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Abstract:

The existence of hand-centred visual processing has long been established in 

the macaque premotor cortex. These hand-centred mechanisms have been 

thought to play some general role in the sensory guidance of movements 

towards objects, or, more recently, in the sensory guidance of object avoidance 

movements. We suggest that these hand-centred mechanisms play a specific 

and prominent role in the rapid selection and control of manual actions following 

sudden changes in the properties of the objects relevant for hand-object 

interactions. We discuss recent anatomical and physiological evidence from 

human and non-human primates, which indicates the existence of rapid 

processing of visual information for hand-object interactions. This new evidence 

indicate how several stages of the hierarchical visual processing system may be 

bypassed, feeding the motor system with hand-related visual inputs within just 70 

ms following a sudden event. This time-window is early enough, and this 

processing rapid enough, to allow the generation and control of rapid hand-

centred avoidance and acquisitive actions, for aversive and desired objects, 

respectively.
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Why do we need hand-centred representations of visual space? 

The primate visual system can be described as a series of brain areas whose 

neuronal activity represents properties of visible objects in the world. One such 

important property is the location of an object relative to the observer, and this 

can be represented using one of several different coordinate systems. Perhaps 

the simplest (and most common) coordinate system is the one based on the 

retinae of the eyes, in which objects are represented relative to their retinotopic 

(eye) position. However, in order to interact successfully with a visible object, it is 

necessary to represent the object's position relative to the observer’s body or 

body part. Given that our hands can move independently from our eyes, the brain 

needs to integrate information arising in an eye-centred reference frame with 

information about the current position of the hand relative to the body and to 

nearby potential target objects.

A well-established solution to this problem involves transforming all information 

into a common reference frame for the encoding of events. Andersen and 

colleagues (e.g., Bhattacharyya et al. 2009; Cohen and Andersen 2002) 

suggested that, within the parietal cortex and via the dorsal visual stream, the 

represented locations of multisensory cues relevant for actions (e.g., auditory 

cues arising in head-centred, and proprioceptive cues in limb- or joint-centred 

frames) are translated into a common eye-centred reference frame. According to 

this account, action target positions are represented relative to the eyes (or gaze 

position), and, in its pure form, regardless of the posture of other body parts 

(Figure 1B). Representations of this type are found throughout the primate visual 

system, from the retina, via the thalamus and superior colliculus, through the 

parietal and frontal cortices (Snyder 2000; Buneo and Andersen 2006; Marzocchi 

et al. 2008), and have repeatedly been demonstrated in humans using both 



imaging and behavioural approaches (Gardner et al. 2008; Crawford et al. 2004). 

These representations are found so often that they are the principal reference 

frame for representing visual information in the brain (for an opposing view, see 

Làdavas 2002). 

At the motor end, eye-centred representations of targets would have to be 

transformed into effector-centred representations, in order to command 

movements directed towards those targets (Figure 1C). This final transformation 

between eye- and muscle-centred representations for action may occur in the 

premotor cortex (for the potential roles of the posterior parietal cortex in 

coordinate transformations, see Snyder 2000). Within the dorsal premotor cortex 

(PMd), the firing rate of reach-related neurons is a function of three spatial 

relationships: between the target and the eye; the target and the hand; and the 

eye and the hand (Pesaran et al. 2006, 2010). In the ventral premotor cortex 

(PMv), some neuronal signals have been shown to correspond to the spatial 

relationship between the hand and the target, independently of eye position 

(Mushiake et al. 1997; Graziano et al. 1997), or intrinsic movement parameters of 

individual hand and arm muscles (Kakei et al. 2001). This suggests that the PMv 

may play a role in the transformation of target location from a visual to a motor 

frame of reference, relating to broader aspects of skeleto-motor control than 

previously assigned to it. At this point, it is important to emphasise that, 

according to the common eye-centred account presented above, while this final 

stage of eye-to-hand coordinate transformation is necessary for launching the 

motor behaviour, it is only performed after the motor outcome has been decided 

on and planned (Snyder 2000). In this respect, hand-centred visual 

representations are not used for on-going sensory representations, but rather for 

enabling motor outputs.



While the scheme of transforming all inputs into a single (eye-centred) 

representation frame may be common, it may not be the most efficient for 

controlling a moving body from a signal processing point of view (e.g., 

Glennerster et al. 2001). This is because sensorimotor transformations come 

with some costs. First, transformations may add biases and variability to the 

transformed signals, influencing the flow and quality of information in motor 

control circuits (McGuire and Sabes 2009; Schlicht and Schrater 2007). Second, 

transformations take time. In our daily interactions with objects, however, we 

often need to respond very quickly to unexpected changes in their position or 

movement, and speed is of paramount importance. Moreover, as we move 

around, changes in our body position (and particularly our hand-position) will 

require constant updating and re-calibration of the positions of objects relative to 

us, in the common reference frame. Given this error, bias, and delay with each 

sensory-motor transformation, and for each movement of the subject or object, it 

is appealing to speculate that the brain may possess an alternative, simpler, and 

more rapid mechanism for processing visual information to generate effector-

centred motor commands to a very tight deadline.

In the following, we will present and discuss anatomical and physiological 

evidence indicating the existence of rapid processing of visual information for 

hand-object interactions. We propose that the neural mechanisms previously 

implicated with hand-centred processing of objects in near space (peripersonal 

space, see Makin et al. 2008), in particular those within the PMv (e.g., Rizzolatti 

et al. 1981; Graziano et al. 1994; see also Caggiano et al. 2009), may play a 

specific role in the rapid processing of visual information for the on-line control of 

actions.



Anatomical pathways for rapid processing of visual information

Which brain circuits might rapidly mediate the flow of visual information to the 

motor system? Most retinal output projects to the striate cortex via the thalamic 

lateral geniculate nucleus (LGN), and ascends up the visual hierarchy in an eye-

centred fashion (Maunsell and Newsome 1982). A small proportion of the retinal 

output bypasses this major pathway and projects instead to the superior 

colliculus in the midbrain (Perry and Cowey 1984; see also Sincich et al. 2004, 

for an alternative pathway directly connecting the LGN to the middle temporal 

visual area, MT). This collicular pathway may be involved in the rapid processing 

of visual information for action: Lyon and colleagues (Lyon et al. 2010) used a 

rabies virus in macaque monkeys in order to track transynaptic connections 

projecting from the superior colliculus towards the cerebral cortex. They found 

that areas within the visual cortical dorsal stream (i.e., the third retinotopic visual 

area, V3a, and MT) receive disynaptic projections from the superior colliculus via 

an inferior pulvinar relay (see Berman and Wurtz 2010, for complementary 

physiological results). No evidence was found for similar projections from the 

superior colliculus to the visual ventral stream areas. This exciting new finding, 

summarized here in Figure 2, places the PMv within just five synapses from the 

retina (via the superior colliculus, the inferior pulvinar, MT and the ventral 

intraparietal area (VIP), see Kaas and Lyon 2007; Lewis and Van Essen 2000). 

This “express” route should be able to transfer visual information to the motor 

cortex within approximately 70-80 ms (see  Pettersson et al. 1997 for comments 

on synaptic relay times during the online visual control of movement in cats). 

Lyon and colleagues assigned the collicular-to-dorsal visual stream route with the 

functional role of processing rapidly-moving visual stimuli. Here we extend this 

suggestion, and hypothesize that this route might be directly responsible for the 



rapid, on-line updating of changing visual information with respect to hand 

position that is crucial for the dynamic control of action (Cisek and Kalaska 2010; 

see also Stuphorn et al. 2000; Reyes-Puerta et al. 2010, for evidence for reach-

related visual coding in the intermediate layers of the superior colliculus).

Physiological evidence for the rapid on-line control of action

These anatomical data from monkeys (Lyon et al. 2010) coincide with human 

neurophysiological data from experiments in our laboratory, demonstrating rapid 

processing of visual information relevant for motor control. In our study (Makin et 

al. 2009), participants performed a simple button-press motor-response with the 

right index finger, while a task-irrelevant three-dimensional ball suddenly fell just 

above the participants’ responding hand. Using single-pulse transcranial 

magnetic stimulation (TMS) over the contralateral primary motor cortex, we found 

that the sudden appearance of this potentially threatening visual stimulus was 

associated with a reduction in corticospinal excitability at the very early and 

specific time window of 70-to-80ms following its appearance (see Evarts 1974, 

for comparable response latencies in macaque M1 neurons, with respect to 

visual feedback for force application). We interpreted this inhibition as reflecting 

the proactive suppression of an automatic avoidance-related response, during 

the execution of the task-related response. Indeed, when the two motor 

behaviours (the avoidance and the task-related responses) were uncoupled, the 

approaching ball had an opposite, facilitatory effect on corticospinal excitability 

(Figure 3A). Importantly, the rapid inhibition of corticospinal excitability was 

predominantly hand-centred, depending most upon the distance of the ball from 

the hand, regardless of the locations of both visual fixation and covert spatial 

attention relative to the ball and hand. 



This ability to inhibit one movement while concurrently executing another 

(selective inhibition) is crucial for flexible motor behaviour (Coxon et al. 2007). 

Such inhibition can be effective not only to suppress undesirable movements 

after they have been initiated, but also proactively, before any muscle response 

is released (Boulinguez et al. 2008). The rapid processing of visual information 

during action execution is therefore a pre-requisite for such proactive inhibition. 

Since the hierarchical processing of information in the visual cortex is relatively 

slow (latencies of neurons in macaque secondary visual cortex (V2), for example, 

span between 56-117ms, Schmolesky et al. 1998), it is likely that the rapid 

reprogramming in response to visual information that we demonstrated in our 

study is mediated via more direct pathways (e.g., area MT, which exhibits 

latencies as early as 49ms), possibly including the rapid subcortical route 

identified by Lyon and colleagues (Lyon et al. 2010). Indeed, the rapid hand-

centred modulations in our study fit well with the estimated time for processing 

visual information via the SC in humans, based on recordings in the cat brain 

(Pettersson et al. 1997). Our findings also correspond well with kinematic and 

electromyographic findings for early movement corrections following unexpected 

changes in target positions, just under 100ms following the perturbation 

(Paulignan et al. 1991; Farnè et al. 2003; Pruszynski et al. 2008). This timing fits 

very well with our findings, assuming a ~25 ms conduction time between the 

primary motor cortex and the intrinsic hand muscles.

While single-pulse TMS allowed us accurately to infer the time-line of hand-

centred representations of visual information, it did not provide us with any 

evidence regarding the brain mechanisms enabling such processing. A recent 

study directly links the rapid selection of motor responses following changes in 



visual information with the PMv. Buch and colleagues (Buch et al. 2010) used 

paired-pulse TMS in order to examine the involvement of the right PMv in the 

reprogramming of grasp apertures when a target cylinder unexpectedly changed 

in size (from 15 to 65mm or vice versa), as compared to when the movement 

was executed towards the originally planned target size. The authors found that 

PMv facilitated corticospinal excitability prior to and following the onset of the 

planned movement (see also Koch et al. 2006; O'Shea et al. 2007; Davare et al. 

2006, for similar results). When the planned movement had to be reprogrammed 

following a change in the target, however, the PMv now inhibited corticospinal 

excitability (Figure 3B). Crucially, this inhibitory effect emerged as early as 75ms 

following the change in visual information, and after the original reaching 

movement had been launched.

Contrary to our inhibitory effect, which was confined to a narrow time window of 

less than 20ms, the effect reported by Buch and colleagues remained significant 

until at least 100ms following the switch. This difference between the two studies 

might reflect the transient nature of the conflict between the avoidance and 

simple reaction time responses in our design, as compared to the on-going 

reaching and grasping movement that Buch and colleagues studied. Indeed, it is 

important to note that the mechanisms underlying these two types of motor 

behaviour (avoidance vs. grasping) are most likely different. However, both 

studies examined representations of changing visual information that are crucial 

for rapid decision making during motor control. The generation and control of 

both avoidance and grasping movements in a dynamic environment require re-

positioning of the hand in space, and coordination between proximal and distal 

muscles (for example, changes in object size will require re-programming of the 

transport phase, Castiello et al. 1993). In our study, the relevant visual 



information was a ball, approaching the subject at high velocity (~370 cm/s). In 

the study by Buch and colleagues, the target object suddenly changed in size by 

50mm, which was brought about via a change in illumination in a darkened room. 

Such transient, high-contrast, and high-luminance visual events would activate 

many visual pathways, likely including those also responsive to rapidly moving 

objects. Given the similarity in onset times of the visual modulation of motor 

excitability in these two reports, we propose that the mechanisms responsible for 

the rapid reprogramming of hand and arm movements based on visual 

perturbations, partly rely on the same neural pathways that give rise to rapid 

hand-centred representations of space when examined neurophysiologically. We 

expand upon this notion in the next sections.

Hand centred representations in PMv

The premotor cortex has often been implicated with eye-to-hand coordinate 

transformation (Pesaran et al. 2006, 2010; Kakei et al. 2001; Mushiake et al. 

1997). The most striking demonstrations of hand-centred representation of visual 

information have been found in bimodal visual-tactile neurons in the macaque 

PMv (Graziano et al. 1994, 1997; Graziano 1999; Rizzolatti et al. 1981, see 

Figure 1B). In these bimodal neurons, the visual and tactile receptive fields 

generally overlap. This characteristic ensures that the neurons respond 

preferentially to visual stimuli near the tactile receptive field on the hand, arm, 

shoulders, neck, or face. Evidence for visual-tactile integration is not exclusive to 

the hand (e.g., Farne et al., 2005), or to the representation of visual space (e.g. 

Serino et al., 2011). However, as both vision and the hands play a dominant role 

in humans for interactions with objects, we will focus our discussion on neurons 



representing visual information around the hands and arms. Furthermore, body-

part centred multisensory representations are not restricted to the PMv, and have 

also been shown in the posterior parietal cortex, particularly in area VIP (Cooke 

et al., 2003), which connects MT with PMv directly (ref from matelli luppino here 

see Figure 2). However, since hand-centred visual representations are most 

commonly found in the PMv, we will restrict our discussion to this particular area, 

without considering the relative contributions of the posterior parietal cortex. The 

body-part centred multisensory neurons were proposed to provide a general 

solution to the problem of visuomotor integration (Graziano and Gross 1998), and 

have stimulated much research in humans (for review, see Brozzoli et al. 2011). 

The accepted view over the years has been that visual hand-centred 

mechanisms should play some general role in the sensory guidance of 

movements towards objects (Rizzolatti 1987; Graziano and Gross 1998; Fogassi 

and Luppino 2005), or, more recently, in object avoidance responses (Graziano 

et al. 2002; Cooke et al. 2003), but their specific role has not been determined.

The response properties of macaque PMv hand-centred neurons are similar to 

the hand-centred modulations of motor excitability by visual stimuli that we found 

recently using TMS (Makin et al. 2009): In both cases, modulations in motor 

excitability varied with the distance of the object from the hand, independently of 

the retinal position of the visual stimulus. Moreover, hand-centred modulation 

was specific for three-dimensional objects approaching the hand. Although 

comparisons between data arising from monkeys and humans, and using such 

different methods, should be made with caution, given the spatial specificity of 

the above responses with respect to visual events, and given the evidence for 

the involvement of PMv in rapid visuomotor response selection (Buch et al. 

2010), we suggest that these hand-centred mechanisms play a specific and 



prominent role in the rapid selection and control of manual actions. Moreover, as 

the responses of these hand-centred PMv neurons are generally strongest  for 

real, three dimensional, moving stimuli, we suggest that hand-centred coding 

occurs predominantly to update the motor system about unexpected changes in 

the visual properties of objects which are relevant for hand actions during the on-

line control of action.

It is important to emphasise that we do not assign an exclusive role of the PMv in 

the representation of visual information for the rapid on-line control of movement. 

Indeed, Cisek and Kalaska (2010) noted that the continuous and parallel 

processes critical for hand-object interactions appear as two waves of activation: 

an early wave (<100ms), crudely specifying a “menu” of options; and a second 

wave that selects among the different available options approximately 120–

150ms after visual stimulus onset (Cisek and Kalaska 2010). We suggest that 

when a rapid motor decision is required (such as when an initiated movement 

needs to be corrected or aborted, due to unexpected changes in the object’s 

properties), transient hand-centred visual information, made available within a 

short time frame (potentially due to a specialized pathway), will be utilized 

(however, see Davare et al. 2006, for rapid modulation of PMv responses? 

during the delayed execution of a pre-planned movement). Eye-centred 

representations for action, which during hand-movements will necessitate 

recurrent transformations (from hand-centred to eye-centred, and then back 

again to hand-centred), are likely to dominate the later wave. We are currently 

not aware of direct evidence using electrophysiology to support the role of the 

PMv in rapid hand-centred visual representations during hand-object interactions. 

An indirect finding was reported by Cooke and Graziano (2003), which showed 

startle-related EMG activity occurring as early as 70ms after stimulus onset. This 



EMG activity was comparable to the muscle responses that were artificially 

evoked by electrical macro-stimulation of bimodal regions of the premotor cortex 

(Graziano et al. 2002). We hope that our suggestions will motivate researchers to 

design paradigms involving hand-movements while studying hand-centred 

representations in PMv.

Concluding remarks

A quick review of the literature reveals that the most dominant representation for 

visually guided hand movements is an eye-centred one. Moreover, the 

theoretical framework that promotes the primary role of eye-centred 

representations in hand-object interactions willingly engulfs evidence showing 

hand-centred processing of the position of objects in the motor system, as a final 

stage in the perception-to-action pathway (Snyder 2000). 

We suggest that a short and rapid pathway from the retina to the motor cortex 

exists to update hand-relevant visual information for the dynamic control of hand-

object interactions. According to our framework, sudden or unexpected changes 

in the location of objects relative to the hand will be rapidly transmitted to the 

PMv via a rapid subcortical route involving the superior colliculus. This relatively 

“crude” visual information will be integrated with sensory information regarding 

current estimates of hand position in the PMv, resulting in hand-centred 

responses in bimodal neurons with overlapping visual and tactile receptive fields 

(Graziano et al. 1999). This hand-centred information will then be used to abort 

or inhibit preplanned movements that become irrelevant, or to facilitate newly 



emerging movements. Such a mechanism might allow for the rapid selection of 

appropriate actions, for example when the position of a target object 

unexpectedly changes (e.g., a glass that falls from the shelf as we fumble in 

reaching for it) or when we are unexpectedly required to avoid an approaching 

object (e.g., realizing that we are, in fact, unable to catch the falling glass, we 

instead try to avoid injury). In accordance with the model proposed by Cisek and 

Kalaska (2010), we emphasise the role of this rapid mechanism in an unstable 

environment. This is because under predictable conditions, hand-centred 

representation could be out-weighed by the eye-centred mechanisms, which 

provide more accurate visuospatial information relating to the positions of the 

object and the hand. 

Cooke and Graziano have previously proposed a similar notion, advocating for 

the involvement of bimodal neurons in the PMv (as well as the ventral 

intraparietal area) in the coding of avoidance responses (Cooke and Graziano 

2003; Cooke et al. 2003; Graziano et al. 2002). Our proposal extends this 

framework in several ways: First, we argue that the same coding occurs during 

the rapid selection of responses both towards objects (reaching and grasping) 

and away from objects (avoidance). The same neural mechanisms and pathways 

may sustain both types of hand-object interaction. Second, according to our 

account, hand-centred processing of objects in this pathway can only occur (or at 

least, predominantly occurs) during sudden changes in the properties most 

relevant for hand-object interactions, such as the spatial properties of the object. 

In this sense, therefore, there is no need for a continuous, online hand-centred 

representation of peripersonal space. Instead, hand-centred visual 

representations of objects near or approaching the hand are dynamically formed 

only whenever they become relevant for our actions and interactions with the 



world. We therefore suggest that these mechanisms specialize in the rapid 

updating of relevant visual information during response-selection and the on-line 

control of action. We believe that future studies should place an emphasis on the 

precise timing of visuomotor transformations, as well as multisensory interactions 

during action (see, for example, Brozzoli et al, 2009, 2010), as important criteria 

for determining which are the underlying neural mechanisms for hand-centred 

representations.
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Figure 1. Eye- and hand-centred spatial representations in the primate brain. 

Response patterns of illustrative neurons which are specifically modulated by 

changes in the fixation position (with respect to reaching targets B), and by 

changes in hand position (with respect to an approaching object, C). In both 

paradigms, monkeys were trained to maintain fixation in one of three targets 

(indicated by crosses in A) and place their hand in one of three positions (as 

indicated by the sketch in A). In B, responses were recorded in the parietal reach 

region (PRR, shown in A), while monkeys were performing delayed reaching 

movements to each of four different targets (indicated by the gray circles in A, 

corresponding to the four panels in each row). In C, responses were recorded in 

the ventral premotor cortex (PMv, shown in A), while three-dimensional objects 

were approaching the monkey from four different trajectories (indicated by the 

gray arrows in A, corresponding to the four panels in each row). Initial hand and 

fixation positions are shown in the left side of each row. In both studies, hand and 

eye positions were independently manipulated (upper and lower two rows, 



respectively). In B, the peak response of the neuron shifted when the initial eye 

position was varied, but not when the initial hand position was varied. In C, the 

peak response of the neuron shifted when the initial hand position was varied, 

but not when the initial eye position was varied. Figure 1B was modified from 

Cohen and Andersen (2002). Figure 1A and 1C was modified from Graziano et 

al. (1997).

Figure 2. Fast route from visual input to motor output.

Most retinal output projects to the striate cortex via the thalamic lateral geniculate 

nucleus (LGN), and ascends up to the motor cortex via the dorsal and ventral 

pathways (gray arrows).  A small proportion of the retinal output bypasses this 

major pathway and projects instead to the superior colliculus (SC) in the midbrain 

(gray arrows).  Information from the SC is transferred to the middle temporal 

visual area (MT) via disynaptic projections. This places the premotor cortex 

(PMv) within just five synapses from the retina (via the SC, the inferior pulvinar, 

MT and the ventral portion of intraparietal sulcus (VIP). By effectively bypassing 

the visual processing hierarchy, visual information mediated via this pathway 

may therefore become available for rapid online control of action. 

Figure 3. Rapid modulation of TMS-facilitated corticospinal excitability during the 

on-line control of pre-programmed and modified movements. A. Modulations in 

corticospinal excitability, measured using single TMS pulses over M1, during 

unexpected appearance of distractor 3D objects, approaching the participants. 

When participants responded to the task irrelevant objects (identified by a 

voluntary muscle twitch of the approached hand), corticospinal excitability was 

specifically enhanced when the object was approaching near the hand, resulting 

in hand-centred excitation, 70ms following the appearance of the object (left). 



When the participants were pre-engaged in a reaction time task, the unexpected 

appearance of the objects approaching the hand caused reduced corticospinal 

excitability, resulting in hand-centred suppression, 80ms following the object 

appearance.  A. Modulations in corticospinal excitability, measured using ventral 

premotor cortex (PMv) and primary motor cortex (M1) paired-pulse TMS, during 

the performance of reaching movements to objects. When the same object was 

maintained throughout the execution of the movement, PMv pulses resulted in 

increased corticospinal excitability 75ms following the onset of the movement 

(left).  When the target object was switched during movement execution, PMv 

pulses suppressed corticospinal excitability as early as 75ms following the switch 

(which was time locked to the movement onset, right). Figure 3A was modified 

from Makin et al. (2009). Figure 3B was modified from Buch et al. (2010). 


