On the Convergence of Two-Stage Iterative Processes for Solving Linear Equations

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Nichols, N. orcid id iconORCID: https://orcid.org/0000-0003-1133-5220 (1973) On the Convergence of Two-Stage Iterative Processes for Solving Linear Equations. SIAM Journal on Numerical Analysis (SINUM), 10 (3). pp. 460-469. ISSN 0036-1429 doi: 10.1137/0710040

Abstract/Summary

This paper considers two-stage iterative processes for solving the linear system $Af = b$. The outer iteration is defined by $Mf^{k + 1} = Nf^k + b$, where $M$ is a nonsingular matrix such that $M - N = A$. At each stage $f^{k + 1} $ is computed approximately using an inner iteration process to solve $Mv = Nf^k + b$ for $v$. At the $k$th outer iteration, $p_k $ inner iterations are performed. It is shown that this procedure converges if $p_k \geqq P$ for some $P$ provided that the inner iteration is convergent and that the outer process would converge if $f^{k + 1} $ were determined exactly at every step. Convergence is also proved under more specialized conditions, and for the procedure where $p_k = p$ for all $k$, an estimate for $p$ is obtained which optimizes the convergence rate. Examples are given for systems arising from the numerical solution of elliptic partial differential equations and numerical results are presented.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/27521
Identification Number/DOI 10.1137/0710040
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher Society for Industrial and Applied Mathematics
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar