He, M., Rees, S. and Shao, L.
ORCID: https://orcid.org/0000-0002-1544-7548
(2011)
Simulation of a domestic ground source heat pump system using a three-dimensional numerical borehole heat exchanger model.
Journal of Building Performance Simulation, 4 (2).
pp. 141-155.
doi: 10.1080/19401493.2010.513739
Abstract/Summary
Common approaches to the simulation of borehole heat exchangers (BHEs) assume heat transfer in circulating fluid and grout to be in a quasi-steady state and ignore fluctuations in fluid temperature due to transport of the fluid around the loop. However, in domestic ground source heat pump (GSHP) systems, the heat pump and circulating pumps switch on and off during a given hour; therefore, the effect of the thermal mass of the circulating fluid and the dynamics of fluid transport through the loop has important implications for system design. This may also be important in commercial systems that are used intermittently. This article presents transient simulation of a domestic GSHP system with a single BHE using a dynamic three-dimensional (3D) numerical BHE model. The results show that delayed response associated with the transit of fluid along the pipe loop is of some significance in moderating swings in temperature during heat pump operation. In addition, when 3D effects are considered, a lower heat transfer rate is predicted during steady operations. These effects could be important when considering heat exchanger design and system control. The results will be used to develop refined two-dimensional models.
Altmetric Badge
| Item Type | Article |
| URI | https://reading-clone.eprints-hosting.org/id/eprint/29212 |
| Identification Number/DOI | 10.1080/19401493.2010.513739 |
| Refereed | Yes |
| Divisions | Science > School of the Built Environment > Energy and Environmental Engineering group |
| Uncontrolled Keywords | ground source heat pump, borehole heat exchanger, dynamic three-dimensional numerical model, finite volume method |
| Publisher | Taylor & Francis |
| Download/View statistics | View download statistics for this item |
University Staff: Request a correction | Centaur Editors: Update this record
Download
Download