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Superfast non-linear diffusion: Capillary transport in particulate porous media.
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Center for Risk Studies and Safety, University of California at Santa Barbara, Santa Barbara, CA, USA.2

Abstract

The migration of liquids in porous media, such as sand, has been commonly considered at high saturation

levels with liquid pathways at pore dimensions. In this letter we reveal a low saturation regime observed in

our experiments with droplets of extremely low volatility liquids deposited on sand. In this regime the liquid

is mostly found within the grain surface roughness and in the capillary bridges formed at the contacts between

the grains. The bridges act as variable-volume reservoirs and the flow is driven by the capillary pressure arising

at the wetting front according to the roughness length scales. We propose that this migration (spreading) is

the result of interplay between the bridge volume adjustment to this pressure distribution and viscous losses

of a creeping flow within the roughness. The net macroscopic result is a special case of non-linear diffusion

described by a superfast diffusion equation (SFDE) for saturation with distinctive mathematical character. We

obtain solutions to a moving boundary problem defined by SFDE that robustly convey a time power law of

spreading as seen in our experiments.

Extremely low volatility (persistent) liquids can spread significantly in porous substrates and wet large volumes

over long periods of time before they are removed by evaporation. For example, we found in experiments that a

2.8µL drop of Tris(2-ethylhexyl) phosphate (TEHP - vapour pressure ∼ 10−5 Pa) deposited on a bed of Ottawa

sand, covered a volume of ∼ 1.7mL in 25 days, where the spreading essentially came to a stop. With a measured

(wet-bed) porosity of φ ∼ 30%, this suggests an average saturation level of s̄ ∼ 0.55% (s is the liquid volume

divided by the volume of available pore space) and, if uniformly distributed on the surface of 250µm spherical

grains, a ”film” thickness of ∼ 100 nm. Clearly we are confronted with the mechanics of a process unlike anything

found in previous investigations of liquid spreading in environmental porous media.

Equilibrium considerations at low saturation levels have been made in connection with structural properties

of granular materials (sands, soils), and these provide a useful starting point [1–3]. The experiments conducted

with spherical glass particles (240− 1200µm, unknown roughness), shaken with water and allowed to settle, have

revealed that liquid domains may exhibit different morphologies. At the low end of saturations s̄min < s̄ < 8%

the liquid forms isolated pendular rings (liquid bridges) at the points of particle contact. The minimal saturation

at the onset of bridge formation was found to be s̄min ∼ 0.2% [3], which is also the level at which the system loses

its cohesive property. At higher saturations, 8% < s̄ < 24%, some bridges coallesce into more complex structures

(trimers, pentamers and heptamers), but still global connectivity at the pore scale is lacking. [We have observed

similar behavior with sand particles at s̄ < 20% (Fig. 1).]

We anticipate that these overall guidelines for loss of pore-scale connectivity also apply to non-equilibrium

systems, such as in our experiment described above, thereby deducing that any transport observed at such low

levels of saturation must be due to capillary action at the surface-roughness scale of individual grains (a web-like

surface flow geometry). This idea is pursued here by means of a relatively simple mathematical model that ties

together the key physics of this transport phenomenon and by highly sensitive experiments devised specifically

for accurate tracking of wetting fronts at such trace-quantity conditions.

Previous work with liquids spreading along microscopic surface grooves of various shapes and dimensions has

shown that the flow obeys a local Darcy-like law with the permeability related to the groove geometry [4]. Taking

this as an approximate model of the micro-flow within the surface roughness, applying intrinsic liquid averaging
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Here, u and ψ are the liquid velocity and pressure averaged within a surface “groove”, µ is viscosity, Se is the area of

entrances and exits for the liquid phase through the macroscopic surface element S, and κ is the individual-groove

permeability. The latter, if modified by the surface ratio Se/S, yields an effective porous medium permeability K.

An order of magnitude estimate of this quantity can be obtained from the geometry, roughness amplitude δ and the

assumption that the wetted grooves are completely filled [4,6], namely, K = κSe

S
≈ δ2

32π
Se

S
≈ 3 (1−φ) δ3

32πR
, where

R is the effective particle radius. Similarly, the saturation due to the liquid within the roughness is sr ≈ 1−φ
φ

3δ
2R

.

The connection of (1) to the total saturation s is made by accounting for the liquid content in the bridges

sb = s− sr. Based on the results of [7], we obtain, for the case of two identical spheres in contact and assuming

near-complete wetting systems, an approximate expression with maximum error < 1% for the normalized mean

curvature HR as a function of the normalized bridge volume VbR
−3, HR = C0 − C1(VbR

−3)γ with C0 = 3.7,

C1 = 1.3 and γ = −0.516± 0.001. The saturation due to the liquid in the bridges is sb = α−1VbR
−3, α = 4π

3N
φ

1−φ

and N is the particle coordination number. Since p = 2σH, one obtains

p(s) =
2σ

R
{C0 − C1 α

γ(s− sr)
γ} , (2)

where σ is surface tension.

Now using (1) and (2), one can cast the continuity equation, ∂φs
∂t

+∇·q = 0, into a non-linear diffusion equation

which, after introducing non-dimensional variables s̃ = (s − sr)/sm, x̃ = x/L and t̃ = t/τ with τ = L2s1−γ
m /D,

takes the form
∂s̃

∂t̃
= ∇

(

s̃γ−1∇s̃
)

, (3)

where sm and L are the characteristic saturation and the length scale of the system and D = 2σ
R

K
µ

C1|γ|α
γ

φ
is the

diffusion coefficient.

It can be readily seen that the character of this diffusion problem depends utterly on the type of non-linearity

dictated by the value of γ. If γ > 1, we have what is known as the Porous Medium Equation (PME) [8] - the

typical modelling paradigm in the area of porous transport. Diffusivity in the case of PME yields zero flux at the

edge of any initial condition with compact support. This in turn leads to the so-called waiting times and infinite

slopes in solutions at moving boundaries, which require special numerical treatment based on a moving-mesh

method [9]. If, on the other hand, γ < 0, which is the case here, the diffusivity, and therefore the flux, become

arbitrarily large as s̃F = sF −sr

sm
→ 0; this is a manifestation of the capillary pressure singularity in (2). In this

case, one must have non-zero saturation at the front s̃ = s̃F > 0 for a solution to a boundary problem to exist.

Accordingly, we must supplement (3) with the front velocity, which from the flux continuity at the moving front

with a normal vector n, in the dimensionless form reads

ṽF = −
sm

sF

s̃γ−1

F (n · ∇s̃). (4)

A mathematical discussion of this special class of problems can be found in [8] under the term superfast

diffusion (SFD). In our case parameter γ = −0.5 is fixed and any solution to (3)-(4) belongs to a two-parameter

family of functions depending on sF /sm and s̃F . Since sF is the terminal saturation, its value expresses the final

extent of the wet volume. The second parameter s̃F is the measure of capillary suction at the front - the larger

s̃F , the smaller the capillary pressure. The structure of this solution space is illustrated after the presentation of

the experimental data, further below.
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Our experiments covered a variety of sands and several well-wetting, low-volatility (organophosphate) liquids

of varying viscosities and surface tensions ( Tributyl phosphate (TBP), CAS 126-73-8; TEHP, CAS 78-42-2; and

Tricresyl Phosphate (TCP), CAS 1330-78-5; Sigma-Aldrich). The liquids have viscosities 3.5/ 15/ 20mPa · s at

20◦ C [10], surface tensions, measured in our laboratory at 25◦C, 28/ 29/ 42.5mN/m and contact angles measured

on smooth/rough glass 10◦/0◦; 10◦/0◦; 30◦/20◦ respectively. Initial tests showed that spreading is slowed down in

the presence of re-entrant microscopic cavities on the sand grains as found for example in erosion sands - they act

as irreversible liquid reservoirs. Therefore, it is sufficient for our purposes here to focus on the well-characterized

(for example, [11]) Standard Ottawa sand (EMD Chemicals, p/n SX0075). The sand has an average grain size

of 250µm and surface roughness in the range 0.25 < δ < 3µm [11]. Natural packing (slight shaking to level the

bed) yields porosities of ∼ 35%, but when wetted we measured (by analysis of images such as in Fig.1) φ ∼ 30%,

and a coordination number N ∼ 7 − 8. The experiments were carried out by depositing gently (fall distance

∼ 5mm) a liquid drop and following the evolution of the wet region by imaging the top surface of the bed. In

addition, penetration into the bed was observed in half-symmery tests as illustrated in Fig. 2. The time-lapse

photography was computer-controlled in a setting that was left undisturbed inside a dark-curtain envelope over

periods of many days at controlled temperature. Variability was checked by testing two side-by-side drops placed

far enough to avoid interference during spreading, as well as by repeated tests with single drops of two different

sizes.

The crucial part of testing was ensuring that the position of the spreading front was captured reliably both

in the images and in their analysis. Proper visualization was achieved by UV-excited fluorescence; 1% Coumarin

503 dye, liquid properties confirmed to be unaffected. Photographs were taken by two 10.7 MP b/w digital

cameras (Lumenera Corporation) equipped with macrolenses and focused to resolve individual grains.The lenses

were fitted with longpass glass filters to cut off scattered excitation light. No significant background signal could

be detected in the absence of the dye in the range of exposures used in the experiments. We have taken images

at different values of the exposure to ensure confident capture of the wetted front position at saturation levels

down to 0.1% (mixed-to-equilibrium sand). In analysis, a threshold level of signal at the wetted front was clear

and used in automatic scanning of images to determine wetted areas as a function of time.

The results of seven tests are summarized in Fig. 3. All were taken at full symmetry, with various liquids and

amounts as quoted in the figure. Inside the SFD regime (marked on the figure) all data fall neatly on a power

law with exponent 0.74 ± 0.05. The small amount of scatter within each run suggests that the slight parallel

shifts seen between the individual runs are due to small systematic errors such as deviations in the void fraction

and liquid mass values used in the normalization. An estimated ±15% error in both these values would result

in the error bar shown in Fig. 3. As expected, the SFD regime is attained at s̄ ∼ 10%, while deviations from

the power law set in at a saturation of s̄ ∼ 1%, and a limiting value of s̄ ∼ 0.5% is reached asymptotically

over a period of many days. This may be due to the gradual decrease of active contacts between the grains

(failure to form bridges due to insufficient liquid), which effectively diminishes the area ratio Se/S in (1). For an

entire run signal intensity is rather uniform with individual grains appearing illuminated as hypothesized in the

theoretical development. Additional tests carried out at half-symmetry have confirmed that in the SFD regime

wetted volumes were hemispherical (Fig. 3, inset) and followed the same time law.

To compare experimental results with what is predicted by our SFD model, problem (3)-(4) has been solved

numerically at γ = −0.5 assuming spherical symmetry by a semi-implicit moving-mesh method [9]. The basic

character of the solutions is illustrated in Fig 4 (inset). We start simulations at the entrance to the SFD regime

with a nearly flat initial saturation profile (s̄ = 10%, max(s) = 15% ); the initial wet area provides the length scale

L and sm = 10%. At high/low capillary suction (low/high s̃F ) the spreading goes faster/slower at early times,

but in all cases it develops into the 3/4 power law seen in the experiments (±0.02). The effect of large/small

value of sF /sm is to move down/up the final wet volume. The experimental data for the 2.8µL TEHP drops
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were placed in Fig. 4 by measuring time from the moment when s̄ = 10% and scaling it with τ calculated at

D = 9.8 × 10−15 m2/s and L = 3.6mm. The numerical solution has been obtained by selecting sF = 0.55%,

according to the experimental data, and s̃F = 1.65× 10−2. The unique combination of D and s̃F has been found

by variations of parameter δ. This is possible since both D and s̃−1

F are monotonic increasing functions of δ and,

as one can see from Fig. 4 (inset), they both result in a parallel shift of the evolution curve in the same direction

(the smaller/larger δ, the smaller/larger both D and s̃−1

F , so the shift is to the right/left). The effective roughness

amplitude (”film” thickness) for the TEHP experiments was found to be δ ≈ 140 nm (with N = 8). Another case

chosen for comparision is the evolution of an 11µL TCP drop, which as may be noted stands alone in Fig. 3.

The data and numerical solution are shown in the inset to Fig. 4. The TCP case requires D = 5.5 × 10−15 m2/s

and somewhat larger s̃F = 2.2 × 10−2 (smaller capillary pressure at the front) corresponding to δ ≈ 110 nm

(with N = 8). This is consistent with the higher values of the contact angle found for this liquid. The obtained

non-dimensional characteristic time scale t/τ ∼ 10−3, Fig. 4, suggests that the time t should be actually scaled

by sF − sr rather than by sm. That is τ ′ = τ( sF −sr

sm
)1−γ ≈ 10−3 τ substantiating the role of parameter s̃F and

the capillary pressure in the process of spreading. The obtained values of δ are consistent with the effective ”film”

thickness estimate ∼ 100 nm and suggest that the capillary action occurs in the finest range of the scales found

in the roughness of the sand grains [11].

In conclusion, we have found that highly persistent liquids deposited on porous/granular media spread out

to extremely low saturations in a transport regime not previously observable with normal liquids. The process

is governed by an equation that belongs to the superfast diffusion class, and the result is a 3/4 power law for

the wetted volume as found in the experiments. The key physics is capillary-driven creeping flow within the

roughness-defined channels, which are connected at the grain contacts by liquid bridges. The spreading stops

at saturation ∼ 0.5%, which is close to the level at which wet sand loses structural integrity. This suggests the

crucial role of the bridges. The key parameter of the problem, s̃F , expresses capillary suction at the wetting front

and it is found to be related to the contact angle (surface energies).
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Figure 1: Illustration of isolated bridges at low levels of saturations. (a) Micro X-ray Computer Tomography

(MicroXCT) image, typical from our experiments. (b) 3D image reconstruction of MicroXCT data. The liquid

within the grain roughness is invisible to MicroXCT, since resolution is limited to 2µm.
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Figure 2: Illustration of the experimental setup for the half-symmetry tests.
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Figure 3: Spreading of various liquids and drop quantities in sand at seven full-symmetry tests; inset - two half-

symmetry tests. The normalized wet volume V φ/Vd is the inverse saturation. The times for TBP and TCP data

have been rescaled in accordance to their viscosity µ and surface tension σ, as reflected in D. That is t′ = tµ†

µ
σ
σ†

(µ†, σ† are for TEHP liquid). This scaling is adequate for TBP, but TCP requires also recognition of its higher

contact angle (as in Fig.4). The solid lines are power-law fits to the respective data; all, including the data for

which the fit lines are not shown, conform to V ∼ t0.74±0.05.
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Figure 4: A comparison of numerical results (solid lines) with the TEHP and TCP experimental data (symbols)

and the structure of solutions to problem (3)-(4) with varying s̃F (inset). The normalized wet volume V φ/Vd

is the inverse saturation. The time is normalized by τ and is counted from the moment when s̄ = 10%. For

TEHP/TCP, D is 9.8 × 10−15/5.5 × 10−15 m2/s. The numerical solutions were obtained at sF = 0.55% and

s̃F = 1.65 × 10−2 (main plot) and (1) s̃F = 5.5 × 10−3, (2) s̃F = 2.2 × 10−2, (3) s̃F = 3.85 × 10−2 (inset).
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