Sensitivity and out-of-sample error in continuous time data assimilation

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Bröcker, J. and Szendro, I. G. (2012) Sensitivity and out-of-sample error in continuous time data assimilation. Quarterly Journal of the Royal Meteorological Society, 138 (664). pp. 785-801. ISSN 1477-870X doi: 10.1002/qj.940

Abstract/Summary

Data assimilation refers to the problem of finding trajectories of a prescribed dynamical model in such a way that the output of the model (usually some function of the model states) follows a given time series of observations. Typically though, these two requirements cannot both be met at the same time–tracking the observations is not possible without the trajectory deviating from the proposed model equations, while adherence to the model requires deviations from the observations. Thus, data assimilation faces a trade-off. In this contribution, the sensitivity of the data assimilation with respect to perturbations in the observations is identified as the parameter which controls the trade-off. A relation between the sensitivity and the out-of-sample error is established, which allows the latter to be calculated under operational conditions. A minimum out-of-sample error is proposed as a criterion to set an appropriate sensitivity and to settle the discussed trade-off. Two approaches to data assimilation are considered, namely variational data assimilation and Newtonian nudging, also known as synchronization. Numerical examples demonstrate the feasibility of the approach.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/29161
Identification Number/DOI 10.1002/qj.940
Refereed Yes
Divisions No Reading authors. Back catalogue items
Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Uncontrolled Keywords variational data assimilation, synchronization, sensitivity, out-of-sample error, best linear unbiased estimator
Publisher Royal Meteorological Society
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar