Coussens et al. 2002; Egeblad and Werb 2002): this is coop-

erative behaviour. Cooperative behaviours are intrinsically

involved in several steps of tumour progression, such as

angiogenesis, self-sufficiency in growth signals and tissue

invasion (Table 2). This leads to a scenario of both cooper-

ation and conflict, whereby cancer cells are regarded as

cooperators in terms of the disease, but create conflict (i.e.

behave as cheats) in the eyes of the host.

The tensions between cooperation and conflict over

shared resources has been extensively researched in micro-

bial systems, and some seminal papers have fundamentally

changed our view of the social world microbes live in

(Chao and Levin 1981; Turner and Chao 1999; Strassman

et al. 2000; Velicer et al. 2000; Queller et al. 2003; Fiegna

et al. 2006). Bacteria produce numerous extracellular mole-

cules, such as tissue degrading enzymes, iron-scavenging

siderophores and sticky polymers to protect surface grow-

ing bacteria (biofilms), which are individually costly but

benefit the group as a whole (West et al. 2007). Using tech-

niques from experimental evolution on microbial systems

Table 2. Examples of ‘mass action cooperation’ (Heckathorn 1996) in cancers, where mutualisms form between different clones and cells within the

microenvironment

Behaviour Cooperative characteristics

Angiogenesis Tumours require nutrients and oxygen to grow. Therefore, they must recruit new blood vessels into the area

(neoangiogenesis) by secreting vascular endothelial growth factor (VEGF). The recruitment of blood vessels

to an area not only benefits the secreting cells but also any cells within the local vicinity. Therefore, VEGF

can be thought of as a communal product, the production of which is likely to carry an energetic cost to the

producer, and a growth benefit to any recipients. Evidence for this behaviour has already been shown in cancer–

stromal–cell interactions, and there is growing evidence that it may also be important between cancer cells

(Kalas et al. 2005).

Self-sufficiency in growth signals Cancer cells produce many growth factors (such as VEGF, PDGF and TGF-b) (Mueller and Fusenig 2004)

that induce stromal reactions for angiogenesis and inflammation, and activate other stromal cells, such as

fibroblasts, to secrete other growth factors (GFs) and proteases (de Jong et al. 1998; Klein 2003; Weaver

and Gilbert 2004). Although not systematically tested, there is some evidence that cancer cells secreting GFs

are frequently adjacent to cells which express GF receptors, and therefore have the potential to respond to GF

signals (de Jong et al. 1998; Royuela et al. 2004). This suggests that cancer cells are able to share GFs

between each other, and also recruit GFs from noncancerous cells, which will aid tumour growth.

Tissue invasion Cancer cells interact with stromal cells to stabilize the tumour microenvironment. Normally, tissue cells remain

confined to their territory because they respond to signals from neighbouring cells, and the extra cellular

matrix (ECM). Any cells which become detached receive apoptotic signals from the invaded tissues, and as such

are eliminated. Malignant tumour cells effectively ignore these signals, and so are able to migrate beyond the

defined boundaries of the tissue (Liotta and Kohn 2001). Stromelysin-3 secreted by fibroblasts peripheral to the

tumour is known to reduce the death rate of cancer cells invading adjacent connective tissues. In addition,

proteases from nearby stromal and cancer cells are known to contribute to neoplastic progression by degrading

ECM, aiding in cell proliferation, tissue invasion and metastasis (Tlsty 2001).

© 2012 The Authors. Published by Blackwell Publishing Ltd6
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has enabled us to explore theories regarding the evolution

of cooperative behaviours, and gain a better understanding

for how they might be maintained within a population.

Evidence suggests cooperation will be maintained

through indirect and direct fitness benefits (Griffin and

West 2002). Indirect fitness benefits require high related-

ness within the population, ensuring cooperative behav-

iours benefit local kin members. Direct fitness benefits can

occur if individuals have a shared selfish interest in cooper-

ating, for example, in the case of cross-feeding (where the

waste product of one species is an energy source for

another; Bull and Harcombe 2009). Moreover, it has been

successfully established, using microbes, that social behav-

iours often involve frequency-dependent selection (Queller

1984). This is because a ‘cheating behaviour’, that is letting

those around you contribute to a public good so you don’t

have to, is only a successful strategy if it is rare. This is

likely to be important in the context of cancers because

these factors will limit the size at which tumours can suc-

cessfully function. The influence of such factors is easily

addressed using competition assays (Figure 1) which vary

in the initial frequencies of altruists and cheats (Ross-Gil-

lespie et al. 2007).

Bringing social evolution research into the context of

cancer will give new insights into the levels of selection and

transitions to multicellularity. The experiments can start

simple: spheroids (artificial masses of cancer cells), which

are made up from cells of varying genetic diversity, are

exposed to a range of environments which alter the com-

petitiveness between cells (e.g. varying nutrient condi-

tions). Here, we can look to see whether the predictions

made by social evolution theory are fulfilled, and build on

this knowledge with more complex experiments. Due to

the easy manipulation of spheroid diversity, it gives the

potential for cancer to make an elegant system on which

some important questions can be answered: How does

relatedness influence relative competition between cells? Is

competition beneficial (because it encourages cooperative

behaviours and metastasis) or disadvantageous (because

cells have less individual resources) for tumour growth?

Resource competition: dispersal and metastasis

Metastasis in cancer is conceptually equivalent to dispersal

in ecology. As disease progresses, cells detach from the pri-

mary tumour and circulate in the bloodstream, where some

go on to colonize new tissues and establish metastatic

tumours (Friedl and Wolf 2003). Likewise, dispersal is the

relocation of individuals from a natal site, a behaviour

which provides the opportunity for population expansion

via colonization events. It is therefore essential to apply the

well-established evolutionary theories of dispersal to under-

stand metastasis.

Dispersal is a risky strategy: a dispersing individual may

die, settle in an unsuitable habitat or find itself in competi-

tion with locally adapted rivals, and for many organisms,

the probability that dispersal will pay off is extremely low.

Yet dispersal is ubiquitous across the spectrum of life: from

microbes, to plants, to birds. To understand how dispersal

strategies evolve, one must understand the costs and bene-

fits which will determine when and how dispersal is

favoured, and the ecological subtleties which shape the

behaviour. Fundamentally, the benefit of dispersal is that it

allows an individual to escape local competition (providing

an indirect fitness benefit) and gain access to resources

(providing a direct fitness benefit) (Bowler and Benton

2005; Wei et al. 2011). A crucial breakthrough was the rec-

ognition that dispersal is often a social trait such that

organisms might pay high costs for dispersal if they are sur-

rounded by kin. When individuals within the population

are genetically similar (termed related), the overall benefit

of dispersal is maintained, even when individual costs of

dispersing are high (Hamilton and May 1977; Comins et al.

1980; Taylor and Frank 1996; Gandon and Michalakis

1999; Taylor and Buckling 2010). This is because the inclu-

sive fitness of an individual is determined not only by how

many genes it directly passes onto the next generation but

also by how many genes shared with related individuals are

also passed on (termed indirect fitness). This social consid-

eration in terms of dispersal supports the paradoxical

observation of how dispersal might evolve even when most

dispersing individuals themselves die: a dispersing individ-

ual can increase the chances that related individuals, who

forego dispersal to compete for resources, will benefit from

decreased competition and consequently the disperser will

benefit indirectly.

Limited dispersal will increase relatedness (favouring the

evolution of altruistic traits), but increase local competition

among relatives (disfavouring altruism). Theoretically, in

the simplest scenario, these two factors exactly cancel each

other out, such that the level of dispersal has no effect of

the evolution of altruism (Taylor 1992). However, the con-

sideration of more complex scenarios provides mechanisms

for ways in which limited dispersal can still favour altruism

(Lehmann and Keller 2006; Alizon and Taylor 2008). One

such mechanism which can provide a solution to the main-

tenance of social traits with dispersal is the process of bud-

ding dispersal. Experimental evolution has shown that this

trade-off between limited dispersal and increased local

competition can be circumvented when cooperators dis-

perse in small aggregated groups (K€ummerli et al. 2009),

thus keeping relatedness high and allowing the colonization

of new patches where competition is low. There is evidence

that cancer cells do not only migrate individually, but also

collectively, in a behaviour comparative to budding dis-

persal (Friedl and Wolf 2003). This behaviour increases
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tumour invasion efficiency and survival probability

through the maintenance of social behaviours, for example:

the larger cell mass maintains high endocrine concentra-

tions, protects inner cells from risks encountered during

dispersal, and also promotes invasion of cells which are less

mobile. It is yet to be determined how common metastatic

secondary tumours are established via collective-cell move-

ment, but evolutionary theory would predict that the dis-

ruption of group migration would decrease metastatic

formation under this scenario.

One theoretical finding of particular relevance is that

population processes and the evolution of dispersal are

highly interdependent. Specifically, demographic features

of the population will determine dispersal rate, and dis-

persal rate will alter population demography (Ronce 2007).

To understand the maintenance and stability of dispersal

strategies, it is vital to consider feedbacks between evolu-

tionary and ecological processes associated with dispersal.

In cancers, for example, the increasing cell density in a

growing tumour will alter the local environment (especially

the intratumour microenvironment), rapidly reducing

nutrient levels and oxygen availability; this, in turn, will

feedback into the population demography – increasing rel-

ative competition between cells for a dwindling pool of

resources. This competition may change relative selective

pressures: decreasing the benefit gained from associating

with nearby cells, and increasing the benefit of dispersing,

which will provide the opportunity to escape competition

and potentially colonize new empty patches.

Metastatic cancers are the most aggressive and have the

poorest outcomes in terms of patient survival (Liotta et al.

1991). However, only a vanishingly small proportion of

metastatic cells establish a new tumour (Butler et al. 2000),

and metastatic cells are at a significant disadvantage in

competition for space and resources (Chen et al. 2011).

The problem of explaining how metastasis evolves despite

high apparent costs was identified by Bernards and Wein-

berg (2002): ‘(T)here is no reason to think that a metastatic

phenotype enables cells to proliferate more effectively

within the primary representation in the overall tumour-

cell population’. In other words, metastasis should only

exist as a rare trait, overwhelmingly dominated by static

phenotypes which do not pay the cost of dispersal. Unfor-

tunately, this does not describe the observed patterns of

metastatic progression (Liotta and Kohn 2003), with an

estimated 106–107 cells emigrating daily from a developed

neoplasm (Butler et al. 2000).

Dispersal ecology theory was recently applied to this

problem, and metabolic rate, determined by resource heter-

ogeneity within primary tumours, was considered a selec-

tive agent for high cell motility (Anderson et al. 2006;

Chen et al. 2011; Aktipis et al. 2012). The microenviron-

ment surrounding a growing neoplasm can quickly change

over small distances, becoming hypoxic (Harris 2002; Brur-

berg et al. 2003, 2005; Vaupel and Harrison 2004; C�arde-

nas-Navia et al. 2008) due to poorly regulated

angiogenesis, changes in vascular architecture, or tempo-

rary obstruction or interruption of blood flow by neoplas-

tic cells (Boucher and Jain 1992; Araujo and McElwain

2004; Vaupel and Harrison 2004). The effect of spatial and

temporal resource availability was modelled mathemati-

cally with the conclusion that resource heterogeneity selects

for cell motility, and cell dispersal is an evolutionary conse-

quence of that selection (Chen et al. 2011).

Insights from experimental evolution using microbial

model systems show that kin competition can indeed drive

the evolution of dispersal behaviour. Taylor and Buckling

(2010) found that the benefit of dispersal was much higher

in clonal (highly related, or kin based) bacterial popula-

tions, and these clonal populations were more likely to dis-

perse under very high resource-dependent costs than

mixed dispersal strategy populations. In addition, Wei

et al. (2011) found bacterial motility provided large bene-

fits to a bacterial population by allowing individuals to

move away from each other and thereby obtain a greater

share of resources in physically structured environments.

These types of studies provide a framework to develop sim-

ilar experiments in a cancer cell system (Box 2), which will

provide vital data on basic questions concerning metastatic

behaviour, for example: Is metastasis a heritable trait? To

what extent does environment determine metastatic behav-

iour over genetics? and What role does the cost of dispersal

play in determining the success of new tissue invasion, and

how does the social environment alter these costs?

Crucially, cancer cells do differ from microbes, and their

own natural history must be considered. Even including

transmission in utero, there are extremely few known

instances in which a human cancer has dispersed outside

its original host, and no known outbreaks of repeated host-

to-host transmission (Dingli and Nowak 2006). Of the

three transmissible tumours known from other mammals,

only canine transmissible venereal tumour (CTVT) has

spread through a typical host population. Devil facial

tumour disease (DFTD) infects Tasmanian devils, a criti-

cally endangered species with low genetic diversity, and

transmissible hamster sarcoma spread via a vector through

laboratory animals which shared sufficient genetic identity

(Banfield et al. 1965).

We posit that in the long run, a cancerous cell line is

doomed, because they have not evolved a long-term strat-

egy to promote vertical or horizontal transmission. Of

course, evolution has no foresight, so this ultimate futility

does not in itself affect the progress of disease. However,

selection for colonization ability can only occur at coloni-

zation events; even where selection is very strong, it must

also be iterative to build up complex adaptations. Cancers
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undergo relatively few colonization/dispersal cycles, and

consequently cannot build up the intricate adaptations for

dispersal and establishment found in independent organ-

isms; instead, they may crudely redeploy existing motility

pathways, such as those used in development and wound

healing. This may result in maladaptive or suboptimal

behaviours that could be exploited in cancer treatment.

Concluding remarks

In this article we have discussed how methods from

experimental evolution can be applied to help understand

the evolution of cancers. Considering cancers from an

ecological and evolutionary perspective should lead to

innovative approaches to disease control and drug treat-

ment. There are many lessons to be learnt from evolu-

tionary theory, and a cancer tissue model system shares

many of the advantages of a microbial model system,

providing great potential for addressing evolutionary

questions regarding disease progression in a biologically

relevant system. In cancers, this model system has the

advantage of direct applicability to the disease model. In

particular, understanding the repeatability of evolutionary

processes would have significant clinical applications for

cancer biology, as currently, cancer types are often treated

as distinct from each other, requiring independent ave-

nues of research in order to understand their differences.

However, by focusing on the similarities between cancers

rather than the differences, universal treatment strategies

may be identified.

We must, however, consider the limitations of experi-

mental evolution and despite its proven success in micro-

bial models – the methods have also received criticism

(Buckling et al. 2009), namely concerning its realism to

more natural settings. The laboratory is not a natural envi-

ronment, and therefore some argue the results are not

applicable to the ‘real-world’. However, during the course

of an experimental study, an organism will adapt to its lab-

oratory environment (in fact, many commonly used cancer

cell lineages have been maintained in laboratory conditions

already for many generations). Therefore, these organisms

will be adapted to the environment in which they are

assayed – the alternative is to take organisms out of the

environment to which they are adapted and measure them

under laboratory conditions. This will likely mask the

effects of the selective agent being considered, as expression

of the trait of interest may be modified by unfamiliar sur-

roundings. Furthermore, the approach has been criticized

for being too simplistic in comparison to real-world com-

plexity. However, the simplicity of design is the exact bene-

fit of this method – using a simple model system captures

the influence of certain identified selective factors on a trait

of interest – thus improving overall generality of the

results.

Identifying mechanisms that directly influence the evolu-

tionary progression of a disease requires in depth under-

standing of the genetic, behavioural and physiological

components within a phenotypic context. The first step in

this process is the development of evolutionary theory in a

mathematical model to identify and quantify the selective

factors which determine evolutionary processes. Evolution-

ary models are now being used to explore the evolutionary

progression of cancers, and opening the door for commu-

nication between disciplines in the process (Nunney 2003;

Anderson et al. 2006; Chen et al. 2011). However, without

empirical synergy, the true applicability of these models is

difficult to determine. Empirical systems bridge the gap

from theory to clinical reality, which enables the translation

of ideas and evolutionary risk analysis of drug treatment

and disease progression.

The three examples of relevant evolutionary questions

discussed above are by no means an exhaustive list. The

first step for these experimental evolution studies should be

to identify the population dynamics which will influence

evolutionary processes, such as measurement of mutation

rates, fitness effects of mutations, generation times, popula-

tion structure, the frequency of selective sweeps and the

selective effects of drug therapies (Merlo et al. 2006). The

second step should be to identify the ecological effects dif-

ferent environmental conditions have on such processes.

The third step should be to identify the genetic mecha-

nisms underlying the evolution of disease-related behavio-

ural changes. Finally, we should be able to apply such

knowledge to patient-specific cases, with the hope of pre-

empting progression of the disease with personalized treat-

ment strategies.
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Box 1: Glossary

Adaptive walks Sequences of beneficial mutations

Altruistic An action directed towards another individual which results in a cost to the helper and a benefit to the helped

Angiogenesis The physiological recruit of new blood vessels

Compensatory mutations Mutations which offset the negative fitness effects imposed by another mutation

Cooperative An action which benefits both the helper and any helped

Demographic features Characteristic features of a population

Direct fitness An individual’s own genetic contribution to the next generation

Epidermal growth factor receptors Surface growth factor receptors

Fitness landscape A multidimensional space where an artificial landscape comprised peaks and valleys represents a genotype or

phenotype fitness value

Hallmark behaviours Common traits of cancer cells

Hypoxic Oxygen depleted environment

Inclusive fitness The sum of an individual’s direct and indirect fitness

Indirect fitness The genetic contribution to the next generation gained from the reproduction of relatives

Kin member Genetically related individual

Metastatic (metastasis) Secondary tumours caused by the migration of cells from the primary tumour to other tissues within the body

Mutualism Ecological relationship beneficial to both partners

Neoplasm An abnormal tissue mass

Phenotype Observable characteristics of an individual resulting from the interaction of its genotype with the environment

Reversion Back mutation of a point mutation to its ancestral state

Relatedness The level of consanguinity between two given individuals

Selection gradient The slope of a regression of fitness on trait value

Somatic cells Cells which make up the tissues of the body (i.e. not the germ cells)

Stromal The supporting tissue of an organ

Tyrosine kinase inhibitor (TKI) A drug that interferes with cell communication and growth and may prevent tumour growth

Box 2: A Thought Experiment

Using in vitro techniques to understand how resource competition between cells can drive metastasis in cancers – an experimental evo-

lution approach

Metastasis – the progressive spread of malignant cells away from its origin to colonise new tissues – is the most deadly aspect of can-

cer, and therefore, understanding the processes which encourage cell movement is of integral interest to the field. From the cancer’s

perspective, metastasis offers the opportunity to escape deteriorated patches and colonise unexploited, healthy tissue. Dispersal theory

has been applied to cancer research, giving evolutionary explanations for trends in cell motility via a Darwinian fitness approach. Such

theory predicts that increased competition between cells, via factors such as resource depletion, should promote dispersal and thus

encourage metastasis.

Prediction: More motile cells will be fitter when competition between cells is greater

Methods:

a)Set up replicate cell lines of non-metastatic spheroids under two media conditions: (i) high nutrient media and (ii)

low nutrient media.

b)Adhere spheroids to plates to enable motility to be expressed

© 2012 The Authors. Published by Blackwell Publishing Ltd10
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c)Transfer a subset of the population to new media (within the same media treatment conditions) periodically to main-

tain population growth. Continue for a number of generations, until a phenotypic difference between cell lines is

detected.

d)Measure difference in motility between cell lines, and compete evolved lines with ancestral lines under different nutri-

ent conditions to see whether evolved lines have a fitness advantage.

Predicted Results:
(A) (B)

A qualitative prediction showing: (a) cells which are evolved in a low-nutrient environment will become more motile than those

evolved in a high-nutrient environment over time, and (b) when evolved and ancestral cell lines are competed in high- and low-nutri-

ent conditions, the relative fitness (proportion of the evolved compared to the ancestral cells) of cell lines evolved in a low-nutrient

environment will be higher than those evolved in high nutrients as they are able to escape competition and access more resources than

those evolved in high nutrient. Under high-nutrient conditions, there is no benefit to dispersal and therefore cell lines are equally fit.
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