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Objective: Deficits in positive affect and
their neural bases have been associated
with major depression. However, whether
reductions in positive affect result solely
froman overall reduction in nucleus accum-
bens activity and fronto-striatal connectivity
or the additional inability to sustain engage-
ment of this network over time is unknown.
The authors sought to determine whether
treatment-induced changes in the ability to
sustain nucleus accumbens activity and
fronto-striatal connectivity during the regu-
lation of positive affect are associated with
gains in positive affect.

Method: Using fMRI, the authors assessed
the ability to sustain activity in reward-
related networks when attempting to in-
crease positive emotion during perfor-
mance of an emotion regulation paradigm
in 21 depressed patients before and after
2months of antidepressant treatment. Over
the same interval, 14 healthy comparison
subjects underwent scanning as well.

Results: After 2 months of treatment,
self-reported positive affect increased.
The patientswho demonstrated the largest
increases in sustained nucleus accumbens
activity over the 2 months were those who
demonstrated the largest increases in
positive affect. In addition, the patients
who demonstrated the largest increases in
sustained fronto-striatal connectivity were
also those who demonstrated the largest
increases in positive affect when control-
ling for negative affect. None of these
associations were observed in healthy
comparison subjects.

Conclusions: Treatment-induced change
in the sustained engagement of fronto-
striatal circuitry tracks the experience of
positive emotion in daily life. Studies
examining reduced positive affect in a va-
riety of psychiatric disorders might benefit
from examining the temporal dynamics of
brain activity when attempting to under-
stand changes in daily positive affect.

(Am J Psychiatry 2013; 170:197–206)

Areduction in the ability to experience positive affect is
a hallmark of major depressive disorder. Reduced positive
affect is central to the concept of anhedonia, and symptoms
of anhedonia or depressedmood are required for a DSM-IV
diagnosis of depression. Despite the importance of reduced
positive affect in depression, research has only recently
begun to focus on this aspect of the disorder. Studies have
found that patients with depression show reduced electro-
physiological reactivity to positive stimuli (1, 2) and reduced
striatal hemodynamic activity in response to monetary or
visual rewards (3–6). However, these findings have not been
consistently replicated (5, 7–17), suggesting that alternative
models may be needed.
One possibility is that the attenuated positive affect

characteristic of depression stems from difficulties sus-
taining affective responses to positive stimuli, rather than
an attenuation of the overall affective response (18).
Broadly consistent with this possibility is evidence that
patients with depression have an impaired ability to
integrate reward reinforcement history over consecutive
trials (19) and fail to sustain normative response bias
toward reward-predicting cues (20), and that mothers

experiencing postpartum depression demonstrate a lack
of within-trials sustained ventral striatal activity to
financial rewards (21). (Note that we use the term
“sustained activity” to refer to the temporal dynamics
across trials. For more on this, see the data supplement
that accompanies the online edition of this article.) More
direct evidence comes from research showing that
patients with depression demonstrate lack of sustained
nucleus accumbens activity and fronto-striatal connectiv-
ity across trials when instructed to cognitively enhance
their response to positive emotional images, whereas
healthy comparison subjects do not show this effect (22).
Notably, individual differences in the ability to sustain
nucleus accumbens activity correlates with ratings of daily
positive affect among depression patients, suggesting that
sustained activity in this circuitry could generally support
the experience of positive affect among patients. Theoret-
ically speaking, these studies have generally examined the
consummatory aspects of reward processing as opposed
to the anticipatory aspects of reward (but see reference 23
for a discussion of both anticipatory and consummatory
aspects of reward processing in depression).
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In this study, we extend this line of work by testing
whether treatment with antidepressants (fluoxetine or
extended-release venlafaxine [hereafter referred to simply
as venlafaxine]) strengthens activity in this circuitry and
whether treatment-induced change in sustained activity
accounts for treatment-related improvements in self-
reported daily positive affect. Patients were randomly
assigned to receive fluoxetine or venlafaxine in a double-
blind design and followed for 6 months. The central
circuitry underlying the ability to sustain positive affect
was assayed at baseline and 2months later in patients and
comparison subjects using a well-validated emotion
regulation paradigm (24). We predicted 1) that positive
affect would increase and negative affect would decrease
over 2 months of treatment and 2) that changes in
sustained nucleus accumbens activity and fronto-striatal
connectivity resulting from treatment would correlate
with change in daily positive affect.

Method

Participants

At baseline, we assessed 29 medication-free right-handed
adults who met DSM-IV criteria for major depressive disorder
and 19 matched comparison subjects. Participants were
recruited through community advertisements; volunteers were
screened for standard MRI compatibility criteria, CNS medica-
tions, comorbid substance use disorders, other comorbid DSM-
IV axis I or axis II diagnoses, and a personal or family history of
bipolar disorder. Patients were required to have had depressive
symptoms for at least 1 month prior to enrollment and a score
.17 on the 21-item Hamilton Depression Rating Scale (HAM-D)
(25) at enrollment and at the baseline functional MRI (fMRI)
assessment (the patients’ mean baseline HAM-D score was 20.6
[SD=2.39]). All participants completed the 38-item version of the
expanded form of the Positive and Negative Affect Schedule (26)
(PANAS) to assess current state positive and negative affect, and
all depressed participants except one completed the 90-item
Mood and Anxiety Symptom Questionnaire (27). The PANAS was
administered both at baseline and at the 2-month scanning
session. On both scan days, the instrument was administered
twice—immediately before and immediately after the scan. To
create a reliable measure of current affective functioning, we
computed the mean positive and negative affect for that
participant across the pre- and postscan PANAS scores on that
day.

Participants in this study are the same as those in previous
studies we have reported on (22, 28, 29). This study was approved
by the Institutional Review Board at the University of Wisconsin–
Madison, and all participants provided written informed
consent.

After the baseline assessment, patients were randomly
assigned to 6 months of treatment with either fluoxetine or
venlafaxine (for more details, see the online data supplement).
For the first 2 months of treatment, patients had seven weekly
medication visits with a physician associated with the study.
During that period, the average daily dose for patients in the
fluoxetine group was 37 mg (SD=8.7), and for those in the
venlafaxine group, 118 mg (SD=36.6). At 2 months, participants
returned for a second fMRI assessment. Eight patients and five
comparison subjects had withdrawn from the study, leaving 21
patients and 14 comparison subjects. The participants who

remained did not differ significantly in age, sex, or baseline
positive or negative affect scores from those who withdrew.
Baseline HAM-D score differed between those patients who
completed the trial and those who did not, with a lower mean
score for those who completed the trial, but the difference fell
short of significance (t=1.93, df=27, p=0.06). After unblinding,
it was revealed that 12 patients had been assigned to treat-
ment with venlafaxine and nine patients to treatment with
fluoxetine. Analyses incorporated medication responders and
nonresponders.

fMRI Task

Participants underwent scanning while viewing a sequence of
72 positive and 72 negative images from the International
Affective Picture System (30). The same images were used at
both scan sessions, although the order of image presentation was
randomized across the two sessions. Trials began with a 1-
second fixation cross and auditory tone. Then an image was
presented for 10 seconds, followed by a 6-second blank screen. At
the onset of each image, participants used a button response pad
to indicate whether they judged the image to be positive or
negative. Four seconds after image onset, an auditory prompt
instructed participants to increase (“enhance”) or decrease
(“suppress”) their emotional response to the image or to
continue to “attend” to the image. Participants had been trained
on the use of cognitive reappraisal strategies to reevaluate the
images as more or less emotional during a previous session while
positioned inside a mock scanner. For the enhance condition,
participants were trained either to imagine themselves or a loved
one experiencing the situation being depicted or to imagine
a more extreme outcome than the one depicted (e.g., in response
to a picture of a stunning natural scene, a participant might
imagine being in that scene or in one of their own choosing; see
the online data supplement). Across six 380-second scans, there
were 24 trials of the regulation conditions and 12 trials of the
attend condition for each valence (the order was pseudorandom-
ized; see the data supplement).

Image Acquisition and Analysis

The details of image acquisition are provided in the online
data supplement. The analytic techniques we used were identical
to those in our previous study (22). Briefly, data were slice-time
and motion-corrected using AFNI (Analysis of Functional Neuro-
Images; http://afni.nimh.nih.gov/afni/). Single-subject general
linear models were used to model each of the six trial types
(positive/negative stimulus; enhance, attend, and suppress
reappraisal instruction) separately, and for both the early phase
(runs 1–3; denoted as “1st half” from here on) and the late phase
(runs 4–6; denoted as “2nd half” from here on) of the scanning
session as well as six motion nuisance covariates (see the data
supplement). Because the process of sustaining nucleus accum-
bens activity during the increasing of positive affect was central
to our previous report, contrasts for analyses presented here
were the positive enhance(2nd half) – positive enhance(1st half)
except as otherwise noted (see the data supplement). For
analyses examining treatment response, the contrasts were
positive enhance:2-month(2nd half – 1st half) – positive enhance:
baseline(2nd half – 1st half). Single-subject contrasts were
normalized to the 2-mm MNI152 template and smoothed (5-mm
full width at half maximum).

Analyses examining sustained nucleus accumbens activity and
nucleus accumbens-prefrontal cortex connectivity from baseline
to the 2-month assessment used the contrast 2-month(2nd half –

1st half) – baseline(2nd half – 1st half) (see the data supplement).
The resulting value was regressed on positive affect as well
as negative affect. For control analyses examining reaction
time (reaction time was successfully acquired for 19 of the 21
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depressed patients) or pupil dilation (pupil data were success-
fully acquired for 15 of the 21 depressed patients at both time
points), we performed the same analysis—2-month(2nd half – 1st

half) – baseline(2nd half – 1st half). (For details on pupil dilation
processing, see the data supplement.)

Results

Change in Symptom Severity

At 2months, themeanHAM-D scorewas lower (t=–10.72,
df=20, p,0.001; partial eta squared [ph2]=0.85) (Figure 1).
Nine patients (43%) had achieved remission (defined as
a HAM-D score #7). Of the remaining 12 patients, six
(50%) were responders (defined as a decrease of $50% in
HAM-D score), leaving six nonresponders. There was no
difference between the fluoxetine and venlafaxine groups
in change in HAM-D score.
Participants in both the depressed and comparison

groups provided ratings of positive affect and negative
affect at both baseline and the 2-month assessment. We
entered the change in positive affect and negative affect as
dependent measures and performed a repeated-measures
analysis of variance (change in negative affect was
multiplied by –1 so that both scales were coded in the
same direction. Results revealed that the group-by-scale
interaction (depressed and comparison groups; positive
and negative affect) was significant (F=18.36, df=1, 33,
p,0.001; ph2=0.36). There was also a main effect of group

on change in affect (F=6.19, df=1, 33, p=0.02; ph2=0.16),
suggesting that affect changed more in the depressed
group than in the comparison group. Follow-up tests
revealed that in the depressed group, positive affect
increased (ph2=0.22) and negative affect decreased
(ph2=0.66) across assessments (p values, ,0.03). In the
comparison group, positive affect increased (p=0.03,
ph2=0.30), whereas there was no change in negative affect
(p=0.34, ph2=0.07). The groups did not differ in the
magnitude of the change in positive affect. By contrast,
the depressed group showed a steeper decrease in
negative affect (p,0.001, ph2=0.44). Within the depressed
group, change in positive affect and in negative affect did
not differ significantly between patients receiving fluoxe-
tine and those receiving venlafaxine.
We next examined the correlations between positive

affect and negative affect measures. In the depression
group, change in positive affect and negative affect scores
from baseline to 2 months were significantly inversely
correlated (r=–0.61, N=21, p=0.004; see Table S1 in the
online data supplement), and in the comparison group,
theywere also inversely though not significantly correlated
(r=–0.45, N=14, p=0.10). In the depression group, change
on the anhedonia subscale of the Mood and Anxiety
Symptom Questionnaire was also significantly correlated
with change in positive affect (see Table S1; r=–0.68;
t=–3.91, df=18, p=0.001)

FIGURE 1. Change in Hamilton Depression Rating Scale (HAM-D) Score and in Self-Reported Positive Affect and Negative
Affect Ratings in Depressed Patients Treated With Antidepressants and Healthy Comparison Subjects, From Baseline to 2
Monthsa
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a The mean HAM-D score for healthy comparison subjects (not shown) was 1.07 at baseline and 1.64 at 2 months. There were significant
differences between baseline and 2 months in positive affect ratings for both groups (p,0.01), in negative affect ratings for the depressed
group (p,0.001), and in HAM-D score for the depressed group (p,0.001).
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Replication of Previous Findings

In these same patients, we previously reported that
sustained nucleus accumbens activity correlated with
positive affect ratings prior to treatment. After 2 months
of treatment, we found that individual differences in
sustained nucleus accumbens activity correlated with
patient ratings of positive affect in daily life (peak, x=–12,
y=18, z=–6; for positive affect at 2 months, unstandardized
beta coefficient [B]=0.01; t=2.50, df=17, p=0.02; controlling
for baseline positive affect and sustained nucleus accum-
bens activity at baseline, small volume corrected for
multiple comparisons) (Table 1). This effect remained
significant after controlling for drug type (B=0.01; t=2.38,
df=16, p=0.03).

Change in Sustained Nucleus Accumbens Activity

Using the nucleus accumbens cluster described above,
we next examined whether change in sustained nucleus
accumbens activity correlated with gains in positive affect
across assessments. This analysis showed that patients
who exhibited larger improvements in sustained nucleus
accumbens activity showed larger gains in positive affect
(Figure 2) (B=0.01, r=0.54; t=2.76, df=19, p=0.01; R2=0.29;
see Table S2 in the online data supplement). This finding
remained significant after controlling for drug type (B=0.01;
t=2.42, df=18, p=0.03).

We performed several control analyses to examine the
specificity of this effect. First, we examined whether
change in nucleus accumbens activity aggregated across
the scan sessions (as is most commonly done in fMRI
analyses) was associatedwith an increase in positive affect.
We contrasted aggregated nucleus accumbens activity
during the positive “enhance” condition at 2 months with
aggregated activity during the same condition at baseline
and correlated that activity with change in positive affect.
There was no relationship between increases in nucleus
accumbens activity aggregated across the scan session
over the course of treatment and increases in positive
affect over the same period. Additionally, we tested
whether including both change in sustained nucleus
accumbens activity and change in aggregated activity in
the same regression model was associated with change
in positive affect. We found that change in sustained

nucleus accumbens activity was specifically associated with
change in positive affect (B=24.01; t=2.90, df=18, p=0.01),
whereas change in aggregated nucleus accumbens activity
was not associated with change in positive affect. This
provides further evidence that examination of changes in
sustained activity over the scan sessions is important and
uniquely associated with change in positive affect.
Second, we examined whether this effect could be

explained by changes in reaction time or pupil dilation
across the two scan sessions to examine whether these
effects may be due to changes in engagement or fatigue
after treatment. For reaction time, in the depressed group,
there was no interaction of time (pretreatment versus
2-month) by session phase (2nd half versus 1st half), and
individual differences in change in reaction time did not
correlate with change in positive affect. For pupil dilation,
in the depressed group, there was again no time-by-
session phase interaction, and individual differences in
change in pupil dilation did not correlate with change in
positive affect. These data suggest that the relationship
between changes in sustained nucleus accumbens activity
and positive affect is unlikely to be due to changes in
engagement or fatigue.
Third, we examined whether the relationship between

changes in sustained nucleus accumbens activity and
positive affect remained significant after controlling for
change in negative affect. When controlling for change in
negative affect, the association between change in positive
affect and change in nucleus accumbens activity was no
longer significant, suggesting that increases in sustained
nucleus accumbens activity are associated with both
increases in positive affect and decreases in negative affect
among patients. (See the online data supplement for
additional analyses addressing specificity.)

Change in Sustained Nucleus Accumbens
Connectivity

We previously reported (22) that untreated patients
have difficulty sustaining connectivity between the nu-
cleus accumbens and the dorsolateral prefrontal cortex
when instructed to enhance positive emotion elicited by
positive images. In addition, since the nucleus accumbens
is involved in processes other than reward (31), and since

TABLE 1. Results of a Voxelwise Regression Examining the Relationship Between Sustained Brain Activity and Self-Reported
Positive Affect After 2 Months of Antidepressant Treatment, Controlling for Baseline Valuesa

Location (Brodmann’s Area) Coordinates (x, y, z, in mm) Cluster Size (Voxels) Maximum t

Right insula (BA 48) 60, 8, 4 605 4.33
Right superior frontal gyrus (BA 45/46) 34, 34, 20 342 5.37
Supplementary motor area (BA 6) 8, 0, 62 153 4.02
Right occipital cortex 20, –56, 38 122 4.73
Right middle temporal gyrus 70, –42, –4 104 6.10
Left middle frontal gyrus (BA 46/47) –40, 54, –4 97 4.32
Left superior temporal gyrus (BA 21) –60, –50, 4 81 4.24
Superior occipital gyrus –4, –96, 26 78 5.28
a In this analysis, the contrast was positive enhance(2nd half) – positive enhance(1st half).
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treatment-related changes in sustained nucleus accum-
bens activity were associated with changes in both positive
and negative affect, it may be that change in nucleus
accumbens-prefrontal cortex connectivity constitutes
a more sensitive method for examining changes specific
to positive affect. We therefore conducted a connectivity
analysis (32) to examine whether treatment-related change
in nucleus accumbens-prefrontal cortex connectivity is
associatedwith gains in positive affect while controlling for
change in negative affect. The analysis revealed a region of
the left middle frontal gyrus (peak, x=–22, y=60, z=18;
Brodmann’s area 10/46) where variation in sustained
nucleus accumbens-middle frontal gyrus connectivity was
associated with gains in positive affect (partial correlation
[rr]=0.64; t=3.61, df=18, p=0.002) (Figure 3, Table 2) when
controlling for change in negative affect, corrected for
multiple comparisons across the whole brain. This re-
lationship was also significant when not controlling for
change in negative affect (r=0.43; t=2.13, df=19, p=0.05). In
addition, increases in sustained connectivity between
the nucleus accumbens and the ventromedial prefrontal
cortex were associated with gains in positive affect while
controlling for negative affect (rr=0.78; t=5.44, df=18,
p,0.001) (Table 2). Similarly, this relationship was sig-
nificant when not controlling for change in negative affect
(r=0.56; t=2.94, df=19, p=0.008).
As with the univariate analyses reported above, we

conducted a control analysis examining whether change
in sustained nucleus accumbens-middle frontal gyrus con-
nectivity was uniquely associated with change in positive
affect or whether aggregated nucleus accumbens-middle

frontal gyrus connectivity across the scan session was
additionally associated with change in positive affect (con-
trolling for negative affect). Treatment-induced change in
aggregated nucleus accumbens-middle frontal gyrus con-
nectivity was not associated with change in positive
affect (controlling for negative affect). We additionally
ran a regressionmodel including both change in sustained
nucleus accumbens-middle frontal gyrus connectivity and
change in aggregated nucleus accumbens-middle frontal
gyrus connectivity (in addition to change in negative
affect) in the same regression model to examine associa-
tions with change in positive affect. This analysis revealed
that change in sustained connectivity was uniquely
associated with change in positive affect when controlling
for negative affect (B=6.25; t=3.51, df=17, p=0.002),
whereas change in aggregated connectivity was not
associated with change in positive affect. Similarly, with
the ventromedial prefrontal cortex cluster, change in
aggregated nucleus accumbens-ventromedial prefrontal
cortex connectivity was not associated with change in
positive affect, controlling for negative affect. We addi-
tionally included both change in sustained nucleus
accumbens-ventromedial prefrontal cortex connectivity
and change in aggregated nucleus accumbens-ventromedial
prefrontal cortex connectivity (in addition to change in
negative affect) in the same regression model to examine
associations with change in positive affect. This analysis
revealed that change in sustained connectivity was uni-
quely associated with change in positive affect when
controlling for negative affect (B=13.00; t=5.47, df=17,
p,0.001), whereas change in aggregated connectivity was

FIGURE 2. Correlation of Change in Sustained Nucleus Accumbens Activity With Gains in Positive Affect From Baseline to 2
Months in Depressed Patients Treated With Antidepressantsa
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not associated with change in positive affect. This result
further supports the notion that examination of treatment-
induced changes in sustained nucleus accumbens activity
and connectivity capture unique variance in increases in
positive affect.

Comparison of Venlafaxine and Fluoxetine

Next, we tested whether the effects we observed were
due to differences driven by either one of the medications
alone. The correlation between change in sustained
nucleus accumbens activity and change in positive affect
did not significantly differ between the two medication
groups (fluoxetine: r=0.48, N=9; venlafaxine: r=0.50, N=12).
The correlation between change in sustained nucleus
accumbens-BA46 connectivity and change in positive
affect, controlling for change in negative affect, also did
not significantly differ for the two medication groups
(fluoxetine: r=0.68, N=9; venlafaxine: r=0.54, N=12). Fi-
nally, the correlation between change in sustained nucleus
accumbens-ventromedial prefrontal cortex connectivity
and change in positive affect, controlling for change in
negative affect, did not significantly differ between the

medication groups (fluoxetine: r=0.72, N=9; venlafaxine:
r=0.79, N=12). These results suggest that themechanism of
action in change in positive affect and change in sustained
nucleus accumbens activity/fronto-striatal connectivity
does not differ between these two antidepressants.

Anhedonic Symptoms

As the PANAS (current state version) is an acute state
measure of positive affect, we additionally examined
scores on the anhedonia scale of the Mood and Anxiety
Symptom Questionnaire as a more traditional measure of
anhedonia that asks participants to integrate their emo-
tion over the previous week. The depressed group showed
a significant decrease in anhedonic symptoms from
baseline to 2 months (t=–2.41, df=20, p=0.026), whereas
the comparison group showed no significant change in
anhedonic symptoms over this period.
Within the depressed group, there was a significant

correlation between change in anhedonic symptoms and
change in sustained nucleus accumbens activity (r=–0.46,
N=20, p=0.03), such that the patients who showed an
increase in ability to sustain repeated engagement of

FIGURE 3. Connectivity Analysis Showing Association of Variation in Sustained Nucleus Accumbens-Middle Frontal Gyrus
Connectivity With Gains in Positive Affect in Depressed Patients Treated With Antidepressantsa
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nucleus accumbens activity were those who exhibited the
greatest decrease in anhedonic symptoms. However, there
was no relationship between change in sustained nucleus
accumbens-BA46 connectivity during the positive en-
hance condition and anhedonic symptoms. Furthermore,
including both change in anhedonic symptoms and
change in current positive affect, increase in current
positive affect was uniquely associated with change in
nucleus accumbens-BA46 connectivity (B=0.055; t=2.55,
df=18, p=0.02), while change in anhedonic symptoms was
not uniquely associated with change in nucleus
accumbens-BA46 connectivity. Similarly, we observed no
relationship between change in nucleus accumbens-
ventromedial prefrontal cortex connectivity during the
positive enhance condition and change in anhedonic
symptoms. In a simultaneous regression with change in
current positive affect and change in anhedonic symptoms,
change in current positive affect was uniquely associated
with change in nucleus accumbens-ventromedial prefron-
tal cortex connectivity (B=0.034; t=2.97, df=18, p=0.008),
whereas change in anhedonic symptoms was not (see the
online data supplement).

Healthy Comparison Subjects

Using the same nucleus accumbens cluster identified in
the depressed group, we found that the healthy compar-
ison group showed no significant association between
change in sustained nucleus accumbens activity and
change in positive affect (r=–0.36, N=14, p=0.21; R2=0.13);
note that the relationship in the comparison group was
negative, whereas it was positive in the depressed group.
Indeed, the strength of this relationship was greater in the
depressed group than in the comparison group in the
nucleus accumbens (z=2.54, p=0.01). When performing
this correlation voxelwise in the comparison group, no
region demonstrated a significant association between
change in sustained activity and change in daily positive
affect (after correcting for multiple comparisons).
With regard to the connectivity analyses presented

above for the depressed group, the comparison group
showed no significant relationship between change in
nucleus accumbens-middle frontal gyrus connectivity and
change in positive affect over the 2 months. Similarly, for
nucleus accumbens-ventromedial prefrontal cortex con-
nectivity, the comparison group showed no relationship
between change in sustained connectivity and change in
positive affect.

Discussion

This study provides novel evidence that improvements in
daily positive affect in depressed patients after 2 months of
antidepressant treatment can be explained in part
by increases in patients’ ability to sustain activity in
prefrontal-nucleus accumbens circuitry. In particular, we
found that patients who exhibited the greatest improve-
ment in sustained nucleus accumbens activity also had the
largest gains in self-reported positive affect. Interestingly,
the relationship between increases in sustained nucleus
accumbens activity and gains in self-reported positive affect
was partially accounted for by decreases in negative affect.
Thus, change in sustained nucleus accumbens activity
appears to be related to improvements in affect generally
and may not be specific to positive affect. However, using
a connectivity analysis strategy, we found that increases in
sustained nucleus accumbens-middle frontal gyrus and
nucleus accumbens-ventromedial prefrontal cortex con-
nectivity when attempting to enhance positive emotion
were specific to gains in self-reported positive affect, as this
relationship was significant when controlling for change in
negative affect. We also found that changes in sustained nu-
cleus accumbens activity and nucleus accumbens-middle
frontal gyrus as well as nucleus accumbens-ventromedial
prefrontal cortex connectivity were associated with change
in positive affect above and beyond changes in aggregated
nucleus accumbens activity andnucleus accumbens-middle
frontal gyrus connectivity. In addition, the fact that change
in anhedonic symptoms was associated with change in
sustained nucleus accumbens activity but not change in
sustained nucleus accumbens-prefrontal cortex connec-
tivity suggests that change in sustained nucleus accum-
bens activity may reflect both acute and longer-term state
positive affect (as the questionnaire we used asks
participants to integrate their affect over the previous
week), whereas the ability to sustain top-down modula-
tion of the nucleus accumbens by prefrontal cortex
structures is particularly relevant for changes in current,
acute positive affect following treatment. This provides
further evidence that examining the temporal dynamics of
striatal activity and fronto-striatal connectivity is impor-
tant for understanding positive affect in depression.
It is potentially informative that when controlling

for changes in negative affect, we observed no unique
relationship between increases in sustained nucleus ac-
cumbens activity and increases in positive affect. This

TABLE 2. Results of a Voxelwise Regression Examining the Relationship Between Change in Sustained Nucleus Accumbens
Connectivity and Change in Self-Reported Positive Affect, Controlling for Change in Negative Affecta

Location (Brodmann’s Area) Coordinates (x, y, z, in mm) Cluster Size (Voxels) Maximum t

Right anterior insula (BA 47) 36, 22, 0 243 4.19
Ventromedial prefrontal cortex (BA 11) –4, 32, –14 76 4.81
Left middle frontal gyrus (BA 10/46) –22, 60, 18 66 3.90
a In this analysis, the contrast was 2-month(2nd half – 1st half) – baseline(2nd half – 1st half).
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suggests that change in sustained nucleus accumbens
activity may underlie alterations in both positive and
negative affect (33). Indeed, a wealth of preclinical
research demonstrates that the nucleus accumbens is
not engaged solely during reward-related behaviors. In
both rodents (34) and humans (35), studies demonstrate
that the nucleus accumbens is involved in the processing
of aversive stimuli. For example, Berridge et al. (36)
reported that injection of a glutamate receptor antagonist
in the shell of the nucleus accumbens can elicit either
approach or avoidance behaviors, depending on whether
the injection is made in the rostral or caudal portion of the
nucleus accumbens shell, respectively. Unfortunately, the
spatial coarseness of fMRI precludes distinguishing sub-
components of the nucleus accumbens. Furthermore, our
findings suggest that the utilization of functional connec-
tivity can provide additional sensitivity when examin-
ing changes in affect resulting from treatment (37), such
that changes in sustained nucleus accumbens-prefrontal
cortex connectivity underlie changes in positive affect in
depression uniquely. These data suggest a role for con-
nectivity analyses in helping to further uncover altera-
tions in the pathophysiology of mood disorders with
treatment.

Some of the densest direct connections between the
ventral striatum and the prefrontal cortex lie within the
medial portion of the prefrontal cortex (33, 38), including
both the ventromedial prefrontal cortex and the middle
frontal gyrus cluster identified in the connectivity
analysis. These regions of the prefrontal cortex provide
glutamatergic innervation to mostly GABA-ergic medium
spiny neurons within the ventral striatum (33). This
suggests that it is the afferents of the prefrontal cortex
that affect the top-down regulation of affect. While the
fMRI task we used does not allow dissociation of the
relative contributions of the two prefrontal cortex
clusters to changes in positive affect, speculation can be
made based on the literature. Given the well-established
role of the ventromedial prefrontal cortex in stimulus
valuation and more dorsolateral areas of the prefron-
tal cortex in cognitive control, it may be that changes in
sustained nucleus accumbens-ventromedial prefrontal
cortex connectivity are related to changes in the
evaluation of appetitive stimuli over time, whereas
changes in sustained nucleus accumbens-middle frontal
gyrus connectivity may underlie the effortful increasing
of positive affect required in the experimental paradigm.
Further studies, both in human and animal models, are
required to elucidate the exact mechanisms by which
interactions between the nucleus accumbens and pre-
frontal cortex underlie these phenomena.

Although the use of two separate drug treatments in our
study constitutes a potential limitation, we found that
controlling for drug treatment did not attenuate any of the
effects, and the correlations were not significantly differ-
ent from one another when run for each group separately.

Furthermore, evidence suggests that fluoxetine and
venlafaxine have similar striatal serotonin occupancy and
mechanism of action (39). Meyer and colleagues (39),
using positron emission tomography to assess 5-HT
binding potential in the striatum in human subjects across
five different antidepressants (citalopram, fluoxetine,
sertraline, paroxetine, and venlafaxine), found that at
therapeutic doses, the five agents had similar 5-HT
binding potential specifically in the striatum. This suggests
that there is a strong overlap in mechanism of action in
the two treatments used in our study. Nonetheless, future
research should seek to separate the distinct mechanism
of action for all depression treatments (see reference
40, for example) and their effects on specific affective
symptoms.
In summary, our findings suggest that sustained nucleus

accumbens activity and fronto-striatal connectivity when
attempting to enhance positive emotion track self-
reported daily positive affect. Furthermore, individual
differences in the magnitude of change in sustained
nucleus accumbens activity and fronto-striatal connectiv-
ity correlate with gains in positive affect after antidepres-
sant treatment. These findings are consistent with the
hypothesis that reductions in state positive affect associ-
ated with depression may result in part from a loss of the
ability to sustain nucleus accumbens activity and fronto-
striatal connectivity over time. These findings underscore
the need for studies to examine the mechanisms un-
derlying the temporal dynamics of positive and negative
affect in depression (41) and how these mechanisms are
affected by antidepressant treatment.
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