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A mechanism for amplification of mountain waves, and their associated drag,

by parametric resonance is investigated using linear theory and numerical

simulations. This mechanism, which is active when the Scorer parameter

oscillates with height, was recently classified by previous authors as intrinsically

nonlinear. Here it is shown that, if friction is included in the simplest possible

form as a Rayleigh damping, and the solution to the Taylor-Goldstein equation

is expanded in a power series of the amplitude of the Scorer parameter

oscillation, linear theory can replicate the resonant amplification produced by

numerical simulations with some accuracy. The drag is significantly altered

by resonance in the vicinity of n/l0 = 2, where l0 is the unperturbed value of

the Scorer parameter and n is the wavenumber of its oscillation. Depending

on the phase of this oscillation, the drag may be substantially amplified or

attenuated relative to its non-resonant value, displaying either single maxima

or minima, or double extrema near n/l0 = 2. Both nonhydrostatic effects and

friction tend to reduce the magnitude of the drag extrema. However, in exactly

inviscid conditions, the single drag maximum and minimum are suppressed.

As in the atmosphere friction is often small but non-zero outside the boundary

layer, modelling of the drag amplification mechanism addressed here should be

quite sensitive to the type of turbulence closure employed in numerical models,

or to computational dissipation in nominally inviscid simulations. Copyright c©
0000 Royal Meteorological Society
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1. Introduction

Gravity wave drag is one of the key phenomena that

must be parametrized in global weather prediction and

climate models. A multitude of processes affect this

topographically generated force, making it exceed leading-

order estimates from linear theory, in what are called ‘high-

drag states’. It is important to understand drag enhancement

mechanisms, since they provide a dominant contribution to

the globally-integrated drag, having a significant impact on

the deceleration of the atmospheric circulation.

In a recent paper, Wells and Vosper (2010) (hereafter

referred to as WV10) assessed the accuracy of linear theory

for diagnosing mountain wave drag in stratified flow over

2D ridges. The focus of their study was on situations where

the actual drag might significantly exceed the drag predicted

by linear theory, even for extremely low mountain heights.

One such situation, identified by them, is when the spectrum

of the Scorer parameter profile contains harmonics that can

lead to a resonant amplification of the mountain waves. In

order to isolate this effect, they considered an idealized

case where a small sinusoidal perturbation is added to a

constant Scorer parameter profile, with a wavelength half

that of the dominant vertical wavelength of the internal

gravity waves. In that case, they showed that the drag may

exceed its linear value by a factor of 2 or more, depending

on the phase of the Scorer parameter oscillation. Since the

linear model of WV10 failed to predict this behaviour, they

attributed the drag amplification to nonlinear wave-wave

interactions, as investigated originally by Phillips (1968) in

an oceanographic context, and more recently by Nance and

Durran (1998) and Lee et al. (2006). However, although in

WV10’s study the nonlinear drag was normalized by the

corresponding linear value, the behaviour of the linear drag

was never explicitly shown for this case.

The characteristics of the drag amplification outlined

above immediately suggest that it results from parametric

resonance, since the role played by the Scorer parameter

in the Taylor-Goldstein equation is akin to that of

the coefficient multiplying the position in an equation

describing a simple harmonic oscillator. This resonance

is therefore of a different kind from those investigated,

for example, by Miranda and Valente (1997), Wang and

Lin (1999), Leutbecher (2001), and Teixeira et al. (2005,

2008), which resulted from discontinuities in the mean

atmospheric parameters, or their derivatives. It is also

different from the resonance investigated by Grubišić and

Stiperski (2009) and Stiperski and Grubišić (2011), which

results from the horizontal distribution of the topographic

forcing of lee waves (see also Grisogono et al., 1993;

Vosper, 1996).

One aim of the present paper is to address an idealized

situation akin to that considered by WV10 using linear

theory, thus showing that the kind of resonance they

investigated is possible under its assumptions, and can

lead to very substantial drag enhancement. A second aim

is to show how the inclusion of friction in the model is

crucial to obtain a drag behaviour qualitatively similar to

that produced in the numerical simulations of WV10, or

roughly similar ones. Friction fulfils two roles: firstly, it

limits the drag magnitude in resonant conditions (something

that is presumably effected by nonlinear processes in more

realistic circumstances). Secondly, since friction prevents

the singular behaviour of the drag that occurs in inviscid

conditions, it also widens the drag extrema at resonance,

rendering them detectable in a representation similar to that

of Figure 9 of WV10.

We therefore speculate that inviscid linear theory, such

as employed by WV10 in part of their calculations, should

be unable to properly represent this type of resonance. For

the same reasons, it is likely that the magnitude of the

drag enhancement in resonant conditions is quite sensitive

to dissipative processes in numerical models, be they due

to the type of adopted turbulence closure, or to the more

or less diffusive character of the discretization scheme

employed. These conjectures are tested in the present study

by comparing results from linear theory, where a small

sinusoidal variation of the Scorer parameter is treated using

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 2–18 (0000)
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Mountain wave drag amplification by Scorer parameter resonance 3

a perturbation approach, and fully nonlinear numerical

simulations of the same situation.

This paper is organized as follows: section 2 contains

a description of the analytical theoretical model and of the

numerical simulations. In section 3, the variation of the drag

with friction and nonhydrostatic effects is explored, and the

pressure and velocity fields are analyzed. Results from the

theoretical model and from the numerical simulations are

compared. Finally, section 4 summarizes the main findings

of this study.

2. Methodology

2.1. Analytical drag model

Stationary, non-rotating flow over a 2D mountain ridge

is considered. The Boussinesq approximation is assumed,

and the equations of motion are linearized with respect

to a reference state, but the flow is assumed to be

nonhydrostatic. Friction, which turns out to be a crucial

effect, is included in the simplest possible form as a

Rayleigh damping. The adopted equations of motion (cf.

Lin, 2007, sections 5.1 and 13.2.2) are :

U
∂u

∂x
+ w

dU

dz
= − 1

ρ0

∂p

∂x
− λu, (1)

U
∂w

∂x
= − 1

ρ0

∂p

∂z
+ b− λw, (2)

U
∂b

∂x
+ N2w = 0, (3)

∂u

∂x
+

∂w

∂z
= 0. (4)

Here x is the horizontal coordinate perpendicular to

the ridge, z is the height, U(z) is the incoming wind

velocity (aligned with x), N(z) is the Brunt-Väisälä

frequency of the incoming flow, ρ0 is a reference density

(assumed to be constant) and λ is a (constant) Rayleigh

damping coefficient. u, w, p and b are, respectively, the

horizontal velocity, vertical velocity, pressure and buoyancy

perturbations associated with the mountain waves. Note

that, for simplicity, friction terms are only included in

the momentum equations and not in the heat balance

equation. It can be shown that, for the small values of λ

to be considered, this has a negligible effect on the model

behaviour apart from a rescaling of λ by a factor of 2 (if the

Rayleigh coefficient for heat was assumed to be the same).

Equations (1)-(4) may be differentiated and combined,

yielding a single equation for w. All perturbed variables

may be expressed as 1D Fourier integrals. For example, w

can be written (see, e.g. Lin, 2007, Appedix 5.1)

w(x, z) =
∫ +∞

−∞
ŵ(k, z)eikxdk, (5)

where ŵ is the corresponding Fourier transform, k is the

horizontal wavenumber and i =
√−1. From (1)-(4) and (5),

it can be shown that ŵ satisfies

ŵ′′ +

(
l2

1− i λ
Uk

− k2

)
ŵ = 0, (6)

where l2 = N2/U2 − U ′′/U is the square of the Scorer

parameter, and the primes denote differentiation with

respect to z.

In order to reproduce conditions akin to those

considered in Figure 9 of WV10, the Scorer parameter

squared is assumed here to take the form:

l2 = l20{1 + ε cos(nz + φ)}, (7)

where l20 is a constant, ε is a small dimensionless parameter,

n is the vertical wavenumber of the perturbation imposed on

l20 and φ is the corresponding phase. Equation (7) defines a

Scorer parameter that oscillates with height with a relatively

small amplitude (see Figure 1).

For the particular case λ = 0, (6) along with (7) is a

Mathieu equation, which describes parametric resonance,

and its solutions must be expressed in terms of Mathieu

functions (Abramowitz and Stegun, 1972). However, when

ε is assumed to be small (it takes the value 0.1 in WV10), it

is possible to solve (6) approximately in terms of elementary

functions using a perturbation approach, by expanding its

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 2–18 (0000)
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Figure 1. Variation of the normalized square of the Scorer parameter as a
function of normalized height according to (7), for ε = 0.1 and four values
of φ.

solution in a power series of ε:

ŵ = ŵ0 + εŵ1 + ε2ŵ2 + ... . (8)

In fact, for the present purposes, and as will be seen next, it

is sufficient to consider this series only up to first-order in ε.

If (7) and (8) are introduced into (6), the following two

equations result at zeroth- and first-order in ε:

ŵ′′0 +

(
l20

1− i λ
Uk

− k2

)
ŵ0 = 0, (9)

ŵ′′1 +

(
l20

1− i λ
Uk

− k2

)
ŵ1

= −ŵ0
l20

1− i λ
Uk

cos(nz + φ). (10)

In this formulation, it becomes especially clear that

the zeroth-order solution ŵ0, in conjunction with the

perturbation to the Scorer parameter, acts as a source term

for the first-order solution ŵ1. Thus this equation set already

contains the possibility of resonance.

The solution to (9) is (see Lin, 2007, section 5.2.1)

ŵ0 = iU0kĥeimz, (11)

where U0 = U(z = 0), ĥ is the Fourier transform of the

surface elevation and m is the vertical wavenumber of the

internal gravity waves, defined, using (9) and (11), as:

m2 =
l20

1− i λ
Uk

− k2. (12)

In the above passage it was implicitly assumed that U is

constant, otherwise (11) and (12) would not be valid in

the generic case λ 6= 0. However, if λ = 0, this assumption

is not necessary, so U will continue to be treated as a

function of z in the following, for maximum generality.

The coefficient multiplying the exponential in (11) takes

into account the boundary condition at the surface ŵ0(z =

0) = iU0kĥ and the sign of m is determined by the upper

radiation boundary condition. If m is decomposed into its

real and imaginary parts mR and mI

m = mR + imI (13)

(which are nonzero simultaneously as long as λ 6= 0), then

it can be shown that the definitions of mR and mI that are

physically consistent (see Appendix A) are:

mR =
1√
2

λ
Uk l20

1 + λ2

U2k2

{
k2 − l20

1 + λ2

U2k2

+

√√√√
(

l20
1 + λ2

U2k2

− k2

)2

+
λ2

U2k2

l40(
1 + λ2

U2k2

)2





− 1
2

,

(14)

mI =
1√
2

{
k2 − l20

1 + λ2

U2k2

+

√√√√
(

l20
1 + λ2

U2k2

− k2

)2

+
λ2

U2k2

l40(
1 + λ2

U2k2

)2





1
2

,

(15)

which result from (12) and (13). In (15) mI > 0, as it must

be for the wave perturbation to decay with height according

to (11) and (13). On the other hand, in (14) mR has the

same sign as Uk, which corresponds to upward wave energy

propagation (see e.g. Teixeira and Miranda, 2005, 2006).

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 2–18 (0000)
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Mountain wave drag amplification by Scorer parameter resonance 5

Inserting (11) into (10), the solution to the latter

equation (see Appendix B) is

ŵ1 =
U0kĥ

2m

l20
1− i λ

Uk

[∫ +∞

0

cos(ns + φ)e2imsds

× (
eimz − e−imz

)

+
∫ z

0

cos(ns + φ)
{
e−im(z−2s) − eimz

}
ds

]
, (16)

where it has been again assumed that U is constant

when λ 6= 0. This form emphasizes upward and downward

propagating components of the first-order wave perturbation

(corresponding to exponential terms with positive and

negative exponents that are a function of z, respectively).

The solution (16) satisfies the lower boundary condition

ŵ1(z = 0) = 0 and the upper boundary condition that the

wave energy decays or propagates upward as z → +∞.

It can be seen from (16) that the upward and downward

propagating wave components are of similar magnitude

at z = 0, whereas the downward propagating component

vanishes as z → +∞. The integrals in (16) may be

calculated analytically, yielding

ŵ1 = − U0kĥ

4m2 − n2

l20
1− i λ

Uk

[
2m

n
{sin(nz + φ)

− sin φ}+ i {cos(nz + φ)− cosφ}] eimz. (17)

In this equation it can already be seen that parametric

resonance will happen for n = ±2mR, since 4m2 − n2

appears in a denominator on the right-hand side. When

λ = 0, m2 is real and there is the possibility that this

denominator becomes zero. When λ 6= 0, however, (15)

shows that mI is never zero, even if the waves are vertically

propagating. So ŵ1 will not diverge to infinity in those

circumstances (which would invalidate the power series

solution), but will be strongly amplified for relatively small

λ.

The focus in the present study is on the calculation

of the surface drag associated with the mountain waves.

The drag per unit spanwise width of the ridge is given by

(Teixeira and Miranda, 2004)

D =
∫ +∞

−∞
p(z = 0)

∂h

∂x
dx = 2πi

∫ +∞

−∞
kp̂∗(z = 0)ĥdk,

(18)

where h is the surface elevation, the asterisk denotes

complex conjugate, and Parseval’s theorem has been used.

In order to calculate the drag, it is therefore necessary to

obtain the pressure perturbation at the surface. Using (1)

and (4), the Fourier transform of the pressure perturbation

p̂, which is related to p in the same way as ŵ is related to w

in (5), is given by

p̂ = i
ρ0

k

{
U ′ŵ − U

(
1− i

λ

Uk

)
ŵ′

}
. (19)

An inviscid (λ = 0) but 3D version of (19) was presented,

for example, by Teixeira and Miranda (2006) as their Eq.

(8). From (8) and (19), it is clear that p̂ may also be

expressed as a power series of ε, as

p̂ = p̂0 + εp̂1 + ε2p̂2 + ... . (20)

If (11) is differentiated and evaluated at z = 0, and used in

(19), it can be shown (see Appendix C) that

p̂0(z = 0) = ρ0U
2
0 ĥ

{
i

(
mR +

λ

Uk
mI

)

−mI +
λ

Uk
mR − U ′

0

U0

}
, (21)

where U ′
0 = U ′(z = 0), and (13) and (20) were also used.

Equation (17) may also be differentiated, evaluated at z =

0, and inserted into (19) (see Appendix C), yielding

p̂1(z = 0) = − ρ0U
2
0 l20ĥ

(4m2
R − 4m2

I − n2)2 + 64m2
Rm2

I

× [
i
{
8nmRmI sin φ− 2

(
4m2

R + 4m2
I − n2

)

×mR cos φ} − (
4m2

R − 4m2
I − n2

)
n sin φ

−2
(
4m2

R + 4m2
I − n2

)
mI cos φ

]
, (22)

where, again, (13) and (20) have been used.

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 2–18 (0000)
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6 M. A. C. Teixeira, J. L. Argaı́n, P. M. A. Miranda

In the case of an orography that is symmetric in x, ĥ is

real and so, according to (18), only the imaginary parts of

p̂0 and p̂1 contribute to the drag. The drag is obviously also

expressed as a power series in ε,

D = D0 + εD1 + ε2D2 + ... . (23)

Here the total drag, which is only calculated up to first-

order, is normalized by the drag in the absence of resonance,

D0. This is accomplished by inserting (21) and (22) into

(20) and using the latter equation in (18). The final result is

D

D0
= 1 + ε

D1

D0

= 1 +
2ε∫ +∞

0
k′|ĥ′|2 (

m′
R + λa

Uk′m
′
I

)
dk′

∫ +∞

0

k′|ĥ′|2

×m′
R

(4m
′2
R + 4m

′2
I − n

′2) cos φ− 4n′m′
I sinφ

(4m
′2
R − 4m

′2
I − n′2) + 64m

′2
Rm

′2
I

dk′,

(24)

where k′ = ka, ĥ′ = ĥ/(h0a), m′
R = mR/l0, m′

I = mI/l0

and n′ = n/l0 are dimensionless parameters and functions

defined in terms of the corresponding dimensional

quantities, specified previously. a and h0 are, respectively, a

representative width and height of the orography.

Although the results of the model would not be

essentially changed by adopting a different form for the

surface elevation, following WV10 it will be assumed here

that the orography is a bell-shaped ridge:

h =
h0

1 + (x/a)2
, ⇒ ĥ′ =

1
2
e−|k

′|. (25)

The normalized drag given by (24) is a function of five

dimensionless parameters n/l0, φ, ε, l0a and λa/U . Since,

as was seen above, resonance occurs when n = ±2mR,

and |mR| ≈ l0 when the flow is approximately inviscid and

hydrostatic (i.e. when l0a is large and λa/U is small – see

(14)), resonance will occur in the vicinity of n/l0 = 2. For

that reason, the drag will be represented next as a function

of n/l0, for particular values of the other flow parameters.

2.2. Numerical simulations

Numerical simulations were performed using the FLEX

numerical model, which is a 2D nonlinear and nonhy-

drostatic microscale to mesoscale model using generalized

curvilinear coordinates (see Argaı́n et al., 2009). For all

simulations, and as in WV10, the rotation of the Earth was

neglected and flow over a bell-shaped mountain (25) with

a = 10km, h0 = 10m was considered. The unperturbed

Brunt-Väisälä frequency and the mean wind speed were

N0 = 0.01s−1 and U = 20m s−1. Therefore, the flow was

strongly linear (N0h0/U = 5× 10−3) (at least in non-

resonant conditions) and reasonably hydrostatic (N0a/U =

5). When testing nonhydrostatic effects, a = 20km and a =

4km, were also employed, so that N0a/U = 10 (strongly

hydrostatic flow) or N0a/U = 2 (strongly nonhydrostatic

flow). The adopted Scorer parameter profile was con-

structed according to (7), with l0 = N0/U and its vertical

oscillation was imposed by adding a perturbation to N2
0 , of

relative amplitude ε = 0.1. This approach differs from that

of WV10, where the perturbation is imposed on U instead.

The model was run in a domain of length 24a in

the horizontal (≈ 240km for a = 10km) by 3.5λz in the

vertical (λz = 2πU/N0 is the vertical wavelength of the

gravity waves). This corresponds to ≈ 44km for the values

of N0 and U quoted above. A grid of 160× 525 points,

with a resolution of 0.15a in the horizontal (1.5km for a =

10km) and λz/150 in the vertical (≈ 84m for the values of

N0 and U quoted above) was used. Lateral sponges with

width 4a and a sponge at the top of the domain with depth

1.5λz were also employed.

The model was run with a time step of 2s for a period

of up to 500a/U (corresponding to 69 hours for a = 10km

and U = 20m s−1), until the drag stabilized to a constant

value. In many cases, the time necessary for this to happen

was not larger than 120a/U , or 17 hours, but in resonant

conditions it became considerably larger (cf. WV10).

Most of the simulations were carried out in inviscid

mode, that is, using a free-slip boundary condition at

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 2–18 (0000)
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Mountain wave drag amplification by Scorer parameter resonance 7

the surface and no turbulence closure. The simulations of

section 3.5 used a no-slip boundary condition, and either

a Smagorinsky-type turbulence closure (Lilly, 1962) or a

K-ε turbulence closure. In these cases, Monin-Obukhov

profiles were used to initialize the model up to the top of the

boundary layer height (which is consistent with the absence

of rotation). A roughness length of z0 = 0.05m, a Monin-

Obukhov length of LMO = 255m and a friction velocity

of u∗ = 0.46m s−1 were employed. The latter two values

were determined using the method proposed by Argaı́n et

al. (2009). In these simulations, the drag took considerably

less time to stabilize than in inviscid conditions (at most

150a/U or 21 hours in all cases).

3. Results

3.1. The importance of friction

Since friction appears to be of crucial importance in the type

of flow being considered, its effect on the behaviour of the

analytical model presented above will be analyzed first, and

compared with nominally inviscid numerical results.

Figure 2 shows the normalized drag, as given by (24),

for ε = 0.1 and l0a = 5 (as in WV10), for three values of

the friction coefficient λa/U (lines). Also shown are results

for the same conditions, but from inviscid simulations of the

FLEX numerical model (symbols). Although, in all cases

displayed, the normalized drag only departs substantially

from 1 in the vicinity of n/l0 = 2, which is consistent

with the existence of parametric resonance, the behaviour

is strongly dependent on φ. For φ = 0 (Figure 2(a)), there

is a drag maximum to the left of n/l0 = 2, followed

by a minimum to the right of n/l0 = 2. The magnitude

of these extrema increases as λa/U decreases. In Figure

2(b), where φ = π/2, there is a single drag minimum, of

larger magnitude than the extrema displayed in Figure 2(a),

approximately centred on n/l0 = 2 (slightly to the left). The

magnitude of this minimum increases as λa/U decreases,

but the minimum vanishes altogether for λ = 0. For φ = π

(Figure 2(c)) and φ = 3π/2 (Figure 2(d)) the behaviour
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Figure 2. Normalized drag as function of n/l0 for ε = 0.1, l0a = 5 and
various values of λa/U , from (24) and from the FLEX numerical model.
Dotted line: (24) with λa/U = 0, solid line: (24) with λa/U = 2×
10−2, dashed line: (24) with λa/U = 0.1, symbols: FLEX. (a) φ = 0,
(b) φ = π/2, (c) φ = π, (d) φ = 3π/2.
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8 M. A. C. Teixeira, J. L. Argaı́n, P. M. A. Miranda

of the drag predicted by (24) is exactly symmetric with

respect to the line D/D0 = 1 relative to that displayed in

Figure 2(a) and 2(b), respectively. Hence, for φ = π there

is a drag minimum followed by a maximum, whereas for

φ = 3π/2 there is a single maximum. This last maximum,

which is perhaps the most relevant result from the viewpoint

of drag parametrization, has the same peculiar behaviour

as the minimum. Namely, while it becomes higher as

λa/U decreases, it vanishes for λ = 0. It should be noted

that the drag minima predicted by (24) at φ = 0, φ =

π/2 or φ = π would become negative for sufficiently low

λa/U , an obviously unphysical result which stems from the

limitations of the perturbation approach employed in the

analytical model.

The results from the FLEX numerical model are

broadly in agreement with the analytical model for λa/U =

2× 10−2. They cover a much more limited number of

values of n/l0, and for that reason are not able to sample as

effectively the drag variation near the peaks. For example,

since the drag minimum in Figure 2(b) and the drag

maximum in Figure 2(d) occur slightly below n/l0 = 2,

they are not perfectly captured in the numerical simulations.

Unlike in the analytical model, the magnitude of the drag

minimum in Figure 2(b) is smaller than the magnitude of

the drag maximum in Figure 2(d), essentially because the

drag cannot become negative in the numerical simulations.

Nevertheless, apart from an underestimation of the drag by

(24) for φ = 0 at n/l0 = 1.75, the agreement between both

models is quite good, even quantitatively. This means that

a simple Rayleigh damping is able to capture the essential

aspects of frictional effects in the present flow. It also

means that, while being nominally inviscid, the simulations

of the FLEX model obviously contain a small amount of

numerical diffusion. Preliminary tests, where the FLEX

model was run at a higher resolution, suggest that the drag

extrema existing near n/l0 = 2 become more pronounced,

which is consistent with a decrease of computational

dissipation, but further tests are required to confirm the

robustness of this behaviour.

The drag maximum in the inviscid numerical results

of WV10, presented in their Figure 9, is slightly larger

than that in Figure 2(d), but these results are not directly

comparable with ours, since WV10 imposed a perturbation

on U rather than on N to produce the vertical oscillations

of the Scorer parameter (see section 4).

The present results suggest that friction, which always

exists in reality, is essential for the existence of the drag

maximum for φ = 3π/2 and of the drag minimum for φ =

π/2. Curiously, that is not the case for the double extrema

produced for φ = 0 or φ = π, which were overlooked by

WV10, but are essentially inviscid in the present framework

(see Figure 2(a) and 2(c)). The possibility that a modulation

of the drag with n/l0 may be produced when λ = 0 for

φ = π/2 or φ = 3π/2 if the wave solution is considered up

to higher order in ε cannot be ruled out, but when ε = 0.1

this should amount to a relatively small correction, since the

following power series coefficient is ε2 = 0.01.

The mathematical reason for the behaviour of the

drag in the analytical model can be sought in (24). When

φ = π/2 or φ = 3π/2, cos φ = 0 and so only the second

term in the numerator of the fraction inside the integral is

non-zero. This term contains m′
I and is multiplied by m′

R

outside the fraction, so it only gives a non-zero contribution

to the integral when m′
R and m′

I are simultaneously non-

zero. Now, in inviscid conditions, either m′
R or m′

I must

be zero, i.e., the vertical wavenumber of the mountain

waves must either be pure real or pure imaginary. In those

circumstances, the correction to the drag due to resonance

vanishes.

A clearer explanation for this behaviour can be

achieved if one notes that for the case φ = 3π/2

(corresponding to a single drag maximum) the integral in
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Mountain wave drag amplification by Scorer parameter resonance 9

the numerator of (24) can be written

∫ +∞

0

k′|ĥ′|2 4n′m′
Rm′

I

(4m
′2
R − 4m

′2
I − n′2)2 + 64m

′2
Rm

′2
I

dk′

= 2
∫ +∞

0

|ĥ′|2

×
λa
U n′

{
4− 4k′2

(l0a)2 − n′2
}2

+ λ2a2

U2k′2

{
4k′2

(l0a)2 + n′2
}2 dk′,

(26)

where (14) and (15) have been used. Obviously when

λa/U → 0 this integral is zero if n/l0 6= 2, but it can be

shown that it diverges if n/l0 = 2. This becomes even more

evident if the hydrostatic limit is considered. In that case,

where l0a →∞, (26) reduces to

∫ +∞

0

k′|ĥ′|2 4n′m′
Rm′

I

(4m
′2
R − 4m

′2
I − n′2)2 + 64m

′2
Rm

′2
I

dk′

= 2
∫ +∞

0

|ĥ′|2
λa
U n′

(4− n′2)2 + λ2a2

U2k′2
n′4

dk′, (27)

and it follows immediately that the integral (27), apart from

approaching zero (making D/D0 = 1) when λa/U → 0

and n/l0 6= 2, tends to infinity proportionally to (λa/U)−1

if n/l0 = 2. In fact, it can be shown from (24) and (27) that,

in the latter limit

D

D0
= 1 +

ε

2

(
λa

U

)−1

. (28)

So, the correction to the drag due to parametric resonance

behaves in this case like a Dirac delta function as

λa/U → 0, although the perturbation approach used to

obtain this result becomes invalid in that limit. Obviously,

when frictional effects are excluded from the outset, this

behaviour is not uncovered, since the limit λa/U → 0 is

taken before the limit n/l0 → 2.

The linear model used by WV10 was based on an

equation analogous to (6), but with λ = 0 (their equation

(3)). The above arguments could explain the inability of

these authors to obtain a drag maximum such as shown

in Figure 2(d) (or a minimum such as that in Figure 2(b))

in their linear results. However, caution is necessary, since

their model, although linear, was solved numerically, and

the discretization scheme should introduce some spurious

numerical diffusion. Additionally, as noted above, WV10

perturbed the Scorer parameter in a different way from that

adopted here, which makes comparisons difficult.

Even an inviscid linear model should be able, however,

to produce the double drag extrema displayed in Figure 2(a)

and 2(c), since when φ = 0 or φ = π, sin φ = 0 and so only

the first term in (24) in the numerator of the fraction inside

the integral is non-zero, but this term does not vanish if

m′
I = 0.

The disappearance of the single drag extrema for

φ = π/2 or φ = 3π/2 is an example of a situation where

λ → 0 (vanishing friction) does not coincide with λ = 0

(zero friction). Other situations of this kind exist in fluid

dynamics, in connection with boundary layer theory, for

example D’Alembert’s paradox. Since the real atmosphere

always possesses some friction, the subtle difference

between these two limits is not very relevant from an

experimental perspective. But in the context of numerical

modelling, it illuminates the fact that the behaviour of

the drag in these resonant flows must be quite sensitive

to computational diffusion in inviscid simulations, and

certainly requires an adequate turbulence closure to be

accurately represented (see section 3.5 below).

3.2. The pressure perturbation

In order to better understand the behaviour of the drag, it

is worth analyzing the pressure perturbation at the surface,

which is ultimately responsible for it. The cases of greatest

interest are those where a single drag maximum or a single

drag minimum exist, because they presumably correspond

to extreme flow configurations.

Figure 3 shows the normalized pressure perturbation

at the surface as a function of streamwise distance across

the ridge from the analytical model (Figure 3(a)) and

from the FLEX numerical model (Figure 3(b)). Cases

corresponding to a drag maximum (n/l0 = 2 and φ =
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10 M. A. C. Teixeira, J. L. Argaı́n, P. M. A. Miranda

3π/2) and to a drag minimum (n/l0 = 2 and φ = π/2)

are shown, with other flow parameters similar to those

used by WV10 (l0a = 5 and ε = 0.1). In the analytical

model, λa/U = 2× 10−2 is assumed. A case without

resonance (ε = 0) is also presented for reference. This last

case is characterized (both in Figure 3(a) and 3(b)) by

a pressure distribution that is anti-symmetric with respect

to the ridge axis, with a positive maximum upstream

and a negative minimum downstream of the ridge, as is

typical of approximately hydrostatic flow over this kind

of orography (see e.g. Queney, 1948). Although the flow

is not perfectly hydrostatic here, nonhydrostatic effects on

the surface pressure are almost imperceptible, especially

in Figure 3(a). The situation of drag enhancement is

characterized by a substantial amplification of the pressure

perturbation, which nevertheless maintains a roughly anti-

symmetric form. The situation of drag attenuation, on the

other hand, is characterized by decrease of the positive

pressure maximum upstream of the ridge and a translation

of the negative minimum upstream towards the ridge top

(without appreciable reduction in magnitude).

In all of these aspects, there is considerable agreement

between the analytical model (Figure 3(a)) and the

numerical simulations (Figure 3(b)). There are, however,

some slight discrepancies, particularly in the resonant cases.

For example, in the high-drag case the positive pressure

perturbation extends more upstream of the ridge in the

numerical simulations than in the analytical model, and the

negative pressure perturbation extends less downstream and

is centred further upstream. Whereas in the analytical model

the pressure perturbation is positive over the ridge top, it is

almost zero (as in the non-resonant case) in the numerical

results. Additionally, in the low-drag case in the analytical

model the pressure perturbation downstream of the ridge

oscillates and has a positive maximum downstream of

the minimum, which does not exist in the corresponding

numerical result. This feature, which appears to be a

nonhydrostatic effect, might reflect the unreliability of the

analytical model for reproducing the details of the pressure
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Figure 3. Normalized pressure perturbation p/(ρ0U2l0h0) at z = 0 as
a function of normalized streamwise distance for l0a = 5, for a constant
Scorer parameter (ε = 0, dashed lines), drag enhancement (ε = 0.1 and
φ = 3π/2, solid lines) and drag attenuation (ε = 0.1 and φ = π/2, dash-
dotted lines). (a) From the analytical model, with λa/U = 2× 10−2, (b)
from the FLEX numerical model.

distribution in resonant conditions, due to the substantial

amplitude of the flow perturbations, despite the smallness

of the forcing. Indeed, it is this maximum of the pressure

perturbation that, for a sufficiently high ε, is responsible for

making the drag become negative, so it likely is a spurious

feature. Nevertheless, and as would be expected considering

the drag behaviour, the essential effects of resonance on the

pressure field seem to be captured by the analytical model

for all three cases.

Given the peculiar behaviour of the drag produced by

the analytical model in the inviscid limit, it might appear

relevant to present plots of the pressure perturbation for

this case in the same resonant conditions as illustrated in

Figure 3. However, in the inviscid limit the first-order term

of the Fourier transform of the pressure perturbation has

a singularity at n/l0 = 2, which makes the corresponding

inverse Fourier transform diverge. This is not surprising

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 2–18 (0000)

Prepared using qjrms4.cls



Mountain wave drag amplification by Scorer parameter resonance 11

since the drag amplification, if it existed in this limit,

would be infinite. However, the diverging pressure field

(not shown) is perfectly symmetric with respect to the

orography, producing no additional drag, consistent with

Figure 2(b) and 2(d). For these reasons, this inviscid

pressure perturbation is not presented here.

3.3. The flow field

A better understanding of the behaviour of the pressure

perturbation can be achieved by analyzing the velocity field

associated with it. From (19) it is clear that the pressure

perturbation is determined by the structure of the vertical

velocity perturbation. In particular, it can be shown that the

term in this equation that contributes to the pressure that

produces drag is that proportional to the vertical derivative

of ŵ.

In Figure 4, the normalized vertical velocity pertur-

bation w/(Uh0/a) is shown in a vertical cross-section

perpendicular to the ridge, as calculated from the analytical

model for ε = 0.1, l0a = 5 and λa/U = 2× 10−2. The

three situations displayed in Figure 4(a), 4(b) and 4(c) are

the same as those considered in Figure 3. Namely, in Figure

4(a) a non-resonant case with ε = 0 is considered. Figure

4(b) displays a case of drag enhancement with ε = 0.1,

n/l0 = 2 and φ = 3π/2, while Figure 4(c) displays a case

of drag attenuation with ε = 0.1, n/l0 = 2 and φ = π/2.

In all panels, the structure typical of propagating mountain

waves can be seen, with elongated maxima and minima

over the mountain, tilted upstream. Nonhydrostatic effects

are visible, with some downstream propagation of the wave

pattern and some attenuation as one moves upwards. In

Figure 4)(a) (the non-resonant case) the negative lobe of

the vertical velocity sitting directly above the ridge has a

minimum value below -0.9, while in Figure 4(b) (the high-

drag state) that minimum is lower than -1.3 and in Figure

4(c) (the low-drag state) the minimum is merely below -0.6.

Obviously, these differences in magnitude of the vertical

velocity explain the differences in the pressure perturbation

described in the previous section. There are some additional
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Figure 4. Normalized vertical velocity perturbation w/(Uh0/a) as
a function of normalized streamwise and vertical distance, from the
analytical model for ε = 0.1, l0a = 5 and λa/U = 2× 10−2. (a) Non-
resonant flow (ε = 0), (b) drag enhancement (ε = 0.1 and φ = 3π/2),
(c) drag attenuation (ε = 0.1 and φ = π/2). Solid contours: non-negative
values, dashed contours: negative values. Contour spacing: 0.1.

differences. In Figure 4(b) the pressure perturbation extends

somewhat more in the upstream and downstream directions

than in Figure 4(a). In particular, the nonhydrostatic wake

of the mountain waves is considerably enhanced. In Figure

4(c), on the other hand, the maxima and minima of the

vertical velocity have a two-lobe structure.
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Figure 5. The same as Figure 4, but from the FLEX numerical model.

Figure 5 shows results similar to those of Figure 4,

but produced by the FLEX numerical model. The minima

of the vertical velocity perturbation above the ridge are

just below -0.8 in Figure 5(a), below -1.2 in Figure 5(b)

and below -0.6 in Figure 5(c). Concerning this aspect there

is thus quite good agreement with Figure 4. However,

the configuration of the flow shows some differences. For

example, in Figure 5(b) the vertical velocity perturbation

extends less upstream of the ridge than in Figure 4(b),

and the way in which it extends downstream is rather

different. Differences are less marked between Figures

4(c) and 5(c), where the vertical velocity perturbation in

the latter figure also displays a tendency for a two-lobe

structure, although the nonhydrostatic wake is weaker than

in Figure 4(c). Figures 4(a) and 5(a), where non-resonant

conditions are considered, are perhaps the most similar,

which is expectable, since they should correspond to the

least nonlinear flow.

Unlike in Figure 4, in all panels of Figure 5 the flow

perturbation tends to decay markedly above l0z/π = 4.

This happens because the sponge applied in the numerical

simulations at the top of the domain extends approximately

down to that height. There is also more moderate

attenuation below l0z/π = 4, which is clearly larger than in

the analytical results, and a tendency for the flow pattern to

become more horizontal. This could result from numerical

dissipation associated with the discretization scheme. Either

effect does not seem to have a large impact on the flow near

the surface, as would be desirable for the present purposes.

It would be interesting to visualize the vertical velocity

field given by the analytical model in invicid and resonant

conditions. Unfortunately, for the same reasons as invoked

for the pressure perturbation, the corresponding field

diverges, and so is not presented here. The first-order term

of this field, which is responsible for this divergence, does

not display any tilting in its vertical structure (not shown),

being therefore unable to increase the drag.

3.4. Nonhydrostatic effects

WV10 pointed out that, when the value of U is decreased,

the drag maximum displayed in their Figure 9 for n/l0 ≈
2 increased in magnitude. The present analytical model

suggests that this behaviour may be explained by the

variation of l0a, which increases as U decreases or as

N0 increases. This motivates an exploration of the drag

dependence on this parameter.
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Figure 6. Normalized drag from (24) as a function of n/l0 for ε = 0.1,
λa/U = 2× 10−2 and various values of l0a. Dashed line: l0a = 2, solid
line: l0a = 5, dotted line: l0a = 10. (a) φ = 0, (b) φ = π/2, (c) φ = π,
(d) φ = 3π/2.
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Figure 7. The same as Figure 6, but from the FLEX numerical model.
Dashed line and squares: l0a = 2, solid line and circles: l0a = 5, dotted
line and triangles: l0a = 10.
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In Figure 6 the normalized drag predicted by (24) is

presented as a function of n/l0 for ε = 0.1 and λa/U =

2× 10−2, for the same values of φ as before and three

values of l0a: 2, 5 and 10. It can be seen that the

drag maxima and minima become more pronounced and

narrower as l0a increases. For example, in Figure 6(d)

the drag maximum has a magnitude of ≈ 2.6 when l0a =

10. This is still somewhat lower than the value of 3.5

predicted by (28) for perfectly hydrostatic conditions.

By symmetry, this implies that, in Figure 6(b) the drag

minimum is negative for l0a = 10, an unphysical result

which stems for the limitations of the analytical model,

as pointed out before. For l0a = 2, a case where the flow

is highly nonhydrostatic, the minimum in Figure 6(b) and

the maximum in Figure 6(d) are decreased, translated to

slightly lower values of n/l0, and become wider on their

left slopes. This should be caused by wave dispersion,

which tends to ‘unfocus’ the resonance process. Since

resonance relies on trapping by vertical reflections of the

wave energy, dispersion attenuates it by allowing that

energy to also propagate downstream instead of becoming

only concentrated over the mountain.

Figure 7 shows similar results, but from the FLEX

numerical model. Clearly, the main features in the drag

variation with n/l0 are in agreement with those of Figure 6,

nevertheless because the drag is only plotted as a function

of n/l0 at intervals of 0.25, some details are necessarily

lost. For example, the increase in the magnitude of the

drag extrema as l0a increases is less pronounced. This

happens because, despite the fact that the drag minimum in

Figure 7(b) and the drag maximum in Figure 7(d) become

centred closer to n/l0 (for which there is a computed value

of D/D0), their width becomes smaller. Therefore, the

magnitude of the drag extrema seems to be progressively

more underestimated as l0a becomes larger. A similar

phenomenon can be seen for the drag minimum in Figure

7(a) and 7(c) for l0a = 10. This implies that the drag

extrema become more difficult to detect as the flow becomes

more hydrostatic. There is an additional subtle difference

between Figures 6 and 7, whose cause is not clear. The drag

to the left of the minimum in Figure 7(b) and to the left

of the maximum in Figure 7(d) depart slightly more from

1 for l0a = 10 than for l0a = 5. Despite these differences,

the behaviour of the analytical and of the numerical model

clearly resemble each other qualitatively.

3.5. Numerical simulations with friction

It was seen in the preceding sections that friction is a

crucial effect for the type of resonance being addressed

in this study, in particular for producing the single drag

maximum (φ = 3π/2) or minimum (φ = π/2) at n/l0 = 2.

Since, among these two, the most relevant is undoubtedly

the drag maximum, attention will be focused next on this

case, with a preliminary analysis of the effect of physical

friction (as opposed to numerical friction) on its behaviour.

The following numerical results do not aim at more than

illustrating how the drag variation is modified when a

turbulence closure is adopted in the FLEX model, instead

of running it in inviscid mode. A more comprehensive

exploration of these effects is left for future studies.

Figure 8 reproduces the results from the FLEX

numerical model for φ = 3π/2, ε = 0.1 and l0a = 5 also

presented in Figure 2(d) (squares and dashed line). The

circles and solid line correspond to the drag calculated

with the same parameters, with the difference that a

simple Smagorinsky-type turbulence closure, based on Lilly

(1962), was turned on. For the triangles and dotted line,

a K − ε turbulence closure was adopted instead. Clearly,

by comparison with the inviscid drag, the presumably more

realistic drag produced with the turbulence closures is

somewhat reduced for all values of n/l0. For n/l0 6= 2

this reduction is larger using the Lilly closure than for the

K − ε closure. The level of the non-resonant drag in the

former case (≈ 0.7) is lower than that of the latter (≈ 0.8),

which is comparable to that found in the viscous simulations

of WV10. However, for n/l0 = 2, the drag using both

turbulence closures is comparable (≈ 1.2) and smaller than

both the inviscid result and that shown in Figure 9 of WV10.
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Figure 8. Normalized drag as function of n/l0 for ε = 0.1, l0a = 5 and
φ = 3π/2 from the FLEX numerical model, in inviscid conditions (dashed
lines and squares), using Lilly’s (1962) turbulence closure (solid lines and
circles) and using a K − ε turbulence closure (dotted lines and triangles).
(a) Same normalization as used previously (b) Drag normalized by its value
at n/l0 = 0.

If the drag is normalized, not by its inviscid non-

resonant value, but by its value at the origin of n/l0

(which corresponds to the non-resonant viscous limit)

(Figure 8(b)), it can be noticed that there are almost

no differences between the inviscid result and that using

the Lilly turbulence closure. This means that the drag is

attenuated proportionally by friction in the latter case in

all circumstances. Using the K − ε turbulence closure, on

the contrary, the drag amplification is somewhat reduced

compared with the inviscid simulations. This behaviour is

also different from that displayed in Figure 9 of WV10,

where a simple turbulence closure appears to have been

used. Presumably, the K − ε turbulence closure, unlike the

Lilly closure, becomes more active in resonant conditions,

which makes some sense, since the flow is then more likely

to become turbulent. The drag behaviour using the K − ε

turbulence closure could be mimicked using the present

analytical model by increasing the value of λa/U , but, of

course, the selected value would only be suitable for this

particular case.

These results further emphasize the sensitivity of the

drag to the representation of frictional effects, a finding

which parallels those of previous authors for various types

of resonant or high-drag orographic flows, for example

Ólafsson and Bougeault (1997), Peng and Thompson (2003)

and Stiperski and Grubišić (2011). Clearly, in order to

achieve a realistic representation of the drag in nature,

particularly for the type of resonant flows being investigated

here, much attention needs to be devoted to the formulation

of turbulence closures in numerical models.

4. Concluding remarks

A mechanism of parametric resonance leading to the

amplification of mountain waves, and their associated

surface drag, was investigated, inspired by the recent

study of WV10. This resonance relies on the existence

of a vertically oscillating Scorer parameter, although this

oscillation may be of relatively small amplitude. WV10

suggested that this mechanism is intrinsically nonlinear,

being related with the wave-triad interaction originally

addressed by Phillips (1968) in an oceanographic context.

A linear model using a perturbation approach, where the

solutions are expanded in powers of a small parameter

proportional to the amplitude of the Scorer parameter

oscillation was developed, showing that the wave and drag

amplification mechanism under consideration is essentially

linear, although it is obviously altered by nonlinearity when

the drag is enhanced or attenuated by a large factor.

The results presented in the previous sections

have substantial implications for numerical modelling of

mountain waves. Since friction has a crucial impact on the

magnitude, and even on the existence or not of drag maxima

caused by the kind of parametric resonance being studied,

a good representation of this process in numerical models

appears to be essential to obtain accurate mountain wave
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drag estimates. The behaviour of the drag should be quite

sensitive to the particular turbulence closure employed, as

is suggested by the preliminary viscous results presented

in the preceding section. Inviscid calculations, on the

other hand, are probably of limited quantitative value,

since their resolution, or the degree of numerical diffusion

associated with their particular discretization scheme, may

alter substantially the way in which the resonance process

is represented.

When comparing the results of the present study

to those of WV10, some intriguing aspects were found.

For example, on their page 436 these authors remark

that the drag maxima produced by their numerical model

corresponds to drag minima in their linear model. No such

discrepancy in behaviour was ever found in the present

calculations.

Instead of using (7) to define the Scorer parameter,

WV10 added an expression of the form A sin(nz − φwv)

to the mean velocity U . At first glance, a simple relation

between the perturbation imposed on the Scorer parameter

by WV10 and that employed here could be described by

l2 =
N2

0

{U + A sin(nz − φwv)}2

≈ N2
0

U2

{
1 +

2A

U
cos

(
nz − φwv +

π

2

)}
, (29)

when A/U is small. Then, the small parameter used in the

present study should be defined in terms of the quantities

employed by WV10 as ε = 2A/U . However, the fact that

in the present analytical model the oscillation in the Scorer

parameter profile was implicitly imposed on N2 rather

than on U may lead to important differences in the results

(Vosper, private communication). A possible explanation

for this behaviour is that some of the integrals calculated

in the solution procedure involve λa/U (see section 2.1),

which would become a function of z instead of a constant

if U oscillates in the vertical. This would considerably

complicate the analytical treatment.

Several refinements and additions to the idealized

situation considered here would be possible, and of

substantial interest for mountain wave modelling. For

example, 3D orography, which is obviously more realistic

than a 2D ridge, could be adopted. This modification would

be expected to weaken the resonance process, since it

leads to a higher degree of wave dispersion (then not only

associated with nonhydrostatic effects, but also with the

variable orientation of the mountain waves).

A further step towards making the present model

problem more realistic could be the prescription of Scorer

parameter profiles with a more complicated form (i.e.

containing more harmonics in the vertical). One of the

motivations presented by WV10 for considering one single

harmonic, as is done in the present study, results from

their analysis of the spectrum of a more realistic Scorer

parameter profile. Consideration of this effect would also, in

principle, tend to weaken the resonance process under study,

by spreading it over a wider range of n/l0 than presently.

Finally, higher mountains, for which N0h0/U is closer

to unity, and hence where the flow becomes nonlinear even

in the absence of resonance, could be considered. Clearly,

this more realistic situation could only be investigated using

a set of numerical simulations. This, as well as the other

developments alluded to above, are left as suggestions for

future work.
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Appendix A. The vertical wavenumber of the waves

Using (13), (12) may be decomposed into its real and

imaginary parts, yielding the following two equations:

m2
I −m2

R − 2
λ

Uk
mRmI + l20 − k2 = 0, (A1)

2mRmI +
λ

Uk
(m2

I −m2
R)− λk

U
= 0. (A2)

If (A1) and (A2) are combined, a single equation for mI can

be found:

m4
I +

(
l20

1 + λ2

U2k2

− k2

)
m2

I −
1
4

λ2

U2k2

l40(
1 + λ2

U2k2

)2 = 0.

(A3)

In order to calculate mI , (A3) must be solved for m2
I and

then the positive root for mI must be selected. Combining

(A1)-(A2) in an alternative way, a relationship that gives

mR in terms of mI is obtained:

mR =
λ

Uk l20

2mI

(
1 + λ2

U2k2

) . (A4)

It can be seen from (A4) that if mI > 0, then mR has the

same sign as Uk, which automatically satisfies the radiation

boundary condition. The mI found as a solution to (A3) and

the corresponding mR calculated from (A4) are presented in

(14) and (15).

Appendix B. The first-order wave solution

The most general solution to (10) is of the form:

ŵ1 = a eimz + b e−imz − 1
2im

l20
1− i λ

Uk

×
∫ z

0

ŵ0 cos(ns + φ)
{

eim(z−s) − e−im(z−s)
}

ds,

(B1)

where a and b are coefficients determined by the boundary

conditions. The boundary conditions that ŵ1(z = 0) = 0

and that ŵ1 remains finite as z → +∞ are only satisfied

if

a = −b =
1

2im

l20
1− i λ

Uk

∫ +∞

0

ŵ0 cos(nz + φ)eimsds.

(B2)

Then (B1) can be written:

ŵ1 =
1

2im

l20
1− i λ

Uk

[∫ +∞

0

ŵ0 cos(ns + φ)eimsds

× (
eimz − e−imz

)−
∫ z

0

ŵ0 cos(ns + φ)

×
{

eim(z−s) − e−im(z−s)
}

ds
]
. (B3)

Using (11) in (B3), (16) is readily obtained.

Appendix C. The pressure perturbation

If (8) and (20) are used in (19), and this latter equation is

evaluated at z = 0, the zeroth-order pressure perturbation is

given by

p̂0(z = 0) = i
ρ0

k
{U ′

0ŵ0(z = 0)

−U0

(
1− i

λ

Uk

)
ŵ′0(z = 0)

}
. (C1)

Inserting (11) into (C1), it is easy to show that

p̂0(z = 0) = ρ0U0ĥ

{
iU0m

(
1− i

λ

Uk

)
− U ′

0

}
. (C2)

Using additionally (13), (21) is straightforwardly obtained.

Using (8) and (20) in (19), the first-order pressure

perturbation at z = 0 is given by

p̂1(z = 0) = −i
ρ0U0

k

(
1− i

λ

U0k

)
ŵ′1(z = 0), (C3)

where the fact that ŵ1(z = 0) = 0 has been noted. If (17) is

differentiated with respect to z and evaluated at z = 0, the

result is:

ŵ′1(z = 0) = U0kĥ
l20

1− i λ
Uk

1
4m2 − n2

(in sin φ

−2m cos φ). (C4)
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If this equation is inserted into (C3), and (13) is also

employed, (22) is obtained after some algebra.
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