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ABSTRACT

We address the problem of automatically identifying and restoring dam-
aged and contaminated images. We suggest a novel approach based on a semi-
parametric model. This has two components, a parametric component describing
known physical characteristics and a more flexible non-parametric component.
The latter avoids the need for a detailed model for the sensor, which is often
costly to produce and lacking in robustness. We assess our approach using an
analysis of electroencephalographic images contaminated by eye-blink artefacts
and highly damaged photographs contaminated by non-uniform lighting. These
experiments show that our approach provides an effective solution to problems
of this type.

Keywords: Bayesian statistics; Damaged images; EEG artefacts; illumination
variations; photographs; Semi-parametric model

1 Introduction

Low cost sensors are making the routine collection of images in non-laboratory
conditions a practical reality. Typical automatic decision support applications
relying on image data include document processing [1], archiving photographic
material [2], object recognition from infra-red images [3] and medical diagnosis
[4] using electroencephalography (EEG), medical imaging techniques based on
sparsely sampled frequencies [5] and projections [6].

Our focus is on the automatic processing of damaged and contaminated im-
ages which are ubiquitous features of image capture in non-laboratory conditions.

∗Corresponding author. Tel.: +44 (0) 7 990 667344. argeveritt@qinetiq.com (R. G.
Everitt), brhglendinning@yahoo.co.uk (R. H. Glendinning).
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These have a wide variety of characteristics and generating mechanisms, which
often preclude detailed modelling due to cost considerations and drift in sensor
characteristics. Typical examples of images of this type include

• Damage. This category includes drop outs and outliers. These are gener-
ated by a wide variety of mechanisms, with drop outs generated by display
monitor faults [7] and abrasion on photographic material [2] [7], with cal-
ibration errors and impulsive noise generating outliers (anomalous pixel
values) in a wide range of sensor types.

• Contamination. A typical example of contamination with relatively well
defined structure is an eye blink artefact in EEG images. These are gener-
ated by the contact of an eyelid with the positively charged cornea which
generates an electrical potential field on the scalp which decreases rapidly
with the distance from the eye. Their presence can result in significant
reductions in the performance of subsequent procedures [8]. Other mecha-
nisms include vibration induced blur [9] and certain non-uniform lighting
effects [10]. Other sources of contamination have effects which are less well
defined, but often exhibiting local smoothness. These include atmospheric
scattering and absorption of radiation over several frequencies using hyper-
spectral sensors [11].

Some contamination mechanisms depend on a vector of explanatory vari-
ables (known as covariates) often including time. These include the ori-
entation of the sun in infra-red imaging and the degree of scattering and
absorption in hyper- spectral images [11] which vary with atmospheric con-
ditions.

We propose a means of recovering the underlying image from damaged and
contaminated data using a spatial semi-parametric model. This describes the
value of an image Y (x, z) at the location s = (x, z) by

Y (x, z) = f(β, x, z) + h(x, z) + Z(x, z), (1)

where Z(x, z) describes independent and identically distributed white noise with
zero mean and variance σ2. This model decomposes the expected value of Y (x, z)
into a non-linear component f(β, x, z) with known (up to a small number of
parameters) non-linear function and locally smooth component h(x, z).

A vector of covariates can be included into the parametric component to
include the effect of spatially varying covariates α(x, z) to give f(β, x, z, α(x, z)).
While they are not used in this study, they are easily incorporated into our ap-
proach and provide an important means of incorporating additional information.
A typical example is the detection of land mines from infra-red images. Here the
parametric component f(β, x, z, α(x, z)) describes the temperature generated by
a land mine at (x, z), where β is a vector with the components (location of the
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centre of the mine, depth, mine orientation) and α(x, z) describing the orientation
of the land surface determined from map information, say. The locally smooth
component h(x, z) describes temperature measurements over the ground.

In contrast to much recent work on recovering sparse signals [12], we adopt
a fully Bayesian approach which is used to specify our prior knowledge about
the nature of the parameters describing the signal and noise characteristics. The
former including a constraint based on continuity which essentially ensures that
high frequency Fourier coefficients are small. The Bayesian approach allows
uncertainty in the parameter values and form of the model to be propagated in
subsequent inferential procedures.

We demonstrate the value of models of this type in two practically impor-
tant problems without covariate effects to simplify the presentation. The first
is described in section 6 concerned with EEG potentials over the scalp. These
are often contaminated by eye-blink artefacts which are modelled using the non-
linear parametric component of a semi-parametric model, with the instantaneous
EEG potentials describe by the locally smooth component (without a model for
propagation through the skull). The second example is described in section 7
and is concerned with damaged photographs with high levels of drop outs and
non-uniform illumination effects. The underlying image described by the locally
smooth components with the non-uniform illumination effect described by the
non-linear component.

We see from these examples that semi-parametric models exploit the advan-
tages of locally smooth models (often referred to as non-parametric) and parsi-
monious non-linear models. As a wide range of characteristics can be modelled
by the locally smooth component, this removes the need for a detailed physical
model for the sensor output, which can be costly to produce and lacking in ro-
bustness to drift. The locally smooth component provides a means of modelling
the output from drifting sensors, as its mathematical form is not specified in ad-
vance. Locally smooth components are also of value in modelling contaminated
sensor output. A typical example is the frequency response of a pixel in hyper-
spectral imaging which is often contaminated by a locally smooth component
which varies with atmospheric conditions [11]. For other examples of the use of
semi-parametric models for scalar signals, see [13] or [14].

2 The Bayesian paradigm

The Bayesian paradigm provides a means of incorporating prior knowledge about
likely values of the parameters describing the data generating mechanism into the
analysis. Prior knowledge is captured by a joint probability distribution associ-
ated with the parameters of the model describing the data generating mechanism.
Prior knowledge is modified by the data using Bayes theorem to give a (poste-
rior) distribution which may be used to generate (point) estimates of the model
parameters.
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This paradigm is applied to semi-parametric models by parameterizing the
locally smooth component h(x, z) in an appropriate manner. This is a non-
trivial issue as locally smooth functions are essentially infinite-dimensional (non-
parametric). A range of techniques [15] have been developed for this purpose,
with significant effort applied to geo- additive models. These have several non-
parametric terms (possibly depending on spatial position [16]) and are observed
at irregularly sampled points si = ((xi, zi), i = 1, . . . , n) in the two-dimensional
domain S.

Two issues are addressed in this study. These are meaningful ways of de-
scribing a priori knowledge about the smoothness of h(x, z) and the inclusion
of non-linear components in a computationally feasible manner. We propose an
approach based on the coefficients of the Fourier representation of h(x, z) and
posterior distributions generated using a Markov-chain Monte-Carlo (MCMC)
sampler. This is used to generate point estimates of the parametric and non-
parametric components of our model (1) using sample estimates of the expected
value of the posterior distribution associated with their parameters.

The Bayesian paradigm has significant advantages over classical methods
(such as surface fitting by least squares), as it can explicitly incorporate prior
knowledge about the parameters describing the data generating mechanism. This
is exploited in the example in section 6, where EEG images are subject to con-
taminated by eye-blink artefacts. Our second example is described in section
7 and describes a means of reconstructing damaged photographs contaminated
by the presence of spatially varying illumination. Here the Bayesian paradigm
provides a means of incorporating prior knowledge about the characteristics of
the underlying image. The Bayesian paradigm also allows uncertainty about pa-
rameter values and the structure of the model to be propagated in subsequent
inferential operations.

3 Priors for the locally smooth component

We describe a priori assumptions about the smoothness by regarding h(x, z) as a
realization from a Gaussian random field on S with zero mean. The smoothness
of h(x, z) is controlled by the spatial covariance kernel defining this process. A
wide range of procedures are used to describe suitable covariance kernels. These
can be defined using ideas from Kriging (see [17] for a non-Bayesian perspective)
or indirectly using a suitably parameterized model. The latter include partial
differential equations (PDE), Markov models which describe the distribution of
h(x, z) in terms of their spatial neighbours [16] and the use of basis function
expansions.

Our focus is on the use of the latter approach which provides a simple means
of dealing with non-uniformly sampled functions (images damaged by drop-outs).
In addition, some studies [18] suggest that this approach out-performs a range
of competitors, although the emphasis of these experiments is on non-Bayesian
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techniques. Formally

h(x, z) =
∑

θjφj(x, z), (x, z) ∈ S, j = (j1, j2) (2)

where (φj(x, z)) is a collection of basis functions. Various approaches differ in
their choice of basis functions and the way in which the smoothness of h(x, z)
is described. Significant work is based on spatially localized basis functions.
These include B−splines [19] [20] and radial basis functions [21]. Smoothness
constraints are typically imposed by limiting the number of basis functions, where
[21] [22] and [23] focus on free knot splines and [24] [20] on their fixed knot
analogues, although sparse basis techniques of this type are computationally
costly [24].

Other approaches use a probabilistic model for the spatially distributed
coefficients (θj). These priors are generated by the conditional distribution of
θj |(θk, k ∈ δj) in terms of its neighbours (θk, k ∈ δj), which specify the spatial
characteristics [25] of the underlying Gaussian process h(x, z). These are two-
dimensional analogues of the usual auto-regressive or random walk priors on the
real-line and generate Bayesian analogues of p−Splines in [19] [26]. The first
order smoothness prior for observations on a regular lattice X ∈ S is

θj |(θk, k ∈ δj) ∼ N(
∑

k∈δj

θk, τ
2), k = (k1, k2) (3)

where N(., τ2) is a normal distribution with conditional variance τ2. This prior
can be written in the form

exp(− 1
τ2

θ
′
Wθ), θ = (θj)T (4)

which emphasizes the relationship with classical splines [27]. Priors of this form
can be modified [28] [29] to deal with spatially varying smoothness by replacing
τ2 with a spatially varying alternative (denoted by τ2

j ) with appropriate hyper-
parameters. This generates a long tailed prior for θj |(θk, k ∈ δj).

We incorporate prior knowledge about the smoothness of h(x, z) using the
characteristics of its Fourier expansion g(x, z). This basis function expansion
provides a simple means of implicitly describing the covariance kernel of the
Gaussian process generating h(x, z) through the rate of decay of its coefficients.
As we assume that h(x, z) has zero mean

g(x, z) =
∞∑

k=1

∞∑

j=1

θkjφk(x)φj(z) +
∞∑

k=1

θk0φk(x) +
∞∑

j=1

θ0jφj(z) (5)

over (x, z) ∈ S = [a, b]× [c, d], where

φk(x) =
(

2
b− a

)1/2

cos
{

πk

(
x− a

b− a

)}
, for k ≥ 1 (6)
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and

θkj =
∫ d

c

∫ b

a
g(x, z)φk(x)φj(z)dxdz, θk0 =

∫ d

c

∫ b

a
g(x, z)φk(x)dxdz (7)

for k ≥ 1 in the usual way. Similar expressions describe φj(z) and θ0j . It is easy
to see that the rate of decay of the coefficients in (16) is closely related to the
smoothness of h(x, z) by noting that

|| δpδqg

δxpδzq
||2 < ∞⇒ θkj = o((kj)−(p+q)), k, j →∞ (8)

where ||.|| is the usual norm on S. We propose priors of the form

θkj ∼ N(0, τ2 exp(−γckj)) (9)

where N(., .) is a Gaussian density. This prior imposes constraints on the mag-
nitude of the Fourier coefficients, rather than their joint distribution which are
though to pose problems due to their irregular nature [12]. We impose prior
constraints on the magnitude of h(x, z) using τ2 and its smoothness by γ. We
use a novel two-dimensional generalization of [30] and put

ckj := cj + ck (10)

where (cj = j and ck = k) for a geometric smoother or (cj = log(j) and ck =
log(k)) for an algebraic smoother. We use an inverse Gaussian (IG) prior

τ2 ∼ IG(u0/2, v0/2) (11)

and an exponential prior
γ ∼ E(1/w0) (12)

for γ with mean 1/w0 for a geometric smoother or

γ ∼ 1 + E(1/w0) (13)

for the algebraic smoother. It is easy to see that g(x, z) converges almost surely
for γ > η, where η = 0 for the geometric smoother or η = 1 for the algebraic
case. Other patterns can be imposed on ckj to incorporate assumptions about
directional effects in the frequency domain. All of our the experiments are based
on the algebraic smoother with problem specific choices of the hyper-parameters
u0, v0, w0 which encapsulate our prior knowledge about the properties of h(x, z)..

4 Semi-parametric regression with a locally smooth
component

We propose a Bayesian approach to the problem of fitting a semi-parametric
model to spatial data. We describe the key steps in our approach in this section
for an algebraic smoother for clarity, with obvious changes for other smoothers.
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• First we specify the priors for the vector of parameters β describing the
parametric component of (1). We assume that

β ∼ N(b0, B0) (14)

is a multivariate normal distribution with mean vector b0 and covariance
matrix B0, although other distributions can be used where appropriate.
The values of b0 and B0 are selected in a problem specific manner, with b0

describing the most likely value for β with B0 describing our uncertainty.
Non-informative prior can be used to describe our prior knowledge about
β, see [30]. Priors for the parameters describing spatial covariates α(x, z)
are added at this stage.

• Specify the prior for the variance σ2 of the additive noise. We use the usual
inverse Gaussian (IG) prior

σ2 ∼ IG(r0/2, s0/2) (15)

with problem specific parameters r0 and s0. These parameters describe the
magnitude and uncertainty in our prior knowledge.

• Choose the number of basis functions used to describe the Fourier expansion
g(x, z) and equivalently h(x, z). Here

g(x, z) =
N∑

k=1

M∑

j=1

θkjφk(x)φj(z) +
N∑

k=1

θk0φk(x) +
M∑

j=1

θ0jφj(z), (16)

giving K = (M + 1)(N + 1)− 1 Fourier coefficients. The values of M and
N can be selected in a number of ways. One approach is to ensure that the
semi-parametric model fits the data exactly with smaller numbers of basis
functions used for smooth functions. This can reduce the computational
costs associated with our approach.

• Impose our prior knowledge about the smoothness of h(x, z) by specifying
the likely decay in the Fourier coefficients θ by choosing the values of u0, v0

and w0. Suitable values for these parameters are suggested in our simulation
experiments and used in our eye blink and damaged image examples, with
one dimensional functions considered in [30]. We assume that the prior
distributions of β and θ are independent to encourage separation of the
locally smooth and parametric component of our model.

We carry out posterior inference using the full posterior distribution
P (β, σ2, θ, τ, γ | Y ) of the parameters given the data Y, where Y = (yi, i =
1, . . . , n)T , yi = Y (xi, zi), (xi, zi) ∈ X ⊆ S and θ = (θjk, j = 1, . . . , N ; k =
1, . . . ,m). This is generated by

P (β, σ2, θ, τ, γ | Y ) ∝ P (Y, β, σ2, θ, τ2, γ) (17)
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with

P (Y, β, σ2, θ, τ2, γ) = P (Y | β, σ2, θ)P (β)P (σ2)P (θ | τ2, γ)P (τ2)P (γ) (18)

which follows from our assumptions. The likelihood is given by

P (Y | β, σ2, θ) =
1

(2πσ2)n/2
exp(−RT R/2σ2) (19)

where R = (ri, i = 1, . . . , n)T and ri = yi − f(β, xi, zi)− h(xi, zi). Next

• Select the number of iterations (samples) used to burn in the MCMC sam-
pler. The aim is to ensure that it has forgotten its initial values.

• We draw realizations from the full posterior (17) using the MCMC sampling
scheme described in the appendix until a convergence diagnostic is satisfied,
see [31].

• The posterior sample means associated with β and θ are used to give point
estimates of our semi-parametric model.

The extension of this algorithm to deal with uncertainties in the mathemat-
ical form of the parametric component f(β, x, z) is described in our eye blink
example. Our sampling scheme is immediately applicable to images in higher-
dimensional images, an advantage of our approach.

5 Performance assessment using simulated data

We assess the performance of our approach using a range of semi-parametric
models with components exhibiting different characteristics. These are recov-
ered from observations at regular or irregularly distributed design points X =
((xi, zi), i = 1, . . . , n) using different values of n to emulate the effect of image
damage. The effect of un-controlled noise levels is assessed by repeating our ex-
periments for different values of σ2. The sensitivity of our approach to changes
in the priors is addressed in the same way.

We use the familiar R2 statistic

R2 = 1−
∑n

i=1(yi − f̂(β, xi, zi)− ĥ(xi, zi))2∑n
i=1(yi − ȳ2)

, ȳ =
i

n

n∑

i=1

yi, (20)

as a performance measure, where f̂(β, xi, zi) and ĥ(xi, zi) are the posterior es-
timates of parametric and non- parametric components of our semi-parametric
model. This statistic is averaged over five reconstructions to assess the conver-
gence of our MCMC sampler. High values of the resulting statistic suggest good
performance.
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Figure 1: Function I: sin(2πx)− 4z(z − 1).
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Figure 2: Function II: 0.4 exp(−8x2) + 0.6 exp(−8z2)

5.1 Recovering a locally smooth component

The first set of experiments are based on a number of semi-parametric models
with constant parametric component to assess the performance of our approach
in recovering locally smooth functions over the square S = [0, 1]× [0, 1]. We use
two functions

• Function I: h(x, z) = sin(2πx)− 4z(z − 1)

• Function II: h(x, z) = 0.4 exp(−8x2) + 0.6 exp(−8z2)

which mirror the characteristics of the functions used to assess the performance
of complexity based methods [32]. These functions are clearly aperiodic on S,
see Figures 1 and 2.

We take M = N = 6 components in the Fourier expansion (16) to describe
h(x, z), as this closely approximates this function in noise free scenarios for a
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range of values for τ and γ. We keep v0 constant (at 5), u0 in the range 0.01 to
20000 and w0 in the range 0.0001 to 40. We use a fixed Gaussian prior for β with
b0 = 0 and B0 = 3 and an inverse Gaussian prior for σ2 with r0 and s0 equal to
1.

We present selected results in Table I for functions I and II, with observations
drawn from a regular lattice over the square S. We see that good performance is
achieved for moderate signal to noise ratios (σ2 = 0.01) for all values of n. The
best performance is associated with function I in Figure 1. The performance of
our approach deceases as n increases and dominates our smoothness priors.

Table I
The effect of the number of observations (in brackets) and the noise
variance on reconstruction performance. The average R2 values are
presented for functions I and II. We use the priors u0 = 5, v0 = 5,

r0 = 4, s0 = 1, w0 = 1.

function I function II
σ2 (25) (100) (400) (1600) (25) (100) (400) (1600)

0.01 0.98 0.95 0.95 0.95 0.87 0.84 0.84 0.82
0.10 0.93 0.89 0.83 0.82 0.83 0.38 0.37 0.31
0.25 0.86 0.73 0.70 0.69 0.80 0.26 0.16 0.16
0.50 0.87 0.56 0.54 0.52 0.66 0.22 0.13 0.10
1.00 0.53 0.47 0.46 0.38 0.87 0.14 0.12 0.05

The performance of our approach deteriorates as the noise variance σ2 in-
creases. This generally results in less smooth reconstructions. An example is
given in Figure 3 for function I in a high noise scenario. This effect can be partly
mitigated by imposing stronger smoothness constraints, although our approach
is highly robust to changes in the priors for moderate noise levels (σ2 = 0.01).
Here u0 must be increased to 2000 before significant effects can be observed in
the reconstructed functions.

5.2 Non-linear parametric components

The second set of experiments is based on combinations of non-linear parametric
and non-parametric components. We take h(x, z) to be functions I or II, with
the following parametric Components with β = (β1, β2, β3)

• A: f(β, x, z) = cos(β1x) + β2z + β3 with β = (10, 1, 2)T

• B: f(β, x, z) = tan(β1x) + β2z + β3 with β = (1.5, 1, 1)T

• C: f(β, x, z) = β1x + β2z + β3 with β = (1, 1, 1)T

• D: f(β, x, z) = β2 if x ≤ β1 and 5 + β2 if x > β1, with β = (0.5, 1)T
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Figure 3: Function I recovered in a high noise scenario
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Figure 4: (Left) The function (A + II). (Right) The recovered version

on the unit square S. A typical semi-parametric model generated by functions
A + I is given in the left hand image in Figure 4. Representative results are
presented for semi-parametric models observed at 400 points on a regular lattice
over S and σ2 = 0.5, as the corresponding noise substantially disrupts the visual
appearance of the underlying function. Five realizations of each semi-parametric
model are used for assessment.

We describe the non-parametric component by a tensor product Fourier basis
with 6 × 6 components and the priors used in our first set of experiments. The
prior on the parametric component is a Gaussian distribution centred on the true
parameter values and diagonal covariance matrix.

We see that the reconstruction of the semi-parametric model (A+I) is vi-
sually close to the underlying function (compare the left and right hand images
in Figure 4). The corresponding parametric component II and its reconstruc-
tion are presented in Figure 5. The latter is generated by the posterior mean
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Figure 5: (Left) The parametric component and (Right) The recovered version
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Figure 6: The non-parametric component (II) recovered by our approach

(10.26, 2.99, 0.44)T associated with β, although this includes the mean associated
with the non-parametric component.

The corresponding estimate of the non-parametric component is presented
in Figure 6 and is relatively close to the underlying function in Figure 1. Our
approach achieves R2 values of approximately 0.7 with the smoothness priors
generated by u0 = 4 and v0 = 1, giving an inverse gamma distributed prior with
a mean of 2/7 for τ2.

Next, we consider the effect of including a non-linear parametric component
in our model. We note that there is relatively little interaction between the
posterior estimates of the parametric and non-parametric components for B0

with large diagonal elements (100). These results are typical, with high values
of τ2 allowing some interaction between the estimates of the parametric and
non-parametric components.
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The convergence of the sampling scheme described in the appendix appears
to be influenced by the presence of a non-linear parametric component. The num-
ber of samples needed to ensure convergence is problem dependent, with several
thousand typically used in our experiments, although there are still a small num-
ber of instances of the underlying chain becoming trapped in a local minimum.
The latter appear to be associated with the use of a non-linear parametric com-
ponent and are a common problem associated with sampling methodologies in
non-linear regression problems.

The results presented in this section are typical of those conducted in this
study, which suggest that our approach can recover the components of our semi-
parametric model in adverse scenarios generated by non-laboratory conditions.

6 Detecting and identifying eye blink artefacts

The electrical potential on the scalp of an individual is measured by an array
of electrodes in a process known electroencephalography (EEG). This provides
a non-invasive means of sensing brain functions in real time, as potentials are
generated by the coherent activation of large groups of neurons in the brain.
The resulting signals are known as evoked potentials when they are generated
by a stimulus. EEG data is used to study cognition, identify individuals [33],
detect various stages in sleep [34] and provide a non-invasive means of controlling
machines [35].

Eye blink artefacts are generated by the contact of an eyelid with the cornea
which is positively charged. This adds a new component to the potential field
on the scalp. An example of a scalp potential with an eye blink artefact is given
in Figure 8. Here the scalp potentials are projected onto the extended standard
electrode positions in Figure 7 and exclude the reference electrodes A1, A2 and
NZ.

It is easy to see that the magnitude of the new component decreases rapidly
as it moves away from the eye [36]. Its initial magnitude is typically ten times
larger than the background scalp potential and last around 200 to 400 ms. The
presence of eye blink artefacts can seriously degrade in the performance of pro-
cedures used to analyse evoked potentials [8].

We propose a mixture of Gaussian components to describe an eye blink
artefact. This is defined using a spherical skull model [37], although our approach
can be used with more realistic skull models. Here

Y (φi, ϕi) = f(β, φi, ϕi) + h(φi, ϕi) + Zi (21)

for the ith electrode at (φi, ϕi) in spherical co- ordinates on the sphere S, were
φi ∈ [0, 2π] and ϕi ∈ [0, π/2]. The locally smooth component h(φ, ϕ) is described
by a Fourier expansion (16) with M = N = 7. Earlier experiments suggest
that these give sufficient flexibility to capture significant characteristics of scalp
potentials.
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Figure 7: Extended standard electrode positions

Extensive clinical investigations have generated strong a priori knowledge
about the position, form and extent of eye blink artefacts. We describe this by a
two component expansion

f(β, φ, ϕ) = β
(w)
1 Ψ1(φ, ϕ) + β

(w)
2 Ψ2(φ, ϕ) (22)

with

Ψj(z) = (2π)−1/2|Σj(β)|−1/2exp

(
1
2
(z − µj(β))T Σ−1

j (β)(z − µj(β))
)

(23)

where β = (β(w), β(µ), β(Σ)) and z = (φ, ϕ) ∈ S. Our priors for β are suggested by
examining historical experimental data and describe likely locations of eye blink
artefacts. We assume that µj(β) = (β(µ)

j1 , β
(µ)
j2 ) and

β
(µ)
j1 ∼ N(1.75, 0.1), β

(µ)
j2 ∼ N(1.75, 0.1) (24)

with diagonal covariance matrix Σj(β) = diag(β(Σ)
j1 , β

(Σ)
j2 ),

β
(Σ)
j1 ∼ IG(3, 2), β

(Σ)
j1 ∼ IG(3, 2) (25)

using prior weights β
(w)
1 ∼ N(1.75, 0.1), β

(w)
2 ∼ N(1.75, 0.1). The use of prior

information ensures that atypical positions of eye blink artefacts in high noise
scenarios are less likely.
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Figure 8: The scalp potential field on the standard electrode positions (excluding
the reference electrodes A1, A2 and NZ) with an eye blink artefact

The Bayesian approach provides a principled means of determining whether
an eye blink artefact is present or absent and provides an estimate of the un-
derlying electrical potential. These tasks are currently achieved by a variety of
techniques ranging from the use of a threshold [33], regression estimates using
reference electrodes near the eye [38] and blind signal separation [36] [8].

We introduce two models M1 and M0 with equal prior probabilities. The
no-blink model given by

M0 : Y (φi, ϕi) = βmean + h(φi, ϕi) + Zi (26)

with the prior βmean ∼ N(0, 1000) and the eye-blink artefact model

M1 : Y (φi, ϕi) = f(β, φi, ϕi) + h(φi, ϕi) + Zi (27)

with the priors (u0 = 5, v0 = 5, r0 = 4, s0 = 1, w0 = 1 ) for the locally smooth
component with M = N = 7 basis functions. These values are selected using the
experience gleaned from our experiments on recovering locally smooth function
described earlier. Additional models describing other artefacts (eye movement)
and known effects of head shape can be incorporated into this framework.

Model Mm is selected using m̂ = argmaxm p(m | Y )

p(m | Y ) ∝ p(m)
∫

Λm

p(Λm | Y, m)dΛm (28)

with
p(Λm | Y, m) = p(Y | Λm,m)p(Λm | m) (29)

where Λm denotes the set of parameters of the model. The quantity p(Y | m) is
known as the marginal likelihood.

A range of procedures [39] can be used to estimate this quantity (often known
as the evidence). We use importance sampling. This is based on the generation of
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L realizations from an importance proposal q(Λm | m). Let Λj be the jth sample
from this distribution and

p̂(Y | m) =
1∑L

j=1 cj

L∑

j=1

cjp(Y | Λj ,m) (30)

where cj = p(Λj | m)/q(Λj | m). The optimal choice of q(Λm | m) should be as
close as possible to p(Λm | Y, m). We use a multi-variate Gaussian importance
proposal generated by the posterior mean and covariance of samples from p(Λm |
Y, m) generated by the MCMC scheme in the Appendix. This approach gives
good results with cj = 1 in our experiments, although long tailed importance
proposals are often used [39] in this context.

Our experiments are based on several scalp potentials from different indi-
viduals with and without eye blink artefacts. The data was collected in a study
[40] of the genetic pre-disposition to alcoholism. Here a group of alcoholics and
non-alcoholics view line drawings from the Snodgrass and Vanderwart picture
set. These are a collection of visual stimuli used to study cognition (such as
name and image agreement, familiarity and visual complexity). We generate 105

samples for M0 and M1 using the MCMC algorithm in the appendix (after a
burn-in of 0.5× 105 iterations).

We present representative results in Figure 9 which corresponds to the raw
scalp potentials in the right hand image in Figure 8. Here

log p̂(Y | M0) = −98.4, log p̂(Y | M1) = −92.8 (31)

which suggests that M1 should be selected with equal prior probabilities of
each model. We have applied this approach to several examples of scalp potentials
with and without eye blink artefacts. Our approach consistently calculates higher
probabilities for the correct model.

7 Analysis of damaged and contaminated images

Successful decision support systems must be able to deal with damaged or cor-
rupted images. These include photographic material damaged by scratches and
abrasion [2], vibration induced blur [9], non-uniform lighting effects [10] and
drop-outs generated by display faults [7].

We suggest that effects of this type can be mitigated by the use of a semi-
parametric model. Let Y (xi, xj) be the intensity associated with the (i, j)th pixel
in an m×n-dimensional array. We assume that intensities Y (xi, xj) are generated
by

Y (xi, xj) = f(β, xi, xj) + h(xi, xj) + Zij (32)

where h(xi, xj) describes the underlying image over the square S. The parametric
component describes global image contamination, perhaps generated by spatially
varying illumination.
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Figure 9: (Right) An estimate of the eye blink artefact from the potential field
in Figure 8. (Left) The corresponding non-parametric component
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Figure 10: A 120× 120 section of the standard Lena image

7.1 Experimental results

This experiment is based on a section of the standard Lena image in Figure 10
with grey values in the range 0 to 256. This is corrupted by additive Gaussian
noise with zero mean and variance σ2 = 5 and global non-linear lighting effect

f(β, xi, xj) = β2exp(−β3xi) + β1 (33)

with β1 = −50, β2 = 130 and β3 = 0.04. For a discussion of image degrada-
tion models, see [41]. This is added to the original Lena image to give left-hand
image in Figure 11.

We also examine the effects of differing degrees of image damage. These
are generated by a binomial model with probability p of a pixel being missing.
The corresponding pixels are coloured black in subsequent figures (these extend
over the image, but are difficult to see in the dark background). We conduct
experiments covering a range of values of p = (0.50, 0.70, 0.80, 0.90 and 0.95).
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Figure 11: (Left) Lena with additive Gaussian noise with σ2 = 5 and non-linear
lighting effect. (Right) The restored version

We restore the underlying image using a semi-parametric model with a spa-
tially varying illumination effect with known parametric form (33) and a locally
smooth component describing the underlying image. The prior for the parame-
ters describing the parametric component are independently distributed Gaussian
random variables centred at the true values and variance of 5, 20 and 0.1 for β1,
β2 and β3 respectively.

The prior for the non-parametric component is based on a Fourier expansion
with M = N = 5 components. This reduces computational costs and has little
effect on performance when the underlying image is smooth. We note that appro-
priate values of M and N can be generated automatically using a combination
of variable selection methods [32] and our approach. We make the assumption
that the underlying image does not show any directional effects in the frequency
domain and use the priors (u0 = 5, v0 = 1000, r0 = 5, s0 = 25, w0 = 10 ) to
reflect the variance of the noise and the range of pixel values. The relatively large
value of w0 reflects the fact that the underlying image is less smooth than the
images considered earlier.

We present results for an image with no missing values (p = 0) in Figure
11. We see that the estimated image is free from spatially varying illumination
artefacts and noise, but exhibit high frequency artefacts. This appears to be
due to the use of a spatially homogeneous model [42]. Our approach can be
readily extended to deal with locally smooth components with spatially varying
smoothness using a mixture of models approach [43].

The key features of our results are illustrated in Figures 12, 13 and 14. Rec-
ognizable reconstructions are generated in all cases, with substantial distortions
only appearing at extreme levels of damage (less than 95 percent missing val-
ues). The global lighting effect is removed in all cases. This is consistent with
the results obtained using non-Bayesian technologies [44] [45], although they can-
not deal with non-linear spatially varying illumination, incorporate strong prior
knowledge or propagate model uncertainty in subsequent processing. In addition,
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Figure 12: (Left) A 120× 120 section of the standard Lena image with additive
Gaussian noise with σ2 = 5, non-linear exponential lighting effect and 70 percent
missing pixel values. (Right) The restored version

Figure 13: (Left) A 120× 120 section of the standard Lena image with additive
Gaussian noise with σ2 = 5, non-linear lighting effect and 80 percent missing
pixel values. (Right) The restored version

we can incorporate a library of different spatially varying illumination and select
the most appropriate using the approach used for eye blink artefacts in EEG.

Semi-parametric models can be used to provide enhanced performance in
scenarios generating contiguous areas of image damage when there is strong prior
knowledge about the structure of the underlying image. This is described by
the parametric component with local variations modelled by the non-parametric
component [13].

8 Conclusions

Successful decision support systems must be able to deal with damaged and cor-
rupted images. These are ubiquitous feature of data collected in non- laboratory
environments and have a significant effect on performance. Our approach is
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Figure 14: (Left) A 120× 120 section of the standard Lena image with additive
Gaussian noise with σ2 = 5, non-linear lighting effect and 95 percent missing
pixel values. (Right) The restored version

based on a novel generalization of [30] to images and fits locally smooth com-
ponents using a Bayesian approach. This aspect of our approach is related to
spline smoothing [46], although it is able to deal with irregular sampled images
and provides a means of incorporating prior knowledge about parameter values
and propagating uncertainty.

We demonstrate the value of this approach using real and simulated data.
The former dealing with eye blink artefacts in EEG and the latter a reconstruction
of damaged photographs contaminated by spatially varying lighting effects, each
providing an effective and novel solution to these problems. Our experiments
suggest that our approach is an effective means of dealing with damaged and
contaminated images without the need for a detailed model of the sensor output.
The need for the latter is mitigated by the use of a locally smooth component
which can adapt to variations in the shape of an image.

The computational cost associated with our approach is dominated by the
number of samples generated by our MCMC scheme, as we would expect. The
number of samples needed to ensure convergence is problem dependent, with
around 105 samples used in our image and EEG experiments. The typical cpu
time used to carry out each iteration of our MCMC sampler using the Lena image
with ninety five percent missing pixels was around 0.01 seconds on a standard
laptop computer. A range of criteria used to monitor convergence are described
in [31]. There are a small number of instances of the underlying chain becoming
trapped in a local minimum. This is a common problem encountered by sampling
methodologies in non-linear problems and can be mitigated by generating several
independent chains.

While the performance of our approach can be improved by using prob-
lem specific information to limit the number of Fourier basis, recent advances
in the development of efficient parallel algorithms for computational Bayesian
techniques may be of value, see [47].
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We have seen that good reconstructions can be achieved when our continuity
conditions are satisfied. This is consistent with recent work on the almost sure
recovery of signals and images from random samples, provided that they have a
sparse representation relative to some basis system. In contrast to this work, we
adopt a fully Bayesian approach which allows for a complete specification of the
underlying signal and noise characteristics. In contrast to techniques based on
penalizing complexity, [48] this approach provides posterior measures of uncer-
tainty which can be incorporated within Bayesian based data fusion hierarchies.
A limited numerical comparison of the performance of the novel smoothing tech-
nique used in our approach images and a comparable sparse basis method has
been carried out. The latter uses the Bayesian approach described in [24] to give
a fair comparison. This technique removes redundant basis functions from an
initial set which included Fourier and B-splines in our experiments. The results
suggest that both approaches give similar performance on smooth functions, as
we would expect.

While smoothness is a key characteristic of our approach, we note that dis-
continuities can be incorporated using a hybrid approach. This is based on an
additional term describing discontinuities in some appropriate basis system, [49]
for a simple example. A specific discontinues function is selected using the model
selection approach described in our EEG example.

Our approach can also be used for high dimensional images encountered in
many medical imaging applications and can be readily extended to deal with
non-parametric components with spatially varying smoothness using a mixture
of models approach [43] [50].

9 Appendix: Monte-Carlo Markov Chain (MCMC)
sampler

Here we describe the MCMC sampler used in our experiments. At the first (i = 0)
iteration, we choose an initial point (β0, σ

2
0, θ0, τ

2
0 , γ0). The ith iteration of the

MCMC sampler is

1. Draw a realization from P (βi | σ2
i−1, θi−1, τ

2
i−1, γi−1, Y ). When f9β, x, z) is

linear

βi ∼ N(µβ, Σβ) (34)

where
µβ = Σβ

(
DT (Y − ΦΘ)/σ2

i−1 + B−1
0 b0

)
(35)

and
Σβ = ((DT D)/σ2

i−1 + B−1
0 ) (36)
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with D a n× 1 matrix with 1 in every position, Φ is the n×K matrix with
(i, j)th entry φj(xi, zi) and Φ is the vector of the most recent values of θ.
This can be sampled directly.

When f is non-linear, the full conditional density P (β | σ2, θ, τ2, γ, Y ) for
β is proportional to

exp
(
−(Y − ΦΘ− f(β, x, z))T (Y − ΦΘ− f(β, x, z))/2σ2

)
P (β) (37)

using the most recent values of the parameter values. This cannot be
sampled from exactly, in general, and we use a Metropolis-Hastings step
[39] with an appropriate proposition. Our experiments suggest that our
approach is relatively insensitive to the choice of proposition, with a range
of techniques used for non-linear regression. The development of more
complex propositions which exploit f(β, x, z) is a significant area for future
research.

2. Draw a realization from P (σ2
i | βi−1, θi−1, τ

2
i−1, γi−1, Y ) using

σ2
i ∼ IG((r0 + n)/2, 2/(RT R + s0)) (38)

where R = (ri, i = 1, . . . , n)T with ri = yi − f(β, xi, zi)− h(xi, zi) is calcu-
lated using the most recent values of the parameters.

3. Draw a realization from P (θi | βi, σ
2
i , τ

2
i−1, γi−1, Y ) using

θi ∼ N(µθ,Σθ) (39)

where
µθ = ΣθΦT (Y − f(βi, x, z))/σ2

i (40)

and
Σθ = ((ΦT Φ)/σ2

i−1 + Ψ−1/τ2
i−1)

−1 (41)

with a K ×K diagonal matrix Ψ with elements exp(−γcj) at entry (j, j).

4. Draw a realization from P (τ2
i | βi, σ

2
i , θi, γi−1, Y ):

τ2
i ∼ IG((u0 + K)/2, 2/(θT

i Ψ−1θi + v0)). (42)

5. Draw a realization from P (γi | βi, σ
2
i , θi, τ

2
i , Y ) using the slice sampler de-

scribed in [30] and using the prior generated by w0.

These steps are repeated at each iteration in a random order to ensue that
the corresponding Markov chain is reversible.
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