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Abstract Decadal predictions have a high profile in the

climate science community and beyond, yet very little is

known about their skill. Nor is there any agreed protocol

for estimating their skill. This paper proposes a sound and

coordinated framework for verification of decadal hindcast

experiments. The framework is illustrated for decadal

hindcasts tailored to meet the requirements and specifica-

tions of CMIP5 (Coupled Model Intercomparison Project

phase 5). The chosen metrics address key questions about

the information content in initialized decadal hindcasts.

These questions are: (1) Do the initial conditions in the

hindcasts lead to more accurate predictions of the climate,

compared to un-initialized climate change projections? and

(2) Is the prediction model’s ensemble spread an appro-

priate representation of forecast uncertainty on average?

The first question is addressed through deterministic met-

rics that compare the initialized and uninitialized hindcasts.

The second question is addressed through a probabilistic
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metric applied to the initialized hindcasts and comparing

different ways to ascribe forecast uncertainty. Verification

is advocated at smoothed regional scales that can illumi-

nate broad areas of predictability, as well as at the grid

scale, since many users of the decadal prediction experi-

ments who feed the climate data into applications or

decision models will use the data at grid scale, or down-

scale it to even higher resolution. An overall statement on

skill of CMIP5 decadal hindcasts is not the aim of this

paper. The results presented are only illustrative of the

framework, which would enable such studies. However,

broad conclusions that are beginning to emerge from the

CMIP5 results include (1) Most predictability at the

interannual-to-decadal scale, relative to climatological

averages, comes from external forcing, particularly for

temperature; (2) though moderate, additional skill is added

by the initial conditions over what is imparted by external

forcing alone; however, the impact of initialization may

result in overall worse predictions in some regions than

provided by uninitialized climate change projections; (3)

limited hindcast records and the dearth of climate-quality

observational data impede our ability to quantify expected

skill as well as model biases; and (4) as is common to

seasonal-to-interannual model predictions, the spread of

the ensemble members is not necessarily a good repre-

sentation of forecast uncertainty. The authors recommend

that this framework be adopted to serve as a starting point

to compare prediction quality across prediction systems.

The framework can provide a baseline against which future

improvements can be quantified. The framework also

provides guidance on the use of these model predictions,

which differ in fundamental ways from the climate change

projections that much of the community has become

familiar with, including adjustment of mean and condi-

tional biases, and consideration of how to best approach

forecast uncertainty.

Keywords Decadal � Prediction � Verification �
Uncertainty � CMIP5

1 Context and motivation for a verification framework

Decadal prediction carries a number of scientific and

societal implications. Information that could be provided

by interannual-to-decadal predictions could advance plan-

ning towards climate change investment, adaptation, as

well as the evaluation of those efforts (Vera et al. 2010;

Goddard et al. 2012). In addition to the impact on people

and economies, decadal-scale variability can also impact

the perception or expectations of anthropogenic climate

change. By using information on the initial state of the

climate system in addition to the changes due to

atmospheric composition the goal of decadal climate pre-

dictions is to capture the natural low-frequency climate

variability that evolves in combination with climate

change. Unlike climate change projections, however, the

science of decadal climate predictions is new and is con-

sidered experimental.

The decadal prediction experiments that are contributing

to CMIP5 (the Coupled Model Intercomparison Project

phase 5), which is the suite of model experiments designed

to advance climate science research and to inform the IPCC

(Intergovernmental Panel on Climate Change) assessment

process, use dynamical models of the coupled ocean–

atmosphere–ice-land system, and possibly additional

components of the Earth system. The informed use of such

predictions requires an assessment of prediction quality

and a sound theoretical understanding of processes and

phenomena that may contribute to predictability on this

time-scale. The process of building confidence in decadal

predictions will ultimately involve both verification, which

examines whether the prediction system can capture some

predictable element of the climate system, and model

validation, which examines whether the model represen-

tation of that element of the climate system is physically

sound. Both topics are currently receiving attention from

the climate research community.

Coordinated verification, or the assessment of the skill

of a prediction system using a common framework, serves

a number of purposes:

• comparison of the performance of prediction systems

across modeling centers;

• evaluation of successive generations of the same predic-

tion system and documenting improvements with time;

• use in multi-model ensemble techniques that depend on

the model performance in predicting past history;

• feedback to the modelers on model biases;

• guidance on appropriate use of prediction or forecast

information; and

• use in managing user expectations regarding the utility

of the prediction information.

The skill of a prediction system is generally assessed

from a set of hindcasts (i.e. predictions of the past cases),

and their comparison with the observational counterpart.

Skill assessment of the quality of information across dif-

ferent prediction systems, however, requires a level of

standardization of observational datasets for validation,

verification metrics, hindcast period, ensemble size, spatial

and/or temporal smoothing, and even graphical represen-

tation. Such efforts have been initiated for seasonal pre-

dictions, for example, development of a standardized

verification system for long-range forecasts (SVSLRF)

within the purview of the World Meteorological Organi-

zation (WMO) (Graham et al. 2011).
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A verification framework for decadal predictions is

proposed here that employs a common, minimal set of

metrics to assess prediction quality at the interannual-to-

decadal timescale. This framework is intended to facilitate

a sound and coordinated verification effort, results of which

can be made available through a central website and can

provide information to prediction and modeling centers on

the relative performance of their system, and also to users

of the data. A coordinated verification effort will also serve

as a starting point for a wider set of prediction verification

and model validation efforts that undoubtedly will be

conducted on the initialized decadal prediction experi-

ments, such as those that are part of the protocol for

CMIP5.

The elements of the verification framework, which was

developed by the US CLIVAR Working Group on Decadal

Predictability and collaborators, builds on lessons learned

from verification at the seasonal-to-interannual timescale.

For seasonal-to-interannual predictions, skill mainly

derives from anomalies in the ocean state, which are rep-

resented in the initial conditions used for the model pre-

diction. On the other hand, the predictability on longer

timescales is more intimately connected to anthropogenic

climate change. Thus, a main issue addressed by the veri-

fication framework is the extent to which the initialized

decadal prediction experiments provide better quality cli-

mate information than the climate change projections from

the same models.

1.1 Feasibility of initialized decadal prediction

Research on decadal predictability began in the late 1990s

with ‘‘perfect model predictability studies’’ (Griffies and

Bryan 1997; Collins et al. 2006) and focused on the study

of predictability for decadal-scale natural variations in the

Atlantic meridional overturning circulation (AMOC). In

the typical experimental design of such studies a coupled

model is initialized with an ocean state taken from a par-

ticular time in a long model integration, together with a

suite of atmospheric initial states taken from the same

control simulation but from different times representing

initial perturbations. The goal is for the perturbed ensemble

members to ‘predict’ the evolution of the control run. The

initial studies, and those to follow, suggested predictability

of the AMOC to 10 or 20 years, and also indicated that

some extreme states may be more predictable (Griffies and

Bryan 1997; Collins et al. 2006; Pohlmann et al. 2004;

Msadek et al. 2010; Teng et al. 2011). Other ‘‘diagnostic’’

studies (e.g. Boer 2004) relied on analysis of variance in

long model integrations.

Prior to the development of decadal hindcasts, such

entirely model-based predictability studies provided the

only available estimates of predictability on decadal and

longer time scales as there are no reliable methods appli-

cable to the short instrumental record of observations.

Perfect model and diagnostic studies have been used to

identify regions where potential predictability is located

and to identify which variables might be the more pre-

dictable on decadal time scales (e.g. Collins et al. 2006;

Boer and Lambert 2008; Branstator and Teng 2010; Msa-

dek et al. 2010). These have also been used to identify

when the response to external forcing will emerge above

the ‘‘climate noise’’ (e.g. Branstator and Teng 2010; Teng

et al. 2011). Such approaches, however, only provide

model-based estimates of decadal predictability, and may

overestimate the skill in the setting of real predictions for

the same model. There is no substitute for confronting a

model with assimilated observations, and making actual

predictions, for estimating the skill.

Recent studies have shown some similarity between

model simulated decadal variability and observed vari-

ability, which further suggests feasibility of providing

useable decadal-scale predictions, at least tied to Atlantic

variability. Dynamical models of the climate system do

produce multi-decadal scale fluctuations in the strength of

their AMOC, and an associated SST pattern that closely

resembles the observed pattern of SSTs, as well as other

patterns of terrestrial climate during positive AMV condi-

tions (Knight et al. 2005). When prescribed to an atmo-

spheric model, the heat fluxes associated with positive

AMV conditions produce many of the teleconnections that

have been empirically identified from the observations

(Zhang and Delworth 2006), such as wetter conditions over

India and the Sahel during their monsoon season (Giannini

et al. 2003) and increased Atlantic hurricane activity

(Goldenberg et al. 2001). These results suggest that if the

changes in the AMOC could be predicted, then the asso-

ciated SSTs might be predictable, which in turn could lead

to predictability of the associated terrestrial teleconnec-

tions. Several practical issues such as model biases, how-

ever, may be limiting factors and thus only through

experimental predictions of past decades can we begin to

assess how much predictability might be realized in the

current state-of-the-art forecast systems.

In addition to taking advantage of the predictability of

naturally occurring decadal variability suggested by the

above evidence, initialized decadal predictions are likely to

better maintain the near-term (i.e. next couple years to next

couple decades) evolution of the forced response by better

initializing the climate change commitment imparted to the

ocean by increased greenhouse gasses. For example, in the

pioneering decadal prediction paper of Smith et al. (2007),

most of the improvement in prediction quality in the ini-

tialized hindcasts compared to the uninitialized climate

change projections was found in regions such as the Indian

Ocean and western Pacific, where the twentieth century
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temperature changes are likely dominated by radiative

forcing from increasing greenhouse gasses (Ting et al.

2009; Du and Xie 2008).

1.2 The need for verification

Real-time predictions and forecasts,1 for any timescale,

must be accompanied with estimates of their skill to guide

appropriate and justifiable use. For predictions of seasonal

climate anomalies, for example, skill estimates are

obtained from a set of hindcasts for which the observations

are also available (Barnston et al. 2010; Wang et al. 2010).

The use of the forecast information without reference to the

skill of similar forecasts for past cases invites undue con-

fidence in the forecast information, whereas information

about how skillful past predictions or forecasts have been

provides historical context that can assist users to incor-

porate real-time forecasts into their decision making

process.

Although highly desirable, obtaining reliable estimates

of skill for decadal predictions faces many challenges—

one of the most formidable of these is the relatively short

length of the hindcast period. The statistical significance of

skill depends critically on the length of the verification

time-series with progressively more robust estimates

requiring verifications over longer and longer period

(Kumar 2009). The required verification period also

becomes longer as the time-scale of the phenomena of

interest becomes longer. As the premise for skillful decadal

predictions requires accurate specification of the initial

state for the slowly varying components of the climate

system, for example oceans and sea-ice, and because of a

lack of observational systems extending back in time, a

long history of decadal hindcasts is generally not feasible.

Consequently, decadal hindcasts that are based on a short

history skill estimates will be affected by sampling issues.

An additional issue that is related to estimates of past

skill, and their applicability in the context of real-time

decadal predictions, is the conditional nature of the pre-

diction skill. In the context of seasonal prediction, it is

well known that skill of seasonal predictions depends on

the El Niño-Southern Oscillation (ENSO) variability, with

skill being higher during large amplitude ENSO events

(e.g. Goddard and Dilley 2005). Conditional skill has also

been seen in decadal predictability as a function of initial

state types (Collins et al. 2006; Branstator and Teng 2010).

However, reliable estimates of skill conditional on specific

circumstances are even harder to determine due to a

smaller sample for verification.

2 A metrics framework to assess initialized decadal

predictions

2.1 Data and hindcast procedures

A key element to the proposed verification framework is

consistency in the use of observational data sets, even if

more than one dataset is chosen for a particular variable.

This includes consistency in the verification period, such as

the span of years of the hindcasts and the specific initial

condition dates within that span. Another important ele-

ment is the treatment of the hindcast data, such as how bias

adjustment is done (e.g. Meehl et al. 2012). As part of the

verification, the model data may need to be re-gridded to

the observational grids, and further spatial smoothing may

also be applied to both model and observed fields. These

parts of the verification framework are discussed below.

2.1.1 Observational data for hindcast verification

We advocate using a uniform and relatively small set of

observational datasets for the assessment of decadal cli-

mate predictions and simulations. Observational data carry

uncertainty, and the quantitative verification from a par-

ticular prediction system will vary when measured against

different observational datasets. A conclusion that one

prediction system is superior to another should therefore be

based on the verification against more than one observa-

tional analysis. For the illustrative purposes of demon-

strating the verification framework, we focus on air

temperature and precipitation. The following data sets are

chosen for hindcast verification:

1. Air temperature: Hadley Centre/Climate Research Unit

Temperature version 3 variance-adjusted (HadC-

RUT3v; available for the period 1850–2011 on a 5�
longitude by 5� latitude grid) (Brohan et al. 2006).

Preference is given to the HadCRUT3v data because

missing data is indicated as such. This can make

verification more technically difficult. However, it also

provides a more realistic view of where hindcasts can

be verified with gridded data, and the resulting skill

estimates are more trustworthy.

2. Precipitation: Global Precipitation Climatology Centre

version 4 (GPCCv4; Schneider et al. 2008; Rudolf

1 Our use of the terms ‘‘predictions’’ and ‘‘forecasts’’ follows the

NRC report on intraseasonal-to-interannual predictability (NRC

2011) in which predictions are the outputs of models, and forecasts

are the final product disseminated with the intention to inform

decisions, and which are based on one or more prediction inputs that

may include additional processing based on past performance relative

to the observations (e.g. Robertson et al. 2004; Stephenson et al.

2005). These terms are both distinct from ‘‘projection’’, which is

future climate change information from a model or models and

depend mostly on the repones to external forcing, such as increasing

greenhouse gasses.
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et al. 2010). This dataset covers the period 1901–2007,

at a resolution of 2.5� longitude by 2.5� latitude grid,

although the data is provided also at higher resolutions.

We note though that GPCC does periodically update

their dataset, and currently version 5 is available that

extends through 2009. GPCC also provides a moni-

toring product that is typically available within

2 months or so of realtime. For studies requiring

global coverage, the global precipitation climatology

project version 2 (GPCPv2) available on a 2.5�
longitude by 2.5� latitude grid) incorporates satellite

measurements to provide additional coverage over the

oceans.

The model hindcast data are first interpolated to the

resolution of the observations prior to the calculation of

verification metrics. Thus, the ‘‘grid-scale’’ analysis shown

in the results is at a resolution of 5� 9 5� for temperature

and 2.5� 9 2.5� for precipitation.

In the verification examples provided here, SST is not

considered separately from air temperature. However, for

SST specific verification, we suggest the use of either the

Hadley Centre sea ice and SST version 1 (HadISST1;

available on a 1� longitude by 1� latitude grid) (Rayner

et al. 2003) or the National Oceanic and Atmospheric

Administration Extended Reconstructed SST version 3

(ERSSTv3b; available on a 2� longitude by 2� latitude grid)

(Smith et al. 2008). Both datasets are based on a blend of

satellite and in situ data for the period since 1982, and

employ quality-control and statistical procedures to con-

struct globally-complete fields for each month (see refer-

ences above for more detail).

All data described above can be accessed through the

IRI Data Library in addition to their source institutions.

The Decadal Verification web page contains links to

downloading these data (http://clivar-dpwg.iri.columbia.

edu, follow the Observational Dataset link under the

Sample Code tab).

2.1.2 Model data used in this assessment

The ability to replicate observed climate variability

depends on the prediction system, which includes the

model as well as the data assimilation system used to ini-

tialize it. To illustrate the differences in skill that can arise

between different prediction systems, the results for two

different hindcast prediction experiments are presented in

this paper. The first is the perturbed physics hindcasts from

Hadley Centre using an updated version of the DePreSys

prediction system (Smith et al. 2010). The second is the set

of hindcasts from the Canadian Climate Centre using

CanCM4 (Merryfield et al. 2011). These models are just

two of those participating in the CMIP5 decadal

experiment suite, although the Hadley Centre is using a

slightly different experimental set-up for CMIP5. The

assessment of these two models serves as an illustrative

example of the verification framework, and allows for

interpretive discussion of the metrics. Further, use of a

minimum of two models illustrates differences in skill that

can occur across different models. Additional contributions

to the coordinated verification by other modeling centers,

which is already occurring, will enable more informed use

of the CMIP5 experiments.

The Met Office Decadal Prediction System (DePreSys,

Smith et al. 2007) is based on the third Hadley Centre

coupled global climate model (HadCM3, Gordon et al.

2000) with a horizontal resolution of 2.5� 9 3.75� in the

atmosphere and 1.25� in the ocean. The hindcasts assessed

here (not the same as those for CMIP5), are from an

updated version of DePreSys (Smith et al. 2010) that

employs an ensemble of nine variants of the model, sam-

pling parameterization uncertainties through perturbations

to poorly constrained atmospheric and surface parameters.

HadCM3 was also updated to include a fully interactive

representation of the sulphur cycle, and flux adjustments to

restrict the development of regional biases in sea surface

temperature and salinity (Collins et al. 2010). Initial con-

ditions for hindcasts for each variant were created by

relaxation to the atmospheric (ERA-40 and ECMWF) and

ocean (Smith and Murphy 2007) analyses. In this, observed

values were assimilated as anomalies in order to minimize

model initialization shock after the assimilation is switched

off. The hindcasts consist of nine-member ensembles (one

for each model variant) starting from the first of November

in every year from 1960 to 2005, and extend 10 years from

each start time.

CCCma decadal predictions are based on the CanCM4

climate model, which is similar to the CanESM2 earth-

system model employed for the long-range projection

component of CMIP5 (Arora et al. 2011), except that the

latter includes an interactive carbon cycle involving ter-

restrial and ocean ecosystem models. Atmospheric model

resolution is approximately 2.8� 9 2.8� with 35 levels, and

ocean model resolution is approximately 0.94� 9 1.4�,

with 40 levels. Initial conditions for the 10-member hind-

cast ensemble were obtained from a set of assimilation

runs, one for each ensemble member, begun from different

initial conditions drawn from a multi-century spin-up run.

Atmospheric and surface fields in these runs were con-

strained to remain close to the ECMWF (ERA 40 and

ERA-Interim) atmospheric, HadISST 1.1 sea ice and NCEP

(ERSST and OISST) sea surface temperature analyses

beginning in 1958. Temperatures from the NCEP GODAS

(1981 to present) or SODA (before 1981) ocean analyses

were assimilated off-line using the a method similar to that

of Tang et al. (2004), after which salinities were adjusted as
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123

http://clivar-dpwg.iri.columbia.edu
http://clivar-dpwg.iri.columbia.edu


in Troccoli et al. (2002). In contrast to DePreSys, all

assimilation is based on full-field observed values rather

than anomalies. The 10-year hindcasts were initialized at

the beginning of each January from 1961 until present.

Different modeling centers have generated their hind-

casts with varying start dates and ensemble sizes, as evi-

denced by the two hindcast sets described above. The

coverage of these hindcast sets exceeds that of the initial

CMIP5 experimental design (Taylor et al. 2012), which

called for 10-year hindcasts started every 5 years begin-

ning in late 1960/early 1961 with at least 3 ensemble

members. For the sake of a unified comparison across

different sets of hindcasts in CMIP5, the standard verifi-

cation is restricted here to this initial CMIP5 experimental

design with the exception that all available ensemble

members are used. However, this framework could be

configured to apply to any collection of predictions. It

should be noted that based on preliminary verification

studies, CMIP5 now recommends that hindcasts be ini-

tialized every year. An extension of the verification anal-

ysis will be applied to those more complete hindcast sets as

they become available, and posted to http://clivar-dpwg.

iri.columbia.edu.

2.1.3 Adjustment for mean bias of prediction systems

Because climate models are imperfect, there are systematic

differences between model simulations and observations.

Since some model biases can be as large as the signal one

wants to predict, model biases must be accounted for in

some way in order to create prediction anomalies, and to

assess skill from a set of hindcasts. There are two main

approaches for reducing mean, or climatological, biases of

models in decadal climate predictions, which depend on

the methodology used for initializing decadal predictions,

i.e. the full field initialization or the anomaly initialization

(see ICPO 2011).

In full field initialization, initial conditions of the pre-

dictions are created by constraint of model values to be close

to the observed analysis. During the prediction period, the

model will inevitably drift away from the specified observed

initial state towards its preferred climatology. Based on a set

of hindcasts, the drift can, in principle, be estimated as a

function of lead-time and calendar month. This estimate can

then be subtracted from the model output to yield bias-cor-

rected predictions (Stockdale 1997; ICPO 2011).

In anomaly initialization models are initialized by adding

observed anomalies to the model climatology (e.g. Pierce

et al. 2004; Smith et al. 2007). Observed and model cli-

matologies are computed for the same historical period,

with model climatologies obtained from simulations that

include anthropogenic and natural external forcing but do

not assimilate observations. In this case the initialized

model predictions only deviate from the model’s preferred

climatology within the bounds of random variability so that,

in principle, there is no systematic drift in the predictions.

There are technical problems with both initialization

approaches. For example, neither approach overcomes

potential drifts due to an incorrect model response to

anthropogenic or natural external forcings. Because such a

bias is non-stationary, simple removal of the mean hindcast

drift may not adequately correct for it. Furthermore, while

anomaly initialization attempts to overcome drifts that are

present in the long-term integrations of the climate change

projections, it does not necessarily avoid initialization

shocks (abrupt changes at the beginning of the forecast due

to dynamical imbalance in various fields, for example,

pressure gradients and ocean currents) or non-linear inter-

action between drift and evolution of the quantity being

predicted. In addition, the observed anomalies might not be

assimilated at optimal locations relative to features such as

the Gulf Stream if these are offset in models compared to

reality. Errors in estimating the model bias will directly

contribute to errors in the prediction. Ideally therefore a

large set of hindcasts, which samples different phases of

the variability to be predicted, should be employed for bias

adjustment in order to reduce sampling errors.

All decadal hindcasts used in this analysis have had their

mean biases removed following the methods outlined in

ICPO (2011).

2.1.4 Temporal and spatial averaging

A disconnect often exists between the predictable space

and time scales of the climate information and the scales at

which individuals wish to use it. Spatially, for example,

common use of the information relies on grid-scale data, or

further downscaling to even higher spatial resolution.

However, local-scale variability that may be unrelated to

larger-scale climate variability adds noise, and thus reduces

the prediction skill. Similar logic applies to the temporal

scale. Spatial smoothing has been used in most previous

decadal prediction studies (Smith et al. 2007; Keenlyside

et al. 2008) although the scale of the smoothing varies from

study to study. The smoothing is beneficial in skill

assessment due to reduction of the unpredictable grid-scale

noise (Räisänen and Ylhäisi 2011).

We advocate verifying on at least two spatial scales: (1)

the observational grid scales to which the model data is

interpolated, and (2) smoothed or regional scales. The latter

can be accomplished by suitable spatial-smoothing algo-

rithms, such as simple averages or spectral filters. Given

that precipitation derives from more localized processes,

the recommended smoothing is over smaller scales than

temperature. Although other criteria could be used, a bal-

ance between skill improvement and signal-to-noise
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retention suggests that 5� latitude 9 5� longitude repre-

sents a reasonable scale for smoothing precipitation, and

10� latitude 9 10� longitude for temperature (Räisänen

and Ylhäisi 2011). At these scales, grid-scale noise is

reduced while retaining the strength of the climate signal

and increasing the skill of the verification. It should be

noted that many of the observational datasets discussed

above already contain some spatial smoothing.

The verification of the temporal information in this

framework is provided at different scales: year 1, years

2–5, years 6–9, and years 2–9. This set of temporal

smoothing choices may seem somewhat arbitrary, but it

represents a small set of cases that can illustrate the quality

of the information for different lead times and temporal

averaging (e.g. Smith et al. 2007). As with spatial

smoothing, temporal smoothing will typically reduce

higher frequency noise and increase skill. The reason to

show different averaging periods is that one may be

tempted to look at skill for decadal averages from these

hindcasts and assume that level of quality applies

throughout the period. However, the 4-year average fore-

casts (years 2–5 and 6–9) within the decade are likely to

have lower skill, and there are potential differences

between those also. Thus these four cases are a minimum

to show skill dependence on averaging and lead time. The

first year of the prediction represents overlap with currently

available seasonal-to-interannual predictions, and should

be most predictable owing to its proximity to the observed

initial conditions. The year 2–5 average still represents the

interannual timescale, but it discards the initial year for

which the imprint of initial conditions is strong; it is likely

still dominated by year-to-year variability and less by the

climate change signal. The year 2–9 average represents

decadal-scale climate and excludes the relatively large

contribution to skill from the first year of the prediction.

This approximately decadal period is the common time

horizon of the CMIP5 decadal prediction experiments.2

The 6–9 year average predictions are also verified, and the

skill is compared with the skill of 2–5 year average pre-

dictions to understand dependence of skill on lead time.

Following ICPO (2011) report on mean bias adjustment,

through changing the variable names to better reflect what

they stand for, the initialized hindcasts are represented by

Hijs, where i = 1, n is the set of ensemble members, run at

each initial time j = 1, n, and extending over a prediction

range of s = 1, m. In the nominal experimental design of

CMIP5 (Taylor et al. 2012) the start dates of the prediction

experiments are every 5 years, from late 1960/beginning

1961 to 2005/2006, yielding n = 10 hindcasts, and each of

these hindcasts predicts 10 years out (i.e. m = 10) from the

initial date. The ensemble mean prediction averages over the

ensemble members, Hjs ¼ 1
ne

Pne
i¼1 Hijs. Similarly, the tem-

poral average between the initial year, YRi, and the final

year, YRf, of a particular hindcast is achieved by summing

over those years in the prediction range, Hj ¼
1

ðYRf�YRiþ1Þ
PYRf

s¼YRi Hjs. An example of a prediction of tem-

perature and precipitation anomalies from initial conditions

at the end of 1995 for lead time years 2–9 (i.e. 1997–2004)

compared to observations for the same period is shown in

Fig. 1, with the spatial smoothing discussed above.

2.2 Assessing the quality of prediction experiments

Verification metrics are chosen to answer specific questions

regarding the quality of the prediction information. The

metrics can identify where errors or biases exist in the

predictions to guide more effective use of them. The pro-

posed questions address the accuracy in the prediction

information (Q1) and the representativeness of the pre-

diction ensembles to indicate uncertainty (Q2). Specifi-

cally, the questions are:

• Q1: Do the initial conditions in the hindcasts lead to

more accurate predictions of the climate? If so, on what

time scales?

• Q2: Is the model’s ensemble spread an appropriate

representation of prediction uncertainty on average?

2.2.1 Deterministic metrics

The question of whether the initialization provides greater

accuracy in the predictions can be addressed using deter-

ministic metrics. The primary deterministic verification

metric chosen for the framework is the mean squared skill

score (MSSS). The MSSS is based on the mean squared

error (MSE) between a set of paired predictions (or hind-

casts),3 Hj, and observations, Oj, over j = 1, n years or

start dates, following the formulation (though not exact

notation) of Murphy (1988). Here, the ensemble mean

prediction and the corresponding observation are given for

a specific target lead time, or average of lead times, as

anomalies relative to their respective climatologies (which

is equivalent to removal of mean bias). MSE is given by

MSE ¼ 1

n

Xn

j¼1

Hj � Oj

� �2 ð1Þ

since Hj and Oj in (1) are anomalies, the MSE as written

represents only the error variance but does not include the

bias error component. The MSSS represents the MSE, or
2 Some of the decadal prediction experiments extend to a full 10

calendar years after the start date, but not all. For example, one started

in Nov 1960, might only extend to Oct 1969.

3 In this section hindcasts are equivalent to the set of predictions,

following Murphy (1988).
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accuracy skill, of a ‘‘test prediction’’ against some

reference prediction, such as the climatological average,
�O ¼ 1

n

Pn
j¼1 Oj, or a zero anomaly forecast. The MSSS is

defined as

MSSSðH; �O;OÞ ¼ 1�MSEH

MSE �O

ð2Þ

Thus the MSSS is a function of the prediction one wants to

evaluate, the reference prediction, and the observations. If

the reference prediction is the climatological average taken

over the same period as the hindcasts to be assessed, then

the MSSS can be expanded as:

MSSSðH; �O;OÞ ¼ r2
HO � rHO � sH=sOð Þ½ �2 ð3Þ

8 Year Temperature Anomalies 1997-2004 8 Year  Precipitation Anomalies 1997-2004

Initialized Hindcast

Uninitialized Hindcast

ObservationsObservations

Initialized Hindcast

Uninitialized Hindcast

-2         2 -10       100

-2         20

-2         20

0

-10       100

-10       100

Fig. 1 Eight year averages (1997–2004) for temperature smoothed

over 10� 9 10� boxes (left) and precipitation smoothed over 5� 9 5�
boxes (right). Top row observations based on HadCRUT3v temper-

ature anomalies and GPCC precipitation anomalies; middle row

initialized hindcasts from DePreSys starting with assimilated obser-

vations in November 1995; bottom row uninitialized hindcasts from

DePreSys
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where rHO is the correlation coefficient between the

observed and hindcast time series, and s2
H ¼

1=n

� �Pn
j¼1 Hj

� �2
and s2

O ¼ 1=n

� �Pn
j¼1 Oj

� �2
are the

population variances of the hindcasts and the observations,

respectively (Murphy 1988). The MSSS is a summary

metric; it combines: (1) the square of the correlation

coefficient (first term on right hand side of Eq. 2), and (2)

the square of the conditional prediction bias (second term

on right hand side of Eq. 3).

The correlation coefficient is a scale-invariant measure

of the linear association between the predicted mean and

the observations (e.g. Murphy 1988). As such, it gives a

measure of potential skill. The biases inherent in the

forecasts affect the translation between the predicted

value and the observed value and thus the MSE (or MSSS).

If the forecast contained no conditional biases the

MSSSðH; �O;OÞ would be determined by the correlation

coefficient alone.

The correlation coefficient is a measure of relative

association; relative magnitude of the time series is not

considered. The conditional bias does consider the mag-

nitude, or expected value, of the observation given the

prediction. As an example, consider the case where the

climate evolves as a simple linear trend in temperature. A

mean bias, with no conditional bias, would refer to a mere

offset of that trend, but the rate of change over time in the

predictions would match the observations (Fig. 2a).

Alternatively, conditional bias with no mean bias occurs

when the predicted and observed temporal means are

approximately the same, but the rate of change is different

(Fig. 2b). Initialization occurring at points within the

timeline, will bring the prediction closer to the observation.

This in itself may reduce conditional bias. As the predic-

tion evolves, however, its response to increasing green-

house gasses may tend toward that of the uninitialized

hindcasts over the course of an adjustment period during

which the influence of the initial conditions is ‘‘forgotten’’

(Kharin et al. 2012). For both sets of hindcasts the corre-

lation with the observations would be 1.0 at all lead times,

but they are not accurate because the model has a bias in

the magnitude of its response to the forcing. The regression

between the initialized hindcasts and the observations is

much closer to unity near the start of the forecast, than

would be the case for uninitialized forecasts, even if they

over respond to the forcing or subsequently drift away.

Both correlation and conditional bias are important ele-

ments of the relative accuracy of a prediction system.

Care must be taken in interpreting the MSSS with a

climatological reference prediction when there is a trend in

the observations. In the context of this verification the

climatology period is taken as the entire hindcast period

(1961–2006). In the presence of a trend, the MSE of the

climatological prediction increases with longer verification

periods as more of the trend is sampled as part of the

prediction. This phenomenon may be desirable in the case

of uninitialized test predictions, as the ability to predict the

trend is indeed an important aspect of skill. If on the other

hand the test predictions are a series of initialized hindcasts

at a fixed lead time, the inflation of the MSSS caused by the

trend may be spurious. The reason is that the long-term

trend will be part of the initial conditions, but there is no

actual prediction of the trend except its initialization. For

example, even predictions produced by simply persisting

the initial conditions will achieve a high MSSS in the

presence of a trend, given a long enough verification

period.

The above problem of trend inflation of the MSSS is

mitigated if, instead of using the MSSS to compare a single

prediction system to a climatological reference, it is used to

compare two competing prediction systems that both fol-

low the trend. In the proposed verification framework the

MSSS is used to address Q1, for which the ‘‘test’’ predic-

tions are the initialized decadal hindcasts denoted as Hj,

and the ‘‘reference’’ predictions are the uninitialized cli-

mate change projections, denoted as Pj. It may still be

possible that an uninitialized prediction with a correct sign

of trend, but wrong magnitude, has a higher MSE than

initialized hindcasts that better captures the trend due to the

initialization. As a consequence, the initialized hindcasts

may appear more skillful in comparison even though the

additional skill originates solely from the persistence of the

initial conditions rather than from their subsequent evolu-

tion. An alternative representation that should be investi-

gated, though not a part of this framework, would be to

verify the incremental change from initialization time to

target time.

The MSSS comparing the test (initialized) hindcasts, H,

against the reference (uninitialized) projections, P, can be

written as:

MSSSðH;P;OÞ ¼ 1�MSEH

MSEP
ð4Þ

MSSSðH;P;OÞ

¼ r2
HO � rHO � sH=sOð Þ½ �2�r2

PO þ rPO � sP=sOð Þ½ �2

1� r2
PO þ rPO � sP=sOð Þ½ �2

ð5Þ

MSSSðH;P;OÞ ¼ MSSSH �MSSSP

1�MSSSP
ð6Þ

A perfect MSSS of 1.0 would require MSEH = 0 and

MSEp = 0. The MSSS represents the improvement in

accuracy of the test predictions (or hindcasts) H over the

reference predictions (or projections) P. While a positive

MSSS suggests the test predictions are more accurate than
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the reference predictions and a negative MSSS suggests

the opposite, the MSSS is not symmetric about zero, in

that it does not satisfy MSSS(H, P,O) = -MSSS(P,O).

Thus the absolute value of a negative MSSS does not

have the same interpretation as a positive MSSS of the

same magnitude.

The results presented in Figs. 3, 4, 5, 6, 7 and 8 are

based on the spatially smoothed data that reduces grid scale

noise (see Sect. 2.1.4). Maps of the MSSS for the DePreSys

and CanCM4 decadal hindcasts are shown for temperature

(Fig. 3) and for precipitation (Fig. 4). These are decadal-

scale predictions that cover years 2–9, or equivalently a

1-year lead-time for a decadal-average prediction. If the

MSSS is positive it indicates that the initialized hindcasts

under test are more skillful than the corresponding refer-

ence hindcasts. The MSSS in the upper panels is for the

initialized hindcasts with uninitialized hindcasts as the

reference, and red areas indicate that the initialized hind-

casts are more accurate than the uninitialized hindcasts,

and blue areas denote areas where the initialized hindcasts

are less accurate. For both prediction systems, the MSSS

for temperature from the initialized predictions (middle

row) and the uninitialized projections (bottom row) show

positive values over much of the map, illustrating the point

made above about the trend playing an important role in

the MSSS when using a climatological reference predic-

tion. Most of the places where the MSSS is worse (negative

or blue areas in the figure) than the reference prediction of

climatology (Fig. 3, middle and bottom row) are where the

temperature trend has been weak or negative. Many of

these regions of negative MSSS (referenced against cli-

matology) are where the conditional bias is large; these are

Fig. 2 Graphical illustration of

the concept of mean and

conditional bias bias between

hindcasts and the observations.

a Mean bias is positive, but no

conditional bias exists because

the magnitude of the trends are

the same. b Mean bias is zero,

but the conditional bias is

negative because correlation is

1.0 and the variance of the

hindcast is larger than that for

the observations. This

conditional bias would exist in a

model that over-responded to

increasing greenhouse gasses,

for example. Vertical grey bars
along the start time axis

represent the start times of the

CMIP5 decadal hindcast

experiments and are spaced

5 years apart
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typically areas where the strength of the model response is

too large compared to the observations for a given

correlation.

The MSSS of the initialized hindcasts relative to the

uninitialized hindcasts shows that areas of improved skill

due to initialization differ between the two models (Figs. 3,

4, top panels, the positive or red areas). For example, the

initialized DePreSys hindcasts for temperature improve

over the uninitialized hindcasts in the North Atlantic,

whereas in the CanCM4 temperature hindcasts the

DePreSys MSSS: Years 2-9 CanCM4 MSSS: Years 2-9 

MSSS Initialized Run 

MSSS Uninitialized Run 

Initialized vs Uninitialized 

MSSS Initialized Run 

MSSS Uninitialized Run 

Initialized vs Uninitialized 

-1                                      1 0 -1                                      1 0

-1                                      1 0-1                                      1 0

-1                                      1 0 -1                                      1 0

Fig. 3 Mean squared skill score (MSSS) for decadal temperature

hindcasts from the DePreSys prediction system of the Hadley Centre

(left) and the CanCM4 prediction system of the Canadian Climate

Centre (right). Top row MSSS comparing the initialized hindcasts

(‘‘forecasts’’) and the uninitialized hindcasts (‘‘reference’’) as predic-

tions of the observed climate; middle row MSSS comparing the

initialized hindcasts (‘‘forecasts’’) and the climatological mean

(‘‘reference’’); bottom MSSS between the uninitialized hindcasts

(‘‘forecasts’’) and the climatological mean (‘‘reference’’). Observed

and model data has been smoothed as described in text. The forecast

target is year 2–9 following the initialization every 5 years from 1961

to 2006 (i.e. 10 hindcasts). Contour line indicates statistical signif-

icance that the MSSS is positive at the 95 % confidence level

A verification framework 255

123



improvement is seen in the tropical Atlantic. That different

prediction systems differ in where they are estimated to be

more skillful is a common situation in seasonal-to-inter-

annual prediction, and has been the basic premise for

multi-model seasonal prediction systems. It should also be

noted that in the case of the Atlantic neither of the models’

improved skill is deemed statistically significant (see

‘‘Appendix 2’’ for methodology), which is shown by the

heavy contour line enclosing the positive skill areas. These

differences in skill therefore may be due to sampling

errors, given the limited number of cases in the CMIP5

experimental design.

The MSSS for the precipitation hindcasts (Fig. 4, mid-

dle and bottom row) are not significantly better than the

reference prediction of climatology, anywhere. There are

regions where the MSSS of the initialized hindcasts are

estimated to be significantly better than the uninitialized

ones, but these areas (indicated by significance contours)

DePreSys MSSS: Years 2-9 CanCM4 MSSS: Years 2-9

MSSS Initialized Run

MSSS Uninitialized Run

Initialized vs UninitializedInitialized vs Uninitialized

MSSS Initialized Run

MSSS Uninitialized Run

-1                                      10 -1                                      10

-1                                      10 -1                                      10

-1                                      10 -1                                      10

Fig. 4 Same as Fig. 3, but for precipitation hindcasts
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are small, and point-wise significance may still be related

to the small sample size. Note that we only test the

improvements for significance. Even in regions where

improvement between the initialized and uninitialized

hindcasts is seen (top panels), this improvement must be

viewed together with the actual skill from the initialized

hindcasts. For example, in the case of northern South

America (Fig. 3, upper row left) the improvement occurs

over a region where the actual accuracy of the initialized

hindcasts is on par with climatology. For example, in the

case of eastern Africa (Fig. 3, upper right) the region of

improvement is one where the initialized hindcasts may be

better than the unutilized ones but are still much worse than

climatology.

DePreSys Years 2-9 

Correlation: Initialized Hindcast 

Correlation: Uninitialized Hindcast 

Conditional Bias: |Initialized|-|Uninitialized| Correlation: Initialized - Uninitialized 

Conditional Bias: Initialized Hindcast 

Conditional Bias: Uninitialized Hindcast 

-1                                      10

-1                                      10

-1                                      10 -2                                      20

-2                                      20

-1                                      10

Fig. 5 Skill metrics related to MSSS decomposition for DePreSys

temperature hindcasts. Left Anomaly correlation coefficients with top

row depicting the difference between the correlation of the initialized

hindcasts (middle row) and that of the uninitialized hindcasts

(bottom). Right Conditional bias, with top row depicting the change

in magnitude of conditional bias between the initialized hindcasts

(middle) relative to that of the uninitialized hindcasts (bottom).

Observed and model data has been smoothed as described in text. The

forecast target is year 2–9 following the initialization every 5 years

from 1961 to 2006 (i.e. 10 hindcasts). Contour line on the correlation

maps indicates statistical significance that the value is positive at the

95 % confidence level
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Given that both the correlation and conditional bias

determines the MSSS, those deterministic metrics are

presented as well (Figs. 5, 6, 7, 8). These are shown as

metrics in their own right, not in the squared version in

which they appear in the MSSS equation.

As expected from the MSSS maps, the correlation for

temperature (Figs. 5, 6 left, middle and lower maps) is high

from both the initialized and uninitialized predictions over

most areas, with the notable exception of the ENSO-related

tropical Pacific area where the year-to-year variability is

large and trends to date are small. Improvements in

temperature predictions due to initialization are most

notable in the north Atlantic and north Pacific for the

DePreSys hindcasts, but are of small spatial extent (Fig. 5,

top left) and are effectively non-existent for the CanCM4

hindcasts (Fig. 6, top left). That the correlation differences

are small suggests that for this forecast target (i.e. year 2–9

annual means)4 there is little additional predictive skill

derived from the initialization.

CanCM4 Years 2-9

Correlation: Initialized Hindcast

Correlation: Uninitialized Hindcast

Conditional Bias: |Initialized|-|Uninitialized|Correlation: Initialized - Uninitialized

Conditional Bias: Initialized Hindcast

Conditional Bias: Uninitialized Hindcast

   

-1                                      10 -1                                      10

-1                                      10

-1                                      10 -2                                      20

-2                                      20

Fig. 6 Same as Fig. 5, but for CanCM4 hindcasts

4 Verification has been done for some seasonal means as well, but not

included in this manuscript. See http://clivar-dpwg.iri.columbia.edu.
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For decadal-scale precipitation hindcasts (Figs. 7, 8,

left) both sets of hindcasts from the two prediction systems

show positive anomaly correlations over the high latitudes

of the northern hemisphere. The CanCM4 hindcasts also

show high correlations throughout much of the tropics.

However, the improvement in correlation for precipitation

due to initialization is meager at best. As was seen for the

MSSS for precipitation, the areas of statistically significant

improvement are small and, though point-wise significant,

may still be the result of sampling issues. i.e. given that

statistical significance is assessed in so many places, some

areas will be assessed as locally statistically significant by

chance (Livezey and Chen 1983; Power and Mysak 1992).

A negative conditional bias in temperature is seen in

both sets of hindcasts (Figs. 5, 6 right, middle and lower

panels) in regions where the correlation has been weak, and

by implication the variance of the forecast is too large

relative to the observations and the correlation coefficient.

The conditional bias is typically, though not always,

more negative when the anomaly correlations are small

DePreSys Years 2-9

Correlation: Initialized Hindcast

Correlation: Uninitialized Hindcast

Conditional Bias: |Initialized|-|Uninitialized|Correlation: Initialized - Uninitialized

Conditional Bias: Initialized Hindcast

Conditional Bias: Uninitialized Hindcast

-2                                      20

-2                                      20

-1                                      10

-1                                      10

-1                                      10

-1                                      10

Fig. 7 Same as Fig. 5, but for precipitation hindcasts
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(e.g. Fig. 7, middle and lower panels) than when the cor-

relation is large and significant (compare Fig. 8, middle and

lower maps). For the reduction in bias between the initial-

ized predictions and uninitialized projections (Fig. 5, 6,

7, 8, upper right maps), blue areas are the regions of

apparent improvement; these are the areas where the mag-

nitude of the bias has been reduced because of initialization.

Returning to the question of what aspects of the pre-

dictive accuracy (i.e. MSSS(H,P,O)) are improved by the

initialization, one discovers that for temperature most of

the improvement is related to reduction of the conditional

bias. Since the same model is used for both the initialized

predictions and the uninitialized projections, this is likely

due to the initialization itself being closer to the observed

state. For precipitation, comparison of the upper panels of

Figs. 7 and 8 with the upper panels of Fig. 3 suggest that

improved forecast quality is due to both increased local

correlation as well as reduction in conditional bias.

The results discussed above (Figs. 3, 4, 5, 6, 7, 8) are

based on the spatially smoothed data that reduces grid scale

CanCM4 Years 2-9

Correlation: Initialized Hindcast

Correlation: Uninitialized Hindcast

Conditional Bias: |Initialized-|Uninitialized|Correlation: Initialized - Uninitialized

Conditional Bias: Initialized Hindcast

Conditional Bias: Uninitialized Hindcast

-1                                      10

-1                                      10

-1                                      10 -2                                      20

-2                                      20

-1                                      10

Fig. 8 Same as Fig. 6, but for precipitation hindcasts
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noise. However, users of the decadal prediction experiments

who require the climate data for applications or decision

models may need the data at grid scale, or downscale it to

even higher resolution. Thus it is useful to provide verifica-

tion at the grid scale (Fig. 9), which here is chosen to be the

scale of the gridded global observations. The correlation

coefficients are much noisier and generally lower, as

expected. Similar results hold for the other verification

measures and other prediction systems (not shown).

2.2.2 Probabilistic metrics

In addition to establishing the level of accuracy in the

ensemble mean prediction, one is often interested in

DePreSys Correlation:Years 2-9 DePreSys  Correlation: Years 2-9

Correlation: Initialized Hindcast

Correlation: Uninitialized Hindcast

Initialized - UninitializedInitialized - Uninitialized

Correlation: Initialized Hindcast

Correlation: Uninitialized Hindcast

-1                                      10 -1                                      10

-1                                      10-1                                      10

-1                                      10 -1                                      10

Fig. 9 Anomaly correlation coefficient for DePreSys hindcasts (left
temperature, right precipitation) with top row depicting the difference

between the correlation of the initialized hindcasts (middle row) and

that of the uninitialized hindcasts (bottom). Calculations are per-

formed at the gridscale of the observations, which is 5� 9 5� for

temperature and 2.5� 9 2.5� for precipitation. The forecast target is

year 2–9 following the initialization every 5 years from 1961 to 2006

(i.e. 10 hindcasts). Contour line indicates statistical significance that

the value is positive at the 95 % confidence level
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quantifying the uncertainty, or the range of possibilities, in

the prediction. This assessment requires the use of proba-

bilistic metrics. The purpose of the probabilistic metric in

this framework is not to ascertain skill of the forecast per

se, but to test whether the ensemble spread in the prediction

is adequate to quantitatively represent the range of possi-

bilities for individual predictions over time. This is par-

ticularly important if the predictions are to be used for any

quantitative assessment of climate-related risk.

Again, a skill score is used to determine the probabilistic

quality of the prediction spread relative to some reference

approach. The measure of probabilistic quality is the con-

tinuous ranked probability skill score (CRPSS, see

‘‘Appendix 1’’). The CRPSS is based on the continuous

ranked probability score, analogous to the relationship

between MSSS and MSE. The CRPS is a measure of

squared error in probability space. A commonly used

probabilistic metric of forecast quality in seasonal predic-

tion is the ranked probability skill score (RPSS), which

looks at the squared error between observations and

probabilistic categorical forecasts. A continuous score is

preferable to a categorical score in the context of a non-

stationary climate, where trends may lead to a chronic

forecast of, say above-normal temperatures, and offer little

discrimination among predictions, particularly the relative

risk of attaining or exceeding some threshold.

Following Question 2, we assess whether a model’s

average ensemble spread is suitable for quantifying pre-

diction uncertainty compared to the standard error of the

mean prediction, once corrected for conditional bias. The

standard error is estimated as the standard deviation of the

residuals from a simple least squares regression between

the observations and the ensemble mean hindcasts. For a

perfectly calibrated prediction system with sufficiently

large ensembles, the spread of the ensemble members

should represent the true range of possibilities for the

future climate being predicted. In other words, over time

the standard error of the ensemble mean prediction, rel-

ative to the observations, and the average spread of the

ensemble members, as measured by the average standard

deviation about the ensemble mean, should be the same.

However, the models predictions are not necessarily well

calibrated. The use of the standard error to represent the

forecast uncertainty will be preferable if the spread of the

ensemble members is systematically too narrow or too

broad.

Since prediction uncertainty is under test here, condi-

tional bias is removed to allow the biases in prediction

spread to be assessed. If the conditional bias in the

ensemble mean prediction were not first removed, it would

dominate the probabilistic error in this metric. The average

ensemble spread is used rather than the ensemble spread of

each prediction because the experimental design of CMIP5,

which calls for a nominal set of three ensemble members,

is very small and sampling limitations are likely to domi-

nate the uncertainty in the estimate of ensemble spread.

Even prediction systems with order 10 ensemble members

will face uncertainty in the ensemble mean and ensemble

variance for a given prediction. However, negligible dif-

ferences were found using the actual time-varying ensem-

ble spread versus the average value for these 9-member

ensemble predictions (not shown). It should also be noted

that for the purposes of this exercise, the removal of biases

and the estimation of the standard error were not conducted

using cross-validation, which is how they should be

implemented for use in real forecast systems. The reason

for this is that the limited number of hindcast cases leads to

so much sampling error in the adjustments, that the

resulting cross-validated ‘‘unbiased’’ forecasts are notice-

ably worse than the raw biased predictions. More work is

needed to identify what level of bias adjustments is pos-

sible given a particular experimental design of hindcasts

and predictions.

Both the Hadley Centre and Canadian Climate Centre

prediction systems exhibit considerable spatial structure for

CRPSS of temperature (Fig. 10). As a squared error mea-

sure, the CRPS (and CRPSS) can be quite unforgiving; the

presence of a small number of poor forecasts can greatly

reduce the CRPS. The fact that regions of negative CRPSS

appear in the comparison of the hindcasts with the clima-

tological odds, even where there are significant positive

correlations, suggests that the non-cross-validated bias

adjustment still suffers from the problem of small sample

size. The CRPSS of the temperature hindcasts show similar

patterns whether one estimates the uncertainty in a given

forecast from the average ensemble spread (Fig. 10, middle

panels) or the standard error of the mean (Fig. 10, lower

panels). The dominance of negative (blue) values in the

comparative metric that tests the uncertainty from the

ensemble members against the uncertainty from the stan-

dard error illustrates clearly that the use of the ensemble

spread for individual predictions leads to less reliable

forecasts (Fig. 10, top).

For precipitation, the probabilistic skill compared to

the climatological distribution is at levels comparable to

what is seen for seasonal forecasts that treat conditional

biases (Goddard et al. 2003). As was the case with tem-

perature, the use of standard error leads to improvement

in probabilistic skill (Fig. 11). Looking at the comparison

of CRPS from the different approaches to uncertainty

indicates that the use of standard error to estimate forecast

uncertainty is better for both temperature and precipita-

tion from both sets of hindcasts (Figs. 10, 11, upper left

panels).

Again, these results are based on non-cross-validated

conditional bias adjustments and estimates of standard
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error. Therefore the main conclusion that can be drawn

here is that, as is common to seasonal-to-interannual model

predictions, the spread of the ensemble members is not

necessarily a good representation of forecast uncertainty.

If nothing better can be done to recalibrate the ensemble

predictions, this shortcoming must at least be acknowl-

edged, and the possible implications for quantitative risk

estimated.

DePreSys CRPSS (%): Years 2-9 CanCM4 CRPSS (%):Years 2-9

Avg Ens Spread v Clim

Ens Mean Standard Error vs Clim

Avg Ens spread vs Standard ErrorAvg Ens spread vs Standard Error

Avg Ens Spread v Clim

Ens Mean Standard Error vs Clim

       -50           50

     -100                                   100

0        -50           500

0      -100                                   1000

     -100                                   1000     -100                                   1000

Fig. 10 Continuous ranked probability skill score (CRPSS) testing

uncertainty quantification for (left DePreSys, right CanCM4). Top
row CRPSS between the initialized temperature hindcasts with

uncertainty given by the average ensemble spread against and the

same hindcasts but with uncertainty given by the standard error of the

ensemble mean; middle: CRPSS comparing hindcasts with uncer-

tainty given by the average ensemble spread against the

climatological distribution, and bottom CRPSS with uncertainty

given by the standard error of hindcasts against the climatological

distribution. The hindcasts have been adjusted for conditional bias.

Observed and model data has been smoothed as described in text.

Forecast target is year 2–9 after initialization every 5 years from 1961

to 2006 (i.e. 10 hindcasts)
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2.2.3 Conclusions from examples of verification

assessment

The results from the hindcast verification performed on

the two prediction systems yield some features that are

also common to seasonal-to-interannual predictions. First,

temperature is better predicted than precipitation. In this

case the dominant signal is due to the upward trends,

which are captured reasonably well by both systems over

most of the world. In addition, precipitation is less

coherent in space and time, and thus subject to larger

noise-like variability that is not predictable. Second, dif-

ferent prediction systems often differ in where they per-

form well. Some common areas of good and poor

performance shown through the verification scores are

seen in both prediction systems. However, many differ-

ences exist, especially for precipitation, although these

may be related to sampling issues. Additionally differ-

ences exist between prediction systems regarding the skill

added by initialization.

DePreSys CRPSS (%): Years 2-9 CanCM4 CRPSS (%):Years 2-9

Avg  Ens  spread  vs  Standard  Error Avg  Ens  spread  vs  Standard  Error

Avg Ens Spread v Clim

Ens Mean Standard Error vs Clim

Avg Ens Spread v Clim

Ens Mean Standard Error vs Clim

       -50           500        -50           500

     -100                                   1000      -100                                   1000

     -100                                   1000      -100                                   1000

Fig. 11 Same as Fig. 9, but for precipitation hindcasts
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Although these results may be sobering, they should not

be viewed as a conclusion that there is no decadal pre-

dictability. As stated earlier, decadal prediction is very

much an experimental and nascent activity, and how best to

initialize and verify the predictions are matters of ongoing

research. One positive result is the reduction in conditional

bias that is seen for some areas in the initialized predic-

tions, which is improved information about anthropogenic

climate change, although much of this may be due to the

initialization.

This paper outlines the framework and cannot show all

the results, but there are instances of statistically significant

skill obtained at the 1-year lead or 2–5 year period that do

not appear in the decadal-scale results shown here (see

http://clivar-dpwg.iri.columbia.edu/). Also, skill estimates

are better estimated, and therefore show more coherent

regions of significant skill, when more samples (i.e. start

dates) are used compared to the every-5-year start dates

originally mandated by the CMIP5 experimental design

(e.g. Fig. 12, compare with left panels of Figs. 3, 4). This

added robustness of skill estimates comes from reduced

sampling errors in adjustment of the mean bias, as well as

better sampling of the climate variability. The hindcasts

still face a relatively short history in face of decadal-scale

variability Finally, it is possible that gains in prediction

quality may be made by multi-model ensemble approaches

(e.g. Hagedorn et al. 2005), as has been the case for sea-

sonal prediction (Robertson et al. 2004; Graham et al.

2011). Preliminary results based on just the two models

used in this study show mixed results (Fig. 13). Statistical

post-processing, or calibration, of model predictions may

also improve forecast quality (e.g. Tippett et al. 2005).

However, to do that robustly will require larger ensemble

sizes and more samples (i.e. more start dates) than was

mandated for CMIP5. Finally development of improved

models, and improved understanding of the processes that

must be modeled well, is ongoing throughout the scientific

community, and is expected to improve the quality of

decadal-scale climate information.

3 Summary and discussion

A framework for verification of interannual-to-decadal

predictions has been described and illustrated for two

prediction systems and for a specific prediction target of

annual means over the years 2–9 following initialization.

Similar analyses have been performed for multi-year

averages over specific seasons with comparable results

(see http://clivar-dpwg.iri.columbia.edu). The framework

is not exhaustive, nor is it intended to be prescriptive, but

rather it addresses a couple of fundamental questions

about the initialized decadal prediction experiments.

Given the truly experimental nature of the decadal pre-

diction effort, the set of metrics from such a framework

provides a useful baseline against which future improve-

ments prediction system components can be quantified,

including advances in the observing system, the assimi-

lation methods used to map those observations into model

initial conditions, and improvements in the models

themselves. Equally important, the information on pre-

diction quality across prediction systems provided by the

framework puts the verification of prediction system on

equal footing—observational verification data, verification

period, spatial and temporal averaging, and even graphical

presentation—such that relative assessments can be easily

made. Additionally the framework provides guidance on

the use of these model predictions, which differ in fun-

damental ways from the climate change projections that

much of the community has become familiar with. This

guidance includes adjustment of mean and conditional

biases, and consideration of how to best approach forecast

uncertainty.

Decadal prediction shares common scientific and

methodological issues with both seasonal-to-interannual

prediction and with climate change projection. Common to

seasonal prediction, it is possible (and necessary) to

examine the skill of past variability and events. Common to

climate change projections, how variability and the mean

climate might change subject to anthropogenic changes to

the climate system are very difficult to separate and to test.

While mean skill metrics will always be an important

dimension of evaluating any prediction system, it is

important to recognize that for decadal predictions, such

metrics are subject to four important limitations:

1. The shortness of the observational record and dearth of

‘climate quality data’ (NRC 1999) leads to sampling

uncertainty, which may be very large for decadal

variability;

2. The observing system has varied considerably on

decadal timescales, leading to large variations in

knowledge of initial states, which can influence

prediction bias (for an example of dependence of

forecast bias on initial conditions in seasonal predic-

tions see Kumar et al. 2012);

3. The climate itself is not stationary due to natural

variability and anthropogenic radiative forcings;

4. There is considerable evidence that the predictability

of climate on decadal timescales, as on shorter

timescales, is state dependent.

For all these reasons it is difficult, if not impossible, to

accurately quantify the mean skill of hindcasts. Therefore,

the estimates obtained from the hindcasts may provide a

poor, and even misleading, guide to the future performance

of the decadal prediction systems.
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Yet another reason that the skill of hindcasts may not be

indicative of future performance is related to bias adjust-

ment. As described in Sect. 2.1.3, mean bias adjustment of

a model (regardless of the initialization procedure) is

performed over a climatological reference period. If this

reference period overlaps with the hindcast period, then the

hindcasts are contaminated with observational data and the

experiment cannot be considered ‘‘out of sample’’

MSSS: Years 2-9

MSSS Initialized Run

MSSS Uninitialized Run

Initialized vs Uninitialized

MSSS Initialized Run

MSSS Uninitialized Run

Initialized vs Uninitialized

TEMPERATURE PRECIPITATION

-1                                      10 -1                                      10

-1                                      10 -1                                      10

-1                                      10 -1                                      10

Fig. 12 Mean squared skill score (MSSS) for decadal temperature

(left) and precipitation (right) hindcasts from the DePreSys prediction

system of the Hadley Centre. Top row MSSS comparing the

initialized hindcasts (‘‘forecasts’’) and the uninitialized hindcasts

(‘‘reference’’) as predictions of the observed climate; middle row:

MSSS comparing the initialized hindcasts (‘‘forecasts’’) and the

climatological mean (‘‘reference’’); bottom: MSSS between the

uninitialized hindcasts (‘‘forecasts’’) and the climatological mean

(‘‘reference’’). Observed and model data has been smoothed as

described in text. The forecast target is year 2–9 following the

initialization every year (40 cases: 1960–2001 start dates for

(1962–1969) to (2003–2010) decadal hindcast periods). Contour line
indicates statistical significance that the MSSS is positive at the 95 %

confidence level
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verification. For example, it can be shown that the expected

value of the MSE of a prediction system is smaller within

the climatological reference period than outside it.

However, such effects may be difficult to distinguish from

the effect of the inevitable sampling variation that occurs

for different reference periods. This is illustrated in Fig. 14,

MSSS: Years 2-9

MSSS Initialized Run

MSSS Uninitialized Run

Initialized vs Uninitialized

MSSS Initialized Run

MSSS Uninitialized Run

Initialized vs Uninitialized

TEMPERATURE PRECIPITATION

-1                                      10 -1                                      10

-1                                      10 -1                                      10

-1                                      10 -1                                      10

Fig. 13 Mean squared skill score (MSSS) for decadal temperature

(left) and precipitation (right) from the multi-model ensemble formed

by combining the ensembles of DePreSys and CanCM4 hindcasts.

Top row MSSS comparing the initialized hindcasts (‘‘forecasts’’) and

the uninitialized hindcasts (‘‘reference’’) as predictions of the

observed climate; middle row MSSS comparing the initialized

hindcasts (‘‘forecasts’’) and the climatological mean (‘‘reference’’);

bottom MSSS between the uninitialized hindcasts (‘‘forecasts’’) and

the climatological mean (‘‘reference’’). Observed and model data has

been smoothed as described in text. The forecast target is year 2–9

following the initialization every 5 years from 1961 to 2006 (i.e. 10

hindcasts). Contour line indicates statistical significance that the

MSSS is positive at the 95 % confidence level
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which shows the effect of the length of reference period on

the MSSS for initialized/uninitialized DePreSys hindcasts

of global mean temperature. The MSSS varies considerably

as the reference period is extended, but it is not clear how

much of this effect is from the changing degree of refer-

ence/hindcast overlap and how much is from sampling

variation. Note though, that the MSSS for global mean

temperature is always positive, suggesting that the con-

clusion that the initialized model performs better than the

uninitialized for this variable is robust (Smith et al. 2007).

Finally, note that to create confidence in the interannual-

to-decadal predictions, the model processes ultimately

must be validated. The relative roles of oceanic, atmo-

spheric and coupled processes in specific events must be

analyzed in observations and across prediction systems.

This is a natural extension of the verification analysis, and

an important complement. A complementary approach to

judging hindcasts through mean skill metrics is model

validation through the case study approach, which seeks to

confirm that models produce climate variability for the

right reasons. A crucial dimension of the case study

approach is that the assessment must be process-based. The

purpose is not merely to assess whether the event was

predicted, but whether the mechanisms captured in the

prediction system are consistent with those that were

responsible for the change in the real world. Developing a

clear understanding of these processes is therefore an

essential first step. The idea is to identify events in the

historical record when unusually large change occurred on

decadal time scales, and then to focus detailed analysis on

assessing the performance of the prediction system for the

event(s) in question. Such events are rare, and may be

viewed as ‘‘surprises’’; arguably it is the importance of

providing advanced warning of such surprises that moti-

vates the need for a decadal prediction system. Examples

of such events include the 1976 Pacific ‘‘climate shift’’

(Trenberth and Hurrell 1994; Meehl et al. 2009, 2010), the

rapid cooling of the North Atlantic Ocean in the 1960s

(Thompson et al. 2010), and the rapid warming of the

North Atlantic in the mid 1990s (Robson et al. 2012). The

case study approach in the validation for decadal prediction

systems is an important complement to overall metrics of

skill, such as those proposed in this framework.

In the meantime, and for those interested in using dec-

adal climate prediction experiments, the verification

framework provides some guidance and an initial baseline

for the capabilities of current prediction systems.
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Appendix 1: Probabilistic metrics

The measure of probabilistic quality applied here is the

continuous ranked probability score (CRPS). The ranked

probability score is commonly used to assess probabilistic

forecasts (e.g. Goddard et al. 2003; Barnston et al. 2010),

but is typically used with categorical forecasts. Since the

changing background climate subverts the usefulness of

categorical forecasts, we wish to cast the hindcasts in terms

of a continuous, quantitative, analytical distribution with a

mean and standard deviation determined from the hindcast

ensemble, although clearly both of these parameters are

Fig. 14 MSSS for initialized versus uninitialized Hadley Centre

hindcasts of global mean temperature, plotted against the end date of

the climatological reference period (black line). The climatological

reference period always starts in 1960. The gray band shows point-

wise 90 % confidence intervals estimated using the bootstrap method

outlined in ‘‘Appendix 2’’
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subject to substantial sampling errors with the small

nominal ensemble sizes requested for CMIP5. The notation

Hij is used for the initialized hindcasts, with ensemble

mean, Hj, where i = 1,N represents the ensemble member

and j = 1,n represents the start time.

By definition, the CRPS is:

CRPSðHij;OjÞ ¼
Zþ1

�1

GðHjÞ � H Oj

� �� �2
dy ð7Þ

where G and H represent the cumulative distribution

functions of the hindcast (as a cumulative Gaussian dis-

tribution) and the observations Oj (as the Heaviside func-

tion), respectively. The subscript on H nominally

represents the ensemble in general terms. Here, G(Hj)

represents the cumulative version of a Gaussian distribu-

tion centered on the mean Hj with a spread determined by

the variance of the ensemble members about that mean, but

G(Hj) could alternatively represent the empirical cumula-

tive distribution function. The CRPS is very much like the

mean squared error, but in probability space. If the hindcast

distribution is identical to the observed distribution for all

times, which would also coincide with an accurate deter-

ministic prediction for the observed outcome in every case,

the CRPS would be 0.

In the present case where H (Oj) is the Heaviside

function and GðĤjÞ is the Gaussian distribution with mean

Ĥj and ensemble variance about that mean, r2
Ĥ

, then it

follows that (Gneiting and Raftery 2007):

CRPSðNðĤj;r
2
Ĥj
Þ;OjÞ ¼

rĤj

1
ffiffiffi
p
p � 2u

Oj� Ĥj

rĤj

 !

�Oj� Ĥj

rĤj

2/
Oj� Ĥj

rĤj

 !

� 1

 !" #

ð8Þ

where u and / represent the probability distribution

function (pdf) and cumulative distribution function (cdf)

of a standard Gaussian variable, respectively. Note that the

hindcast value Ĥj is not necessarily identical to Hj used for

the deterministic metrics, which has only the mean-bias

removed; Ĥj has been corrected also for the conditional

bias as diagnosed through the deterministic metrics. The

slope of the regression line between the observations

(given the hindcasts) and the hindcasts is sO=sH

� �
rHO,

which is the scaling used to correct the hindcasts for the

conditional bias (Murphy 1988), where sO and sH are the

square roots of the sample variances of the observations

and predicted ensemble means, respectively, and rHO is the

correlation between the observations and ensemble mean

hindcasts. The corrected ensemble mean predictions are

given by

Ĥj ¼ sO=sH

� �
rHO Hj ð9Þ

Thus each ensemble member for a given prediction is

shifted by the same amount, as determined by Ĥj � Hj.

This correction should be cross-validated by holding out

the set of ensemble members being corrected, but that is

not done in the analysis here.

Given the CRPSF for the hindcast distribution, and the

CRPSR for the reference distribution the corresponding

skill score can be defined as:

CRPSS ¼ 1�
Pn

j¼1 CRPSFjPn
j¼1 CRPSRj

ð10Þ

The hindcast distribution at this stage is assumed

Gaussian, with the mean given by the corrected ensemble

mean and the variance given by the ensemble variance.

Since we are only testing the uncertainty in the hindcasts,

the mean of the distribution is the same for both the

hindcast under test and the reference hindcast.

With the CRPSS, the question addressed is: Is the

model’s ensemble spread an appropriate representation of

forecast uncertainty on average?

For the hindcast distribution, the variance of the hind-

cast distribution is calculated from the average variance

over n hindcasts of the N ensemble members:

�r2
F ¼

1

n

Xn

j¼1

r2
Ĥj
¼ 1

n

Xn

j¼1

1

N � 1

XN

i¼1

Ĥij � Ĥj

� �2 ð11Þ

The variance for the reference distribution is given by

the root mean squared error between the hindcast ensemble

mean and the observations:

�r2
R ¼

Pn
j¼1 Ĥj � Oj

� �2

n� 2
ð12Þ

It should be noted that if mean or conditional biases

remain in the hindcasts, the standard error between the

hindcast mean and the observations, �rR, may actually be

larger than the climatological variance of the observations

(Johnson and Bowler 2009). This is another reason that

hindcast data should be used judiciously.

Appendix 2: Statistical significance estimation

Statistical significance of verification scores and differ-

ences between scores is an important component of any

verification assessment. The extremely small set of hind-

casts leads to sampling issues. The presence of a trend

leads to auto-correlation within the hindcasts and the

observed time series, and reduces the degrees of freedom

further, though not necessarily consistently across variables
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or over space for a particular variable. These issues violate

many assumptions contained in standard tables of signifi-

cance for a given number of data values.

In the verification framework presented in this manu-

script, significance of the verification scores was assessed

through a non-parametric bootstrapping approach. The ini-

tialized hindcasts are given by, Hij, with ensemble mean, Hj,

where i = 1,N represents the ensemble member and j = 1,n

represents the start time. The ‘reference’ hindcasts, which

here are the uninitialized hindcasts (i.e. climate change

projections), are given by Pij, with ensemble mean, Pj.

A set of k = 1,M re-samplings of the initialized and

uninitialized simulations is created in order to obtain

probabilistic information for the scores. In each sample, a

new ensemble is created as follows: a set of n start times,

J(j,k), are randomly selected from the set of years with

replacement; followed by the random selection with

replacement of N ensemble members taken from each start

time, I(J). So, for a given sample k and a given start time I

the simulated ensembles are built as:

~HijðkÞ ¼ HIðJÞJðj;kÞ ð13Þ
~PijðkÞ ¼ PIðJÞJðj;kÞ ð14Þ

Due to the ensemble resampling, it is clear that ~HjðkÞ 6
¼ HJðj;kÞ because even though they represent the same start

time, they are likely to be comprised of a different set of N

ensemble members.

An additional step has been used in the application of

this methodology to the problem of the decadal hindcasts.

Given the likely trends in the time series due to anthro-

pogenic forcing and thus temporal auto-correlation, the

start time re-sampling actually takes pairs of start times.

Since the nominal experimental design dictates start times

every 5 years, we only consider these neighboring 5-year

pairs. Verification using data with more frequent start

times, may want to use longer runs over time. In our case,

for example, if in our first bootstrapped time series we

choose I = 5 (realtime: 1980) for i = 1, then we will take

I = 6 (realtime: 1985) for i = 2, then draw randomly for

i = 3, and choose the following start time for i = 4, etc.

For each I, a new random set of ensembles (J’s) are drawn.

Once this M ensemble mean time series of bootstrapped

hindcasts are created, they can be used to create distribu-

tions for the different scores.

Correlation coefficients

In the case of the correlation coefficients, three different

statistics are tested:

rHO: correlation between the initialized hindcasts, Hj,

and the corresponding observations

rPO: correlation between the uninitialized (or reference)

hindcasts, Pj, and the corresponding observations

Dr ¼ rHO � rPO: the difference between the two.

Using the previous bootstrap-generated series, the three

previous statistics can be calculated for each sample, k,

as:

~rðkÞHO: correlation between the bootstrapped initialized

hindcast sample, ~HjðkÞ, and the corresponding observations

~rðkÞPO: correlation between the bootstrapped uninitial-

ized (or reference) hindcast sample, ~PjðkÞ, and the corre-

sponding observations

D~rðkÞ ¼ ~rðkÞHO � ~rðkÞPO

The significance of only positive values is assessed,

since a positive rHO or rPO accounts for a positive linear

relationship between the hindcasts and observations, and in

the case of a positive value of Dr, it represents an

improvement in the representation of the observations due

to model initialization.

To test the significance of any of these metrics, for

example rHO, the distribution of the M ~rHO values is used.

The fraction of observed negative values serves as a

p value for the test and is compared to the chosen signifi-

cance level a. If the p value is lower that or equal to a, rHO

is considered significant for the (1-a) 9 100 % confi-

dence level. The same approach is applied to rPO using the

observed frequencies for ~rðkÞPO, and to Dr using the dis-

tribution obtained for D~rðkÞ.

Mean squared skill score

The mean squared skill score is the primary metric used

to measure the improvement of the hindcast due to model

initialization. The same bootstrap-generated time series

can be used to generate a distribution of values for the

MSSS, based on calculating MS~SSðkÞ with k = 1,M. The

fraction of observed negative values again serves as the

p value for the test and is compared to the chosen sig-

nificance level a. If the p value is lower or equal than a,

MSSS is considered significant for the (1-a) 9 100 %

confidence level.

Conditional bias

In addition, the decrease in magnitude of the conditional

bias, db, is also used to assess the relative improvement in

forecast accuracy due to model initialization.

db ¼ bPj j � bHj j

where bP is the conditional bias of the uninitialized (ref-

erence) projections, and bH is the conditional bias of the

initialized hindcasts.
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A distribution of M values for the fractional decrease

can be created by calculating this metric for the boot-

strapped time series.

d ~bðkÞ ¼ b ~H
�
�

�
�� b ~P
�
�
�
�

Based on this population of values for the fractional

decrease in conditional biases, the p value is given by the

fraction of negative values and compared with the

significance level a. The decrease is considered significant

if the p value is lower or equal than a.
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The recent increase in Atlantic hurricane activity: causes and

implications. Science 293:474–479

Gordon C et al (2000) The simulation of SST, sea ice extents and

ocean heat transports in a version of the Hadley Centre coupled

model without flux adjustments. Clim Dyn 16:147–168

Graham RJ, Yun W-T, Kim J, Kumar A, Jones D, Bettio L, Gagnon

N, Kolli RK, Smith D (2011) Long-range forecasting and the

global framework for climate services. Clim Res 47:47–55. doi:

10.3354/cr00963

Griffies SM, Bryan K (1997) Predictability of North Atlantic

multidecadal climate variability. Science 275:181–184

Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale

behind the success of multi-model ensembles in seasonal

forecasting–I. Basic concept. Tellus A 57:219–233. doi:10.1111/

j.1600-0870.2005.00103.x

ICPO (International CLIVAR Project Office) (2011) Decadal and bias

correction for decadal climate predictions. January. International

CLIVAR Project Office, CLIVAR Publication Series No. 150,

6 pp. Available from http://eprints.soton.ac.uk/171975/1/150_

Bias_Correction.pdf

Johnson C, Bowler N (2009) On the reliability and calibration of

ensemble forecasts. Mon Wea Rev 137:1717–1720

Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E

(2008) Advancing decadal-scale climate prediction in the North

Atlantic sector. Nature 453:84–88. doi:10.1038/nature06921

Kharin VV, Boer GJ, Merryfield WJ, Scinocca JF, Lee W-S (2012)

Statistical adjustment of decadal predictions in a changing

climate. Geophys Res Lett. (in revision)

Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A

signature of persistent natural thermohaline circulation cycles in

observed climate. Geophys Res Lett 32:L20708. doi:10.1029/

2005GL024233

Kumar A (2009) Finite samples and uncertainty estimates for skill

measures for seasonal predictions. Mon Wea Rev 137:2622–2631

Kumar A et al (2012) An analysis of the non-stationarity in the bias of

sea surface temperature forecasts for the NCEP Climate Forecast

System (CFS) version 2. Mon Wea Rev (to appear). http://

journals.ametsoc.org/doi/abs/10.1175/MWR-D-11-00335.1

Livezey RE, Chen WY (1983) Statistical field significance and its

determination by Monte Carlo methods. Mon Weather Rev

111:46–59

Meehl GA, Hu A, Santer BD (2009) The mid-1970s climate shift in

the Pacific and the relative roles of forced versus inherent

decadal variability. J Clim 22:780–792

Meehl GA, Hu A, Tebaldi C (2010) Decadal prediction in the Pacific

region. J Clim 23:2959–2973

Meehl GA et al. (2012) Decadal climate prediction: an update from

the trenches. Bull Amer Meteorol Soc. (Submitted)

Merryfield WJ et al. (2011) The Canadian seasonal to interannual

prediction system (CanSIPS). Available on-line from http://

collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/op_

systems/doc_opchanges/technote_cansips_20111124_e.pdf

Msadek R, Dixon KW, Delworth TL, Hurlin W (2010) Assessing the

predictability of the Atlantic meridional overturning circulation

and associated fingerprints. Geophys Res Lett:37. doi:10.1029/

2010GL044517

Murphy AH (1988) Skill scores based on the mean squared error and

their relationships to the correlation coefficient. Mon Wea Rev

116:2417–2424

NRC (1999) Adequacy of climate observing systems. The National

Academies Press, Washington, DC, p 66

Pierce DW, Barnett TP, Tokmakian R, Semtner A, Maltrud M, Lysne

J, Craig A (2004) The ACPI project, element 1: initializing a

coupled climate model from observed initial conditions. Clim

Change 62:13–28

Pohlmann H, Botzet M, Latif M, Roesch A, Wild M, Tschuc P (2004)

Estimating the decadal predictability of a coupled AOGCM.

J Clim 17:4463–4472

A verification framework 271

123

http://dx.doi.org/10.1029/2010GL046270
http://dx.doi.org/10.1029/2010GL046270
http://dx.doi.org/10.1175/2009JAMC2325.1
http://dx.doi.org/10.1175/2009JAMC2325.1
http://dx.doi.org/10.1029/2008GL033234
http://dx.doi.org/10.1029/2005JD006548
http://dx.doi.org/10.1007/s00382-101-0808-0
http://dx.doi.org/10.1029/2008GL033631
http://dx.doi.org/10.1198/016214506000001437
http://dx.doi.org/10.1175/BAMS-D-11-00220.1
http://dx.doi.org/10.3354/cr00963
http://dx.doi.org/10.1111/j.1600-0870.2005.00103.x
http://dx.doi.org/10.1111/j.1600-0870.2005.00103.x
http://eprints.soton.ac.uk/171975/1/150_Bias_Correction.pdf
http://eprints.soton.ac.uk/171975/1/150_Bias_Correction.pdf
http://dx.doi.org/10.1038/nature06921
http://dx.doi.org/10.1029/2005GL024233
http://dx.doi.org/10.1029/2005GL024233
http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-11-00335.1
http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-11-00335.1
http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/op_systems/doc_opchanges/technote_cansips_20111124_e.pdf
http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/op_systems/doc_opchanges/technote_cansips_20111124_e.pdf
http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/op_systems/doc_opchanges/technote_cansips_20111124_e.pdf
http://dx.doi.org/10.1029/2010GL044517
http://dx.doi.org/10.1029/2010GL044517


Power SB, Mysak LA (1992) On the interannual variability of arctic

sea-level pressure and sea ice. Atmos Ocean 30:551–577
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