Search from over 60,000 research works

Advanced Search

Mountain waves in two-layer sheared flows: critical-level effects, wave reflection, and drag enhancement

[thumbnail of Teixeira_etal_JAS_2008.pdf]
Preview
Teixeira_etal_JAS_2008.pdf - Published Version (1MB) | Preview
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Teixeira, M. A.C. orcid id iconORCID: https://orcid.org/0000-0003-1205-3233, Miranda, P. M. A. and Argaín, J. (2008) Mountain waves in two-layer sheared flows: critical-level effects, wave reflection, and drag enhancement. Journal of the Atmospheric Sciences, 65 (6). pp. 1912-1926. ISSN 1520-0469 doi: 10.1175/2007JAS2577.1

Abstract/Summary

Internal gravity waves generated in two-layer stratified shear flows over mountains are investigated here using linear theory and numerical simulations. The impact on the gravity wave drag of wind profiles with constant unidirectional or directional shear up to a certain height and zero shear above, with and without critical levels, is evaluated. This kind of wind profile, which is more realistic than the constant shear extending indefinitely assumed in many analytical studies, leads to important modifications in the drag behavior due to wave reflection at the shear discontinuity and wave filtering by critical levels. In inviscid, nonrotating, and hydrostatic conditions, linear theory predicts that the drag behaves asymmetrically for backward and forward shear flows. These differences primarily depend on the fraction of wavenumbers that pass through their critical level before they are reflected by the shear discontinuity. If this fraction is large, the drag variation is not too different from that predicted for an unbounded shear layer, while if it is small the differences are marked, with the drag being enhanced by a considerable factor at low Richardson numbers (Ri). The drag may be further enhanced by nonlinear processes, but its qualitative variation for relatively low Ri is essentially unchanged. However, nonlinear processes seem to interact constructively with shear, so that the drag for a noninfinite but relatively high Ri is considerably larger than the drag without any shear at all.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/29245
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
No Reading authors. Back catalogue items
Publisher American Meteorological Society
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar