Gaussian quadrature 4D-VAR

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Stappers, R. J. J. and Barkmeijer, J. (2012) Gaussian quadrature 4D-VAR. Quarterly Journal of the Royal Meteorological Society, 139 (675). pp. 1465-1472. ISSN 1477-870x doi: 10.1002/qj.2056

Abstract/Summary

A new incremental four-dimensional variational (4D-Var) data assimilation algorithm is introduced. The algorithm does not require the computationally expensive integrations with the nonlinear model in the outer loops. Nonlinearity is accounted for by modifying the linearization trajectory of the observation operator based on integrations with the tangent linear (TL) model. This allows us to update the linearization trajectory of the observation operator in the inner loops at negligible computational cost. As a result the distinction between inner and outer loops is no longer necessary. The key idea on which the proposed 4D-Var method is based is that by using Gaussian quadrature it is possible to get an exact correspondence between the nonlinear time evolution of perturbations and the time evolution in the TL model. It is shown that J-point Gaussian quadrature can be used to derive the exact adjoint-based observation impact equations and furthermore that it is straightforward to account for the effect of multiple outer loops in these equations if the proposed 4D-Var method is used. The method is illustrated using a three-level quasi-geostrophic model and the Lorenz (1996) model.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/27885
Identification Number/DOI 10.1002/qj.2056
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > National Centre for Earth Observation (NCEO)
Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher Wiley
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar