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(Received 28 May 2012; Accepted 24 August 2012)

The objective of this study was to determine the concentration of total selenium (Se) and the proportions of total Se comprised as
selenomethionine (SeMet) and selenocysteine (SeCys) in the postmortem tissues of female pheasants (Phasianus Colchicus
Torquator) offered diets that contained graded additions of selenised-enriched yeast (SY) or a single comparative dose of sodium
selenite (SS). Thiobarbituric acid reactive substances (TBARS) and tissue glutathione peroxidase (GSH-Px) activity of breast
( Pectoralis Major) were assessed at 0 and 5 days postmortem. A total of 216 female pheasant chicks were enrolled into the study.
Twenty-four birds were euthanased at the start of the study, and samples of blood, breast muscle, leg muscle (M. Peroneus
Longus and M. Gastrocnemius), heart, liver, kidney and gizzard were collected for determination of total Se. Remaining birds were
blocked by live weight and randomly allocated to one of four dietary treatments ( n 5 48 birds/treatment) that either differed in
Se source (SY v. SS) or dose (control (0.17 mg total Se/kg), SY-L and SS-L (0.3 mg/kg total Se as SY and SS, respectively) and SY-H
(0.45 mg total Se/kg)). Following 42 and 91 days of treatment, 24 birds per treatment were euthanased, and samples of blood,
breast muscle, leg muscle, heart, liver, kidney and gizzard were retained for determination of total Se and the proportion of total
Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and
TBARS were determined in breast tissue at the end of the study. There were increases in both blood and tissues to the graded
addition of SY to the diet ( P , 0.001), but the same responses were not apparent with the blood and tissues of selenite-
supplemented birds receiving a comparable dose (SY-L v. SS-L). Although there were differences between tissue types in the
distribution of SeMet and SeCys, there were few differences between treatments. There were effects of treatment on erythrocyte
GSH-Px activity ( P 5 0.012) with values being higher in treatments SY-H and SS-L when compared with the negative control
and treatment SY-L. There were no effects of treatment on tissue GSH-Px activity, which is reflected in the overall lack of any
treatment effects on TBARS.
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Implications

The results of this study indicate that selenium (Se) source
can influence the distribution of total Se within the tissues of
game birds. Furthermore, the responses to dietary Se and the
distribution of Se species within the tissues of unimproved,
wild type birds are markedly different from those of devel-
oped commercial breeds. This would imply that the Se
requirements of game type birds may be appreciably differ-
ent from those of commercial genotypes, despite the fact
that literature suggests that they are similar.

Introduction

Selenium (Se) is an important trace element, essential for all
selenoproteins, which contain a functional selenocysteine
(SeCys) core. Before the late 1950s, much of the work on
Se focussed on the toxic and detrimental effects that
high concentrations of dietary Se had on animal health
(Underwood and Suttle, 2001). However, during the latter part
of the 1950s, it was noted that Se played an important
physiological role in higher animals, as Se-deficient animals
were seen to suffer from liver necrosis and muscular dys-
trophy (Underwood and Suttle, 2001). In the early part of the
1970s, a specific biological role for Se became apparent with- E-mail: d.t.juniper@reading.ac.uk
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the discovery of the first selenoprotein, glutathione perox-
idase (GSH-Px; Rotruck et al., 1973). GSH-Px catalyses the
reduction of lipid and hydrogen peroxides to less harmful
hydroxides via the oxidation and subsequent reduction of
the SeCys active centre of the enzyme (Surai, 2006). The
antioxidant functions of Se, via the actions of tissue GSH-Px,
have been shown to persist postmortem in poultry muscle
tissue (Juniper et al., 2011) and delay the onset of oxidation
reactions (DeVore et al., 1983).

During the last 40 years, a number of selenoproteins have
been identified. These include those involved in the protec-
tion of cellular membranes against the effects of oxidative
stress, namely, the GSH-Pxs and thioredoxin reductases,
deodinases, which are essential for proper thyroid function,
and selenoproteins S, W and P, the latter of which is involved
in Se transport. The expression and subsequent activity
of all selenoenzymes is dependent upon an adequate Se
supply. Furthermore, Se within an organism is not evenly
distributed as there is a hierarchy of selenoenzymes (Burke
et al., 2005). Consequently, when Se is limiting there maybe
full expression of some selenoenzymes and restricted
expression of others.

Pheasants are typically wild type and have not undergone
the same rigorous genetic selection that has been applied to
commercial lines of poultry to improve rates of growth and
feed conversion efficiency. However, despite this lack of
selection, the Se requirements of Ring-necked Pheasants are
given to be similar to those of growing turkeys (National
Research Council (NRC), 1994). Differences in responses to
dietary Se have been reported between a commercial porcine
genotype and a pure breed (Banoch et al., 2009), indicating
that Se metabolism and subsequent requirements may differ
between animals selected for growth and efficiency when
compared with unimproved breeds.

The objective of this study was to determine tissue Se dis-
tribution, erythrocyte and tissue GSH-Px activity in growing
pheasants fed diets containing additions of dietary Se from
either sodium selenite (SS) or seleno-yeast (SY) sources.

Material and methods

The work was conducted in accordance with the UK Animals
(Scientific procedures) Act 1986 (Home office, 1986) and
procedures were undertaken by competent technical staff
holding appropriate license authorities under the Act. All
birds were housed on white wood shavings with a stocking
density of 1.3 m2/bird. Fresh water was available at all times
via a gravity fed bell drinker.

A total of 500 pheasant chicks (Holme Park Game
Hatcheries, Wokingham, Berks, UK) were purchased and
brooded according to commercial shoot specifications.
During this pre-trial period all chicks were offered a starter
ration, formulated to meet nutritional requirements (NRC,
1994) that had not been augmented with supplementary Se.
At 5 weeks of age, when gender identification was possible
following sufficient plumage development, all male pheasant
chicks were removed and all female pheasant chicks weighed

to provide data for experimental blocking. A total of 216 female
chicks were selected on the basis of live weight (mean BW
527.6 6 4.1 g). Of these 216 selected birds, 24 were randomly
selected to form a pretreatment slaughter group, which were
subsequently euthanased by cervical dislocation. Samples of
blood were taken from all euthanased birds and tissue samples
(breast, leg, heart and liver) were retrieved from six randomly
selected birds for determination of pretreatment Se concentra-
tions. All remaining birds were blocked by live weight and
randomly allocated to one of four dietary treatments: an
unsupplemented control (Con), supplemented with 0.08 or
0.23 mg Se/kg dry matter (DM) of SY (SY-L and SY-H, respec-
tively; Sel-Plex, Alltech, Nicholasville, KY, USA), or 0.08 mg/kg
DM of an inorganic Se source (SS-L), to achieve final total Se
concentrations of 0.30, 0.45 and 0.30 mg/kg DM, respectively.
All diets were formulated to meet the nutritional requirements
of growing Ring-necked Pheasants (NRC, 1994).

Birds were penned in groups of eight birds per pen with
six pens per treatment. All birds remained within established
pen groups throughout the study. Pens were bedded with
white wood shavings, which were replenished regularly to
maintain litter quality. Each pen was equipped with one bell
type automatic drinker and one plastic poultry tube feeder
with a feeding circumference of 60 cm. Birds were offered
the experimental diets, with respect to treatment designa-
tion, for the duration of the study.

Feeding stuffs and feed intake
Diets were formulated and manufactured by Dairy Direct
(Mill Feed Services, Anglia, UK). Before manufacture, the Se
content of individual compositional ingredients of the diets
was sent to UT2A laboratories (Pau, France) for determina-
tion of background Se of compositional ingredients (Table 1).
The quantities of either SY or SS supplements required to
achieve target doses with respect to treatment were calcu-
lated and mineral supplements were subsequently manu-
factured. Following manufacture, representative samples
of each mineral supplement were analysed to confirm the
correct level of Se.

Birds were offered their respective diets (according to
experimental design) ad libitum daily throughout the study.
Feed offered and refused were weighed and recorded daily
with DM contents being determined on a weekly basis.
Weekly samples of each diet were stored at 2208C for
subsequent laboratory determination (Euorofins, Wolver-
hampton, UK) of DM, CP, starch, NDF, total sugars, oil, ash
and Se.

Following 42 days exposure to experimental diets (T42),
four birds were randomly selected from each pen (n 5 24
birds per treatment) and euthanased by cervical dislocation,
and samples of blood and tissue (breast, leg, gizzard, kid-
neys and liver) retrieved for determination of Se concentra-
tions. Following an additional 49 days exposure (T91), all
remaining birds (n 5 24 birds per treatment) were eutha-
nased by cervical dislocation, and samples of blood and
tissue (breast, leg, gizzard, kidneys and liver) retrieved for
determination of Se concentrations.

Juniper and Bertin
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At each time point (T42 and T91) blood was collected fol-
lowing exsanguination into three pretreated lithium heparin
tubes per bird (Sarstedt, Leicester, UK). One tube was sent
for determination of whole blood GSH-Px activity (Veterinary
Laboratories Agency, Shropshire, UK), one for determination
of Se content (UT2A) and the third centrifuged at 1252 3 g
for 10 min at room temperature in a bench top centrifuge
(Weiss-Gallenkamp, Loughborough, UK) after which the
plasma fraction was decanted and sent for determination of
Se content (UT2A).

Following slaughter at T42, one bird per pen (six birds per
treatment) was randomly selected and dissected. The ventral
aspect of the carcass was skinned, and a sample of breast
tissue (M. Pectoralis Major (PM)) from the left side of the
carcase retained for Se analysis. The musculature of the left thigh
was exposed and samples of muscle tissue (M. Gastrocnemius
(MG) and M. Peroneus Longus (PL)) retained for Se analysis. The
heart, liver, kidneys and gizzard were removed from the body
cavity and retained for Se analysis.

At the T91 slaughter point, the remaining 24 birds per
treatment were plucked and dressed, and one bird per
pen (six birds per treatment) was randomly selected and
underwent dissection as previously described. In addition,
the whole breasts were removed and skinned from 12 birds
per treatment, packaged in a zip-lock bag, refrigerated and
transported in a cool box on the day of slaughter to the
University of Bristol for determination of thiobarbituric acid
reactive substances (TBARS) and tissue GSH-Px activity.

Total Se in feeding stuffs, whole blood samples, plasma
and tissues was determined according to the method of
Mester et al. (2006). Briefly, 1 g of each sample was miner-
alised in 4 ml 16 M HNO3 and 2 ml 9.8 M H2O2 within a
closed-vessel heating block system. The solution was further
diluted with water and Se subsequently determined using
inductively coupled plasma mass spectrometry (ICP-MS;
Perkin Elmer Elan 6100 ICPMS, Waltham MA, USA).

The selenised amino acid (AA) contents of blood were
determined by speciation using the method of Bierla et al.
(2008a). Samples were initially incubated for 5 h with
DL-dithiothreitol and iodoacetamide to reduce and alkylate
SeCys. Samples were then spiked with selenomethionine
(SeMet77), and subsequently incubated for 24 h at 378C with
a mixture of protease and lipase maintained at a pH 7.5.
Following incubation, the mixture was centrifuged and the
supernatant separated and purified by size exclusion liquid
chromatography. Aliquots of the supernatant were analysed
by reversed-phase HPLC using an ICP-MS equipped with a
collision cell (Perkin Elmer Elan 6100 ICP-MS). The selenised
AA content of tissues (breast, thigh, liver and kidney) was
determined by speciation according to the method of Bierla
et al. (2008b). Samples were mixed and sieved after which a
representative subsample was taken. Urea was added to the
subsample and the subsample sonicated after which it was
reduced, alkylated and submitted to proteolysis. The extract
was then purified by size exclusion chromatography and the
AAs quantified by reverse phase HPLC-ICP-MS.

Breast tissue was stored at 38C for 5 days after which
TBARS were determined by the method of Tarladgis et al.
(1960), modified by the use of a Büchi 321 distillation unit
(Büchi Labortechnik AG, Postfach, Switzerland). Tissue
GSH-Px activity was determined in samples of breast tissue
taken immediately post slaughter and from breast tissue
that had undergone 5 days aging in MAP, using the coupled
assay procedure of Paglia and Valentine (1967), modified
by DeVore and Greene (1982) and Daun et al. (2000). Results
are presented as nmol of NADPH oxidised per mg of
protein/min. GSH-Px activity in whole blood was determined
using the Olympus AU400 Chemistry Analyser (Olympus UK,
Watford, UK) based on the method of Anderson et al. (1978).
Results are presented as units per ml.

The study was of a complete block randomised design.
Statistically significant differences between treatments for

Table 1 Constituent ingredients, inclusion rates, Se contents and estimated Se contents of experimental diets

Ingredient
Inclusion (g/kg as fed unless

otherwise stated)
Se content

(mg/kg as fed)
Se

(mg/kg as fed)

Wheat 719.75 0.112 0.081
Hypro soya 200.0 0.263 0.053
Full fat soya 37.5 0.023 0.001
Vitamin and mineral premix 25.0 1.359 0.024
Di-calcium phosphate 17.25 0.137 0.013
Diet Se estimates (unsupplemented) – – 0.172
Seleno-yeast a 2027 –
Sodium selenite a 8628 –
SY-L SY inclusion (g/tonne as fed) 64.1 SY-L estimated total Se (mg/kg as fed) 0.30
SY-H SY inclusion (g/tonne as fed) 138.1 SY-H estimated total Se (mg/kg as fed) 0.45
SS-L SS inclusion (g/tonne as fed) 15.1 SS-L estimated total Se (mg/kg as fed) 0.30

Se 5 selenium; SY-L 5 lowest level of selenised-enriched yeast; SY-H 5 highest level of selenised-enriched yeast; SS-L 5 lowest level of sodium selenite.
aDetermined by experimental protocol.
Vitamin and mineral premix composition: calcium pantothenate 400 mg/kg, riboflavin (B2) 200 mg/kg, vitamin B12 320 mg/kg, thiamin (B1) 40.0 mg/kg,
pyridoxine (B6) 40.0 mg/kg, biotin 2.0 mg/kg, cobalt (cobalt carbonate) 10 mg/kg, iodine (as sulphate) 40 mg/kg, copper (as sulphate) 800 mg/kg, iron
(as sulphate) 400 mg/kg, manganese (manganous oxide) 3200 mg/kg, zinc (zinc oxide) 2400 mg/kg, choline chloride 1740 mg/kg, phosphorus 140.6 g/kg,
vitamin A 400 000 IU/kg, vitamin D3 120 000 IU/kg, vitamin E 800 mg/kg, vitamin K 80 mg/kg, folic acid 40 mg/kg, niacin 800 mg/kg.

Effects of selenium source on game bird tissues
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all traits at T42 and T91 were determined by ANOVA using a
GLM (Minitab v. 15, Minitab Inc., State College, PA, USA).
Sources of variation within the model included treatment
(3 d.f.) and block (5 d.f.). Data pertaining to animal perfor-
mance (feed intake, live weight gain and feed conversion
ratio) were analysed on a group pen basis. Data pertaining to
carcass characteristics (carcass weight, dressing out per-
centage), Se analysis and meat quality were analysed on an
individual bird basis. Results are presented as least square
means with the standard error of the mean (s.e.m.). Tukey’s
simultaneous test was used to establish statistical differences
(P , 0.05) among individual treatment means.

Results

With the exception of Se concentrations, which were dic-
tated by treatment structure, there were no appreciable
differences in any determined or calculated feed nutritional
parameter. Diets had a mean (6s.d.) DM content of 871 6

1.1 g/kg fresh weight (FW), CP content of 204.8 6 3.5 g/kg
FW, oil content of 27.8 6 0.5 g/kg FW and estimated Meta-
bolisable Energy content of 12.9 6 0.6 MJ/kg FW. Diets
had a mean (6s.d.) Se concentration of 0.12, 0.30, 0.46 and
0.27 6 0.02 mg/kg FW for treatments Con, SY-L, SY-H and
SS-L, respectively.

Although intakes and rates of gain were lower than antici-
pated, there were no appreciable effects of treatment on any
aspect of bird physical performance; birds within all treatments
started and finished at similar weights and consumed similar
quantities of feed over the course of the study (Table 2).

There were effects of treatment (P , 0.001) at both T42

and T91 on the whole blood total Se contents (Table 3). At
both time points the total Se content of whole blood from
Con birds did not change appreciably from those recorded at
T0. Total Se values of SS-L birds were similar to those of Con
and SY-L birds at T42, although whole blood total Se contents
were greater in SY-L birds when compared with both T0 and
Con birds (P , 0.05). Whole blood total Se contents at T42

were greater in treatment SY-H when compared with Con
and SS-L (P , 0.05). At T91, whole blood total Se values of
treatments SY-L and SY-H were similar when compared with
each other, but were greater than Con and SS-L (P , 0.05).
This trend is also reflected in the total Se content of plasma
at T91; plasma total Se values of SY-L and SY-H birds were
similar when compared with each other but greater than
Con and SS-L birds (P , 0.05).

The Se content of tissues at T0 differed between the dif-
ferent tissue types (Table 4) with total Se concentrations
being greatest in kidney, followed by liver, heart, gizzard and
skeletal muscle. Although there were effects of treatment on
the total Se content of each tissue at successive time points
(T42 and T91), the hierarchy of tissue Se concentrations seen
at T0 was maintained within the treatment structure at each
time point. There were effects (P , 0.005) on the total Se
content of skeletal muscles at T42 to the graded addition of
SY to the diet. Total Se values in the skeletal tissues of Con
birds at both T42 and T91 were not appreciably different from
those recorded at T0. Similarly, the total Se contents of ske-
letal tissue of SS-L birds at both time points did not differ
from those of Con birds or T0. However, total Se values of

Table 2 Physical performance of female Ring-necked Pheasants, following 91 days exposure to diets containing graded additions of supplementary Se

Treatment

Con SY-L SY-H SS-L s.e.m. P-value

Start weight (g) 523.4 533.1 538.8 515.1 8.2 0.182
Finish weight (g) 878.1 883.7 938.6 886.9 17.6 0.055
Average daily feed intake (g/day) 52.3 49.9 45.4 51.6 5.3 0.959
Total weight gain (g) 342.7 357.5 397.2 346.8 18.0 0.128
Average live weight gain (g/day) 4.1 4.3 4.7 4.1 0.2 0.128
Feed conversion ratio (g intake/g gain) 13.30 11.16 11.82 13.77 1.4 0.513

Se 5 selenium; Con 5 control; SY-L 5 lowest level of selenised-enriched yeast; SY-H 5 highest level of selenised-enriched yeast; SS-L 5 lowest level of sodium selenite.

Table 3 Se content of whole blood, plasma and whole blood GSH-Px activities of female Ring-necked Pheasants, following 42 (T42) and 91 (T91) days
exposure to diets containing graded additions of supplementary Se

Treatment Contrasts

Con SY-L SY-H SS-L s.e.m. Con v. Se supplemented SY-L v. SS-L SY-L v. SY-H

T42 whole blood Se (ng/g FW) 200.8x 246.5yz 273.7z 220.9xy 9.2 ,0.001 0.206 0.171
T91 whole blood Se (ng/g FW) 192.9x 276.7yz 299.0z 221.6xy 11.4 ,0.001 0.005 0.517
T91 plasma Se (ng/g FW) 78.0x 98.0yz 103.8z 82.1xy 4.4 0.004 0.059 0.805
T91 GSH-Px (U/ml) 60.6x 59.6x 72.4y 68.5xy 3.1 0.105 0.186 0.027

Se 5 selenium; GSH-Px 5 glutathione peroxidase; Con 5 control; SY-L 5 lowest level of selenised-enriched yeast; SY-H 5 highest level of selenised-enriched yeast;
SS-L 5 lowest level of sodium selenite; FW 5 fresh weight.
xyzDifferent superscripts within a row differ significantly (P , 0.05).
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breast and leg tissue of SY-L birds were generally greater at
both T42 and T91 when compared with Con and SS-L birds
at the same time points (P , 0.05) and greater in treatment
SY-H when compared with SY-L (P , 0.05), the exceptions to
this being in the PL at T42.

There were effects in the total Se contents of heart and
liver to the graded addition of Se to the diet, differences
being more pronounced at T91 than at T42. The total Se
contents of heart tissue from Con and SS-L birds at T42 and T91

did not differ appreciably from those recorded in the baseline
group at T0. Conversely, total Se values were greater in treat-
ments SY-L and SY-H (P , 0.05) at both T42 and T91 than those
of Con and SS-L birds at the same time points. The total
Se contents of liver tissue in Con and SS-L birds at T42 were
similar to those of T0 and did not change appreciably by T91,
whereas those of SY-L and SY-H were higher at T42 and T91

when compared with T0 samples (P , 0.05).
Kidney tissue total Se contents were generally higher in

those birds that had received some degree of Se supple-
mentation (P , 0.05) and only numerically higher in those
birds that had received the highest level of supplementation
(SY-H) when compared with the lowest levels (SY-L and SS-L).
There were no discernable differences between SS and
SY-supplemented birds at a comparable dose (SY-L v. SS-L).
The total Se content of gizzard tissue at T42 was greatest in
those birds that had received SY supplements (P , 0.05),
irrespective of dose, with there being no difference between
Con and SS-L birds, which had values similar to those at T0.

At T91, total Se values of gizzard tissue had appeared to
decline slightly in all treatments, with the greatest Se con-
centration being in the gizzards of birds receiving the highest
level of Se supplementation (P , 0.05). However, this
decline may reflect the fact that the slaughter groups at T42

and T91 comprised different birds.
SeCys was the predominant selenised AA (P , 0.05) within

whole blood samples at all time points irrespective of treatment
(Figure 1) with values being similar, regardless of treatment or
time point. This is reflected in erythrocyte GSH-Px activities,
which were generally similar between treatments, although
values were marginally higher in SY-H when compared with
SY-L and Con birds (P , 0.05). SeMet although comprising a
smaller proportion of total Se, was greater at both T42 and T91 in
SY-L and SY-H birds when compared with Con birds (P , 0.05),
but similar between SY-L, SY-H and SS-L birds.

SeCys was the predominant selenised AA in liver and kidney
tissue, irrespective of treatment, accounting for ,75% of total
Se (Figure 2). SeMet comprised a much smaller fraction of total
Se in liver and kidney tissue and was not different between
treatments. There were no appreciable differences between
treatments in the selenised AA contents of breast and thigh
tissue, although SeMet values were numerically higher than
SeCys values in the breast tissue of SY-supplemented birds
(P , 0.1) when compared with selenised AA in breast tissue
of all birds, irrespective of treatment, although values were
markedly higher in the breast tissue of birds that had received
diets containing SY supplements (P , 0.05). Conversely, in leg

Table 4 Total Se contents (mg/kg dry matter) of postmortem tissues of female Ring-necked Pheasants offered diets containing graded additions of
supplementary Se for either for 42 (T42) or 91 (T91) days

Treatment Contrasts

Con SY-L SY-H SS-L s.e.m. Con v. Se supplemented SY-L v. SS-L SY-L v. SY-H

M. Pectoralis Major
T42 0.64x 1.05y 1.27z 0.65x 0.03 0.063 ,0.001 0.004
T91 0.55x 1.00y 1.26z 0.64x 0.02 0.028 ,0.001 ,0.001

M. Gastrocnemius
T42 0.71x 1.05y 1.41z 0.75x 0.04 0.066 0.002 ,0.001
T91 0.73x 1.23y 1.50z 0.81x 0.04 0.033 0.006 ,0.001

M. Peroneus Longus
T42 0.71x 0.96xy 1.24y 0.68x 0.09 0.180 0.231 0.247
T91 0.73x 1.05yz 1.37z 0.86xy 0.05 0.028 0.004 0.072

Heart
T42 1.59 2.25 2.16 1.82 0.17 0.045 0.350 0.980
T91 1.70x 2.33y 2.37y 1.78xy 0.14 0.067 0.081 0.997

Liver
T42 2.40xy 2.68yz 2.86z 2.31x 0.08 0.231 0.035 0.390
T91 2.48x 3.03yz 3.16z 2.63xy 0.09 0.022 0.063 0.787

Kidney
T42 3.96x 4.20xy 4.88y 4.05xy 0.20 0.207 0.948 0.163
T91 4.05 4.46 4.91 4.23 0.19 0.098 0.838 0.393

Gizzard
T42 1.18x 1.57y 1.77y 1.20x 0.05 0.061 0.002 0.062
T91 1.04x 1.11x 1.48y 1.06x 0.05 0.197 0.913 0.002

Se 5 selenium; Con 5 control; SY-L 5 lowest level of selenised-enriched yeast; SY-H 5 highest level of selenised-enriched yeast; SS-L 5 lowest level of sodium selenite.
xyzDifferent superscripts within a row differ significantly (P , 0.05).

Effects of selenium source on game bird tissues

5



tissue, SeMet was the predominant form of Se in those birds
that had received diets supplemented with SY and SeCys the
predominant form in those birds that had received diets that
had not been augmented with additional Se (Con) or had been
supplemented with selenite (SS-L). However, absolute SeCys
values were similar in leg tissue irrespective of treatment
indicating that increases in total Se in the leg tissue of SY-
supplemented birds was predominantly the result of increases
in the SeMet content of the tissue.

There were no effects of treatment on breast muscle
TBARS or tissue GSH-Px activities at both 0 and 5 days
postmortem (Table 5).

Discussion

In general, there were no major differences between the
different treatments in nutritive composition of the experi-
mental diets as would be expected, given that all compositional
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necked Pheasants following 91 days of dietary treatment. Different lowercase letters within tissue denote SeCys differences (P , 0.05) between bars.
Asterisks denote differences between SeMet and SeCys within bars. Con 5 control; SY-L 5 lowest level of selenised-enriched yeast; SY-H 5 highest level of
selenised-enriched yeast; SS-L 5 lowest level of sodium selenite.
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ingredients and mineral mixes, with the exception of Se,
were derived from the same source.

The lack of effect of any significant response over time in
whole blood and plasma Se concentrations of Con birds
would be expected and is consistent with the findings
of other authors (Echevarria et al., 1988; Pan et al., 2007;
Yoon et al., 2007; Juniper et al., 2011). However, the Se
values recorded in the T0 group and Con birds were higher
than those recorded in commercial lines of poultry in
other studies that had received diets, which had not been
augmented with supplementary Se (Petrovič et al., 2006;
Yoon et al., 2007 and Juniper et al., 2011). The differences
seen between comparable doses of SY and SS are indicative
of improved uptake and incorporation of Se derived from
SY and are consistent with the findings in sheep (Van Ryssen
et al., 1989; Juniper et al., 2008a), cattle (Gunter et al.,
2003; Phipps et al., 2008; Juniper et al., 2008b), pigs (Mahan
and Parrett, 1996; Mahan et al., 1999; Kim and Mahan,
2001) and poultry (Petrovič et al., 2006; Juniper et al., 2011).
However, the degree of response to supplementary Se is
markedly lower than those recorded in other studies
and most probably reflect the much higher blood and
plasma Se levels seen at T0 and in Con pheasants. This
may be indicative of a more efficient Se retention system
in wild type classes of bird when consuming diets low in
Se. However, as dietary Se levels increase this efficient
scavenging system may become quickly saturated, hence
why responses in pheasants are not as pronounced as
those seen in commercial lines of poultry (Petrovič et al.,
2006; Juniper et al., 2011). Similar observations have been
reported in different breeds of pig, whereby Se uptake
and metabolism of a commercial hybrid was different to
that of a pure breed when fed identical diets (Banoch
et al., 2009).

The hierarchy of Se concentrations observed in different
tissues tends to reflect the relative metabolic activity of each
tissue. Glandular visceral tissues tend to have greater total
Se concentrations than muscle tissue and cardiac muscle has
a greater Se content than skeletal tissue or gizzard tissue.
These data agree with those reported in laying hens (Petrovič
et al., 2006; Pan et al., 2007), broilers (Wang and Xu, 2008),
turkeys (Juniper et al., 2011) and are also similar to those
reported in lambs (Juniper et al., 2008a) and beef cattle
(Juniper et al., 2008b).

The differences seen in cardiac, skeletal and gizzard
muscle tissue total Se concentrations, when comparing
comparable doses of SS and SY, are indicative of improved
uptake and assimilation of Se derived from SY. However,
these responses in muscle tissue lack the same degree of
response reported in other studies on commercial lines of
poultry (Petrovič et al., 2006; Juniper et al., 2011) reflecting
the responses seen in blood and plasma within this study.
Furthermore, muscle tissue Se concentrations at T0 and in
Con birds were greater than those reported in commercial
lines of poultry receiving unsupplemented diets (Petrovič
et al., 2006; Juniper et al., 2011). This may further indicate
that wild type birds, such as pheasants, may have more
efficient means of Se capture than those of commercial lines
of poultry at low dietary levels of Se and that this system
becomes very quickly saturated as dietary Se levels increase.

SeCys was the predominant selenised AA within blood,
irrespective of treatment or time point (Figure 1). This
observation in pheasants is unlike those reported for turkeys
(Juniper et al., 2011) in which SeMet was the predominant
selenised AA, but similar to those reported for lambs (Juniper
et al., 2008a), beef cattle (Juniper et al., 2008b) and dairy cattle
(Phipps et al., 2008) where SeCys was the predominant form.

SeCys was the predominant selenised AA in liver and
kidney tissue, irrespective of treatment (Figure 2). The pre-
dominance of SeCys in liver and kidney tissue has been
reported in turkeys (Juniper et al., 2011), as well as in lambs
(Juniper et al., 2008a) and beef cattle (Juniper et al., 2008b),
and may reflect the greater metabolic activity of these
tissues. Much of the difference in total Se content of skeletal
muscle with SY-supplemented diets is attributable to
increases in SeMet content rather than changes in SeCys
content, as SeCys content is comparable between treat-
ments. Furthermore, the lack of any difference in SeCys
content of skeletal muscle is reflected in the lack of any
difference in tissue GSH-Px activity.

The predominance of SeMet in skeletal muscle in SY-
supplemented treatments is similar to observations made in
the breast tissue of turkeys (Juniper et al., 2011) and the
skeletal tissue of beef cattle (Juniper et al., 2008b), although
the specific SY dose response that was reported in these
studies is not apparent in this study.

The lack of any effect of treatment on breast tissue
TBARS and GSH-Px activity in poultry is not uncommon.

Table 5 TBARS and tissue GSH-Px activity in the breast tissue of female Ring-necked Pheasants offered diets containing graded additions of
supplementary Se for 91 days

Treatment Contrasts

Con SY-L SY-H SS-L s.e.m. Con v. Se supplemented SY-L v. SS-L SY-L v. SY-H

TBARS (mg MDA/kg) 1.23 1.18 0.96 1.04 0.12 0.214 0.826 0.537
GSH-Px 0 days postmortem (U/mg protein) 19.55 19.19 18.69 20.83 1.40 0.992 0.995 0.839
GSH-Px 5 days postmortem (U/mg protein) 20.08 19.03 19.02 20.66 1.33 0.738 0.826 0.999

TBARS 5 thiobarbituric acid reactive substances; GSH-Px 5 glutathione peroxidase; Se 5 selenium; Con 5 control; SY-L 5 lowest level of selenised-enriched yeast;
SY-H 5 highest level of selenised-enriched yeast; SS-L 5 lowest level of sodium selenite; MDA 5 malondialdehyde.
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Radmilla et al. (2008) and Sevcikova et al. (2006) have both
reported an absence of effect in broilers and a similar lack of
response has also been reported in turkeys (Juniper et al.,
2011). In addition, both pigs (Mahan et al., 1999) and cattle
(Skřivanová et al., 2007; Taylor et al., 2008; Juniper et al.,
2008b) have shown a lack of response in both tissue TBARS
and GSH-Px activity in skeletal muscle to additional dietary Se.
These results would suggest that higher tissue total Se contents
tend not to reflect improvements in GSH-Px activity to the
oxidative stability of skeletal tissue meat keeping quality.

Conclusion

The incorporation of graded additions of SY into the diets of
growing pheasants increased total Se in tissues and blood in
a dose-dependent manner. The high levels of total Se seen
in T0 birds at the start of the study, and in control birds
throughout the study, maybe indicative of a more efficient Se
capture system in wild type birds. Furthermore, the limited
responses seen in both blood and tissue of both control and
SS-L birds would also indicate that this efficient Se capture
system may become very quickly saturated, as dietary Se
concentrations increase. However, the moderate increases
in the Se content of tissues of SY-supplemented birds appear
to be the result of increases in the proportion of total
Se comprised as SeMet, reflecting improved uptake and
incorporation of SeMet.
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Skřivanová E, Marounek M, De Smet S and Raes K 2007. Influence of dietary
selenium and vitamin E on quality of veal. Meat Science 76, 495–500.

Surai PF 2006. Selenium absorption and metabolism. In Selenium nutrition and
health (ed. PF Surai), pp. 161–171. Nottingham University Press, Nottingham, UK.

Juniper and Bertin

8



Tarladgis BG, Watts BM and Younathan MT 1960. A distillation method for the
quantitative determination of malonaldehyde in rancid foods. Journal of the
American Chemical Society 37, 44–48.

Taylor JB, Marchello MJ, Finley JW, Neville TL, Combs GF and Caton JS
2008. Nutritive value and display life attributes of selenium enriched
beef muscle foods. Journal of Food Composition and Analysis 21,
183–186.

Underwood EJ and Suttle NF 2001. The mineral nutrition of livestock,
3rd edition. CAB International, Wallingford, UK.

Van Ryssen JBJ, Deagen JT, Beilstein MA and Whanger PD 1989. Comparative
metabolism of organic and inorganic selenium by sheep. Journal of Agricultural
Food Chemistry 37, 1358–1363.

Wang YB and Xu BH 2008. Effect of different selenium source (sodium selenite
and selenium yeast) on broiler chickens. Animal Feed Science and Technology
144, 306–314.

Yoon I, Werner TM and Butler JM 2007. Effect of source and concentration of
selenium on growth performance and selenium retention in broiler chickens.
Poultry Science 86, 727–730.

Effects of selenium source on game bird tissues

9


