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Abstract: We analyze in a common framework the properties of the Voronoi tes
resulting from regular 2D and 3D crystals and those of tessellations generated b
distributions of points, thus analyzing in a common framework symmetry 
processes and the approach to uniform random distributions of seeds. We perturb c
structures in 2D and 3D with a spatial Gaussian noise whose adimensional strengt
analyze the statistical properties of the cells of the resulting Voronoi tessellations
ensemble approach. In 2D we consider triangular, square and hexagonal regula
resulting into hexagonal, square and triangular tessellations, respectively. In 3D w
the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC
whose corresponding Voronoi cells are the cube, the truncated octahedron, and th
dodecahedron, respectively. In 2D, for all values α>0, hexagons constitute 
common class of cells. Noise destroys the triangular and square tessellations, 
structurally unstable, as their topological properties are discontinuous in α=0
contrary, the honeycomb hexagonal tessellation is topologically stable and, exper
all Voronoi cells are hexagonal for small but finite noise with α<0.12. Basically,
happens in the 3D case, where only the tessellation of the BCC crystal is top
stable even against noise of small but finite intensity. In both 2D and 3D cases, alr
moderate amount of Gaussian noise (α>0.5), memory of the specific initial unpertu
is lost, because the statistical properties of the three perturbed regular tessell
indistinguishable. When α>2, results converge to those of Poisson-Voronoi tessel
2D, while the isoperimetric ratio increases with noise for the perturbed 
tessellation, for the perturbed triangular and square tessellations it is optimised fo
value of noise intensity. Same applies in 3D, where noise degrades the isoperim
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for perturbed FCC and BCC lattices, whereas the opposite holds for perturbed SCC lattices. 
This allows for formulating a weaker form of the Kelvin conjecture. By analysing jointly the 
statistical properties of the area and of the volume of the cells, we discover that also the cells 
shape heavily fluctuates when noise is introduced in the system. In 2D, the geometrical 
properties of n-sided cells change with α until the Poisson-Voronoi limit is reached for α>2; 
in this limit the Desch law for perimeters is shown to be not valid and a square root 
dependence on n is established, which agrees with exact asymptotic results. Anomalous 
scaling relations are observed between the perimeter and the area in the 2D and between the 
areas and the volumes of the cells in 3D: except for the hexagonal (2D) and FCC structure 
(3D), this applies also for infinitesimal noise. In the Poisson-Voronoi limit, the anomalous 
exponent is about 0.17 in both the 2D and 3D case. A positive anomaly in the scaling 
indicates that large cells preferentially feature large isoperimetric quotients, which is almost 
always the case. As the number of faces is strongly correlated with the sphericity (cells with 
more faces are bulkier), in 3D it is shown that the anomalous scaling is heavily reduced 
when we perform power law fits separately on cells with a specific number of faces. 

Keywords: Voronoi tessellation; numerical simulations; random geometry; symmetry 
break; topological stability; Poisson point process; Desch law; Lewis law; cubic crystals; 
simple cubic; face-centered cubic; body-centered cubic; Gaussian noise; anomalous scaling; 
isoperimetric quotient; fluctuations; Kelvin's conjecture; Kepler's conjecture; Kendall’s 
conjecture 

 

1. Introduction 

A Voronoi tessellation [1, 2] is a partitioning of an Euclidean N-dimensional space  defined in 
terms of a given discrete set of points 

Ω
Ω⊂X . For almost any point Ω∈a  there is one specific point 

which is closest to a. Some point a may be equally distant from two or more points of X. If X 
contains only two points, x1 and x2, then the set of all points with the same distance from x1 and x2 is a 
hyperplane, which has codimension 1. The hyperplane bisects perpendicularly the segment from x1 and 
x2. In general, the set of all points closer to a point 

Xx ∈

Xxi ∈  than to any other point , ij xx ≠ Xx j ∈  is 

the interior of a convex (N-1)-polytope usually called the Voronoi cell for xi. The set of the (N-1)-
polytopes Πi, each corresponding to - and containing - one point Xxi ∈ , is the Voronoi tessellation 

corresponding to X. Extensions to the case of non-Euclidean spaces have also been presented [3, 4].  
Since Voronoi tessellations boil up to being optimal partitionings of the space resulting from a set 

of generating points, they define a natural discrete mathematical measure, and have long been 
considered for applications in several research areas, such as telecommunications [5], biology [6], 
astronomy [7], forestry [8], atomic physics [9], metallurgy [10], polymer science [11], materials 
science [12, 13], and biophysics [14]. In condensed matter physics, the Voronoi cell of the lattice point 
of a crystal is known as the Wigner-Seitz cell, whereas the Voronoi cell of the reciprocal lattice point 
is the Brillouin zone [15, 16]. Voronoi tessellations have been used for performing structure analysis 
for crystalline solids and supercooled liquids [17, 18], for detecting glass transitions [19], for 
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emphasizing the geometrical effects underlying the vibrations in the glass [20], and for performing 
detailed and efficient electronic calculations [21, 22] Moreover, a connection has been recently 
established between the Rayleigh-Bènard convective cells and Voronoi cells, with the hot spots 
(locations featuring the strongest upward motion of hot fluid) of the former basically coinciding with 
the points generating the Voronoi cells, and the locations of downward motion of cooled fluid 
coinciding with the sides of the Voronoi cells [23]. Finally, Voronoi tessellations are a formidable tool 
for performing arbitrary space integration of sparse data, without adopting the typical procedure of 
adding spurious information, as in the case of linear or splines interpolations. In particular, in a 
geophysical context, Voronoi tessellations have been widely used to analyze spatially distributed 
observational or model output data [24, 25, 26]. Actually, in was in this context that Thiessen and 
Alter, with the purpose of computing river basins water balance from irregular and sparse rain 
observations, discovered independently for the 2D case the tessellation introduced by Voronoi just few 
years earlier [27].  

The theoretical investigation of the statistical properties of general N-dimensional Voronoi 
tessellations has proved to be a rather hard task, so that direct numerical simulation is the most 
extensively adopted investigative approach. The quest for achieving low computational cost for 
actually evaluating the Voronoi tessellation of a given discrete set of points X is ongoing and involves 
an extensive research performed within various scientific communities [28, 29, 30, 31, 32]. 

A great deal of theoretical and computational work has focused on the more specific and tractable 
problem of studying the statistical properties of Poisson-Voronoi tessellations. These are Voronoi 
tessellations obtained starting from a random set of points X generated as output of a homogeneous 
Poisson point process. This problem has a great relevance at practical level because it corresponds, 
e.g., to studying crystal aggregates with random nucleation sites and uniform growth rates. Exact 
results concerning  the mean statistical properties of the interface area, inner area, number of vertices, 
etc. of the Poisson-Voronoi tessellations have been obtained for Euclidean spaces [33, 34, 35, 36, 37, 
38, 39]; an especially impressive account is given by [40]. Moreover, the Kendall’s conjecture has 
recently been proved, i.e. large cells, asymptotically, tend have to a spherical shape [41, 42, 43]. 
Several computational studies on 2D and 3D spaces have found results in agreement with the 
theoretical findings, and, moreover, have shown that both 2-parameter [44] and 3-parameter [45] 
gamma distributions fit up to a high degree of accuracy the empirical probability distribution functiona 
(pdfs) of several geometrical characteristics of the cells [46, 47]. The ab-initio derivation of the pdf of 
the geometrical properties of Poisson-Voronoi tessellations have not been yet obtained, except in 
asymptotic regimes [48], which are, surprisingly, not compatible with the gamma distributions family.  

In recent years, various studies have focused on the geometrical properties of Voronoi tessellations 
resulting from non strictly Poissonian random processes. In particular, given the obvious relevance in 
terms of applications, such as for packing problems, a great deal of attention has been directed towards 
tessellations resulting from points which are randomly distributed in the space and are subjected to a 
minimal point-to-point distance δ - a sort of hard-core nuclei hypothesis [46, 49]. Whereas the δ=0 
case corresponds to the Poisson-Voronoi situation, it is observed that by increasing δ the degree of 
randomness of the tessellation is decreased  - the pdfs of the statistical properties of the geometrical 
characteristics become more and more peaked -  until for a certain critical δ-value a regular 
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tessellation, which in the 2D case is the hexagonal honeycomb one, is obtained. In any case, it is found 
that the gamma distributions provide excellent fits for a very large range of values of  δ [46]. 

In this paper we approach the problem of understanding general properties of the Voronoi 
tessellations by joining on the two extreme situations of perfectly deterministic, regular tessellation, to 
the tessellation resulting from a set of points X generated with a Poisson point process.  

We first consider three regular polygonal tessellations of the plane, the honeycomb hexagonal, the 
square, and triangular tessellations. They are obtained by setting the points xi as vertices of regular 
triangles, squares, and hexagons, respectively. Hexagonal tessellation has such peculiar properties of 
robustness relies on the fact that it is optimal both in terms of perimeter-to-area ratio and in terms of 
cost [50, 51]. The extremal properties of such a tessellation are clearly highlighted by [52], where it is 
noted that a Gibbs system of repulsive charges in 2D arranges spontaneously for low temperatures 
(freezes) as a regular hexagonal crystal. Moreover, a regular hexagonal structure has been found for 
the Voronoi tessellation built from the spontaneously arranged lattice of hot spots (strongest upward 
motion of hot fluid) of the Rayleigh-Bènard convective cells, with the compensating downward motion 
of cooled fluid concentrated on the sides of the Voronoi cells [23]. This is related to the fact that, under 
specific parameters ranges, the stationary solutions of the 2D Swift-Hohemberg equation generate 
naturally hexagonal tessellations [53]. 

Moreover, we analyze three cubic crystals covering the 3D Euclidean space, namely the simple 
cubic (SC), the face-centered cubic (FCC) and the body-centered cubic (BCC) lattices [15]. The 
corresponding space-filling Voronoi cells of such crystals are the cube, the rhombic dodecahedron, and 
the truncated octahedron.  The cubic crystal system is one of the most common crystal systems found 
in elemental metals, and naturally occurring crystals and minerals. These crystals feature truly 
extraordinary geometrical properties. The cube is the only space-filling regular solid. The FCC 
(together with the Hexagonal Close Packed structure) features the largest possible packing fraction: the 
related 1611 Kepler’s conjecture has been recently proved by [54] The Voronoi cell of BCC has been 
conjectured by Kelvin in 1887 as being the space-filling cell with the smallest surface to volume ratio, 
and only recently two counter-examples have been given in [55] and [56]. Interestingly, Gabbrielli 
[56] found a novel space-filling cell by imaginatively looking at the patterns generated as stationary 
solution of the 3D Swift-Hohenberg equation, thus methodologically mimicking the more usual 2D 
case. Finally, the truncated octahedron is conjectured to have the lowest cost among all 3D space-
filling cells [51]. These mathematical properties correspond to very important physical features. 
Because of its low density, basically due to the low packing faction, the SC system has a high energy 
structure and is rare in nature, and it is found only in the alpha-form of Po. The BCC is a more 
compact system and have a low energy structure, is therefore more common in nature. Examples of 
BCC structures include Fe, Cr, W, and Nb. Finally, thanks to its extremal properties in terms of 
packing fraction and the resulting high density, FCC crystals are fairly common and specific examples 
include Pb, Al, Cu, Au and Ag. 

The extremal properties in terms of surface–to-area ratio of the hexagonal (in 2D) and truncated 
octahedral (in 3D) tessellations imply that they may serve as optimal tool for achieving data 
compression [57]. Another similarity of these two tessellations is related to their topologically stability 
with respect to infinitesimal perturbations to the position of the lattice points [58]. 
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Using an ensemble-based approach, we study the break-up of the symmetry of the 2D and 3D 
crystals and quantitatively evaluate how the statistical properties of the resulting Voronoi cells change 
when we perturb the positions of the lattice points xi, with a spatially homogeneous Gaussian noise of 
parametrically controlled strength. The strength of considered perturbation ranges up to the point 
where typical displacements become larger than the lattice unit vector, which basically leads to the 
limiting case of the Poisson-Voronoi process.  

Our paper is organized as follows. In Section 2 we discuss some basic properties of the Voronoi 
tessellations in 2D and in 3D, present some exact results, and describe the strategy and the concepts 
behind the numerical simulations. In Section 3 we review extensively the main results presented in 
[59] for 2D systems and in [60] for 3D systems, and propose some novel findings and concepts. In 
Section 4 we summarize and discuss our findings and present the perspectives for future work. 

 

2. Data and Methods 

2.a Scaling Properties of Voronoi tessellations 

In this paper we consider perfect crystals, crystals with random dislocations, and sparse points 
resulting from a spatially homogeneous Poisson process. Perfect crystals are obtained when the pdf of 
the random point process can be expressed as a sum of Dirac masses obeying a discrete translational 
symmetry. Crystals with random dislocations are periodical in the statistical sense since the pdf of the 
point-process is a non-singular Lebesgue measurable function obeying discrete translational symmetry. 
Finally, the pdf of the homogeneous Poisson point process is constant in space. In general, we then 
consider a random point process characterized by a spatially homogeneous coarse-grained intensity 0ρ , 
such that the expectation value of the number of points xi in a generic region Γœn  is Γ0ρ , where Γ  

is the Lebesgue n-measure of Γ, whereas the fluctuations in the number of points  are Γ≈ 0ρ . If 

10 >>Γρ , we are in the thermodynamic limit and boundary effects are negligible , so that the number 

of cells of the Voronoi tessellation resulting from the set of points xi and contained inside Γ is 
Γ≈ 0ρVN . 

Using scaling arguments [59, 60], one obtains that in all cases considered the statistical properties 
of the Voronoi tessellation are intensive, so that the point density 0ρ  can be scaled to unity, or, 
alternatively, the domain can be scaled to the Cartesian n-cube [ ] [ 1,0...1,01 ⊗ ]⊗=Γ . We will stick to 
the second approach. We then define ( )Yµ  ( ( )Yσ ) as the mean value (standard deviation) of the 
variable Y over the  cells for the single realization of the random process, whereas the expression VN

E  ( [ ]Eδ ), indicates the ensemble mean (standard deviation) of the random variable E.  

We have that ( ) ( ) 1
0, −∝ ρσµ VV , where V is the n-volume of the Voronoi cell, 

( ) ( ) ( ) nnAA 1
0, −−∝ ρσµ , where A is the n-surface area of the Voronoi cell. The proportionality 

constants depend of the specific random point process considered. Therefore, by multiplying the 
ensemble mean estimators of the mean and standard deviation of the various geometrical properties of 
the Voronoi cells times the appropriate power of 0ρ , we obtain universal functions. 
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In the 2D case, we analyze n, P, and A, corresponding to the number of sides, the perimeter and the 
area of each Voronoi cell, respectively.  In the 3D case, we focus our interest on f, A, and V, 
corresponding to the number of faces, the surface area and the volume of each Voronoi cell, 
respectively. 
 

2.b. Some Exact Results  

2.b.1. 2D Tessellations 

If we consider a regular square grid of points xi with sides 2121 , vvvvl rrrr
⊥== , the Voronoi cell Πi 

corresponding to xi is given by the square centered in xi with the same side length and orientation as 
the xi grid, so that the grid of the vertices yi of the tessellation is translated with respect to the xi grid by 
l/2 in both orthogonal directions (the verse is not relevant). Therefore, the vertices of the Voronoi 
tessellation resulting from the points yi are nothing but the initial points xi. If 21

21
0 vvll S

rr
==== −ρ , 

we will have 0ρ  points – and 0ρ  corresponding square Voronoi cells - in [ ] [ 1,01,01 ×= ]Γ . Similarly, a 
regular hexagonal honeycomb tessellation featuring 0ρ  points and 0ρ  corresponding regular Voronoi 
cells in  is obtained by using a  grid of points xi  set as regular triangles with sides [ ] [ 1,01,01 ⊗=Γ ]

( ) 21032 vvlT
rr

=== ρ , where the angle between 1vr  and 2vr  is 60°. Finally, the regular triangular 
tessellation featuring a density 0ρ  of Voronoi cells derives from a regular grid of points xi set as 

hexagons with sides ( ) 33334 210 vvlH
rr

=== ρ , again with an angle of 60° between the 1vr  
and . Therefore, the regular hexagonal and the regular triangular tessellation are conjugate via 
Voronoi tessellation. 

2vr

In the case of these crystalline structures, all cells are alike, and given the deterministic nature of the 
tessellation, there are no fluctuations within the ensemble, so that taking ensemble averages is 
immaterial. It is easy to deduce the properties of the Voronoi cells from basic Euclidean geometry:  

• for square tessellation, we have ( ) 4=nµ , ( ) 21
04 −= ρµ P ;  

• for honeycomb tessellation, we have ( ) 6=nµ  and ( ) 21
0324 −= ρµ P ,  

• for triangular tessellation, we have ( ) 3=nµ  and ( ) 21
0336 −= ρµ P .  

The standard isoperimetric ratio 24 PAq π= , which is unity for circles, is 7854.04 ≈= πq , 
9059.063 ≈= πq , 6046.093 ≈= πq , for square, honeycomb and triangular tessellation, 

respectively. 
 On the other end of the “spectrum of randomness”, when considering Poisson-Voronoi 

tessellations, we have that the ensemble mean – where the statistics is computed over all realizations of 
the random process – of the number of sides of the Voronoi cells inside Γ is ( ) 6=nµ , which agrees 

with the general Euler theorem on  planar graphs with trivalent vertices. Additionally, one obtains that 
( ) 3345.1≈nσ  [40]. Note that the regular square and triangular tessellations do not obey the Euler 

theorem, as they feature non-generic tetravalent and hexavalent vertices. Moreover, it can be proved 
that the ensemble mean of the average perimeter of a Voronoi cell is ( ) 21

04 −= ρµ P  and the ensemble 

mean of its standard deviation is ( ) 21
09724.0 −≈ ρσ P . Finally, whereas by definition we have 
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( ) 1
0
−= ρµ A , direct numerical calculations show that the ensemble mean of the standard deviation of 

the area of the cells is ( ) 1
05293.0 −≈ ρσ A  [40]. 

2.b.2 3D Tessellations  

Since each Voronoi cell is, by construction, convex, its vertices (v), edges (e), and faces (f) are 
connected by the simplified Euler-Poincare formula for 3D polyhedra 2=+− fev . Moreover, in a 
generic solid  vertices are trivalent (i.e. given by the intersection of three edges), so that ve 23= , 
which implies that 221 += vf , so that the knowledge of the number of vertices of a cell provides a 
rather complete information about the polyhedron. Another general result is that in each cell the 
average number (n) of sides of each face is ( ) 612626 <−=+= fvvn , which marks a clear 
difference with respect to the plane case, where the Euler theorem applies. For the detailed description 
of how geometrically construct the SC, BCC, and FCC cubic crystals, we refer the reader to [15]. 
Since we impose a total of 0ρ  lattice points per unit volume and 0ρ  corresponding Voronoi cells in 

, the length of the side of the cubes of the SC, BCC, and FCC crystals are 1Γ 31
0
−ρ ,  31

0
312 −ρ , and  

31
0

314 −ρ , respectively. Basic Euclidean geometry allows us to fully analyze these structures. The cells 

of the Voronoi tessellation of the SC crystal are cubes (having 12 edges, 6 faces, 8 trivalent vertices) of 
side length 31

0
−ρ  and total surface area 32

06 −= ρA . The cells of the Voronoi tessellation of the BCC 

crystal are truncated octahedra (having 36 edges, 14 faces, 24 trivalent vertices) of side length 
31

0
31

0
67 4454.02 −−− ≈ ρρ  and total surface area ( ) 32

0
32

0
34 3147.523213 −−− ≈+= ρρA . The cells of the 

Voronoi tessellation of the FCC crystal are rhombic dodecahedra (having 24 edges, 12 faces, 6 
trivalent vertices, 8 tetravalent vertices) of side length 31

0
31

0
34 6874.032 −−− ≈ ρρ  and total surface area 

32
0

32
0

65 3454.523 −− ≈⋅= ρρA . The standard isoperimetric quotient 3236 SVQ π= , which measures 

in non-dimensional units the surface-to-volume ratio of a solid (Q = 1 for a sphere), is 0.5236, 0.7534, 
and 0.7405 for the SC, BCC, and FCC structures, respectively. 

Exact results have been obtained on Poisson-Voronoi tessellations using rather cumbersome 
analytical tools. We report some of the results discussed in [40]: 

• the average number of vertices is ( ) 0709.273596 2 ≈= πµ v  and its standard deviation is 

( ) 6708.6≈vσ ; exploiting the Euler-Poincare relation plus the genericity property, we 

obtain ( ) ( )ve µµ 23= , ( ) ( ) 221 += vf µµ , ( ) ( )ve σσ 23= , and 

( ) ( )vf σσ 21= ; 

• the average surface area is ( ) ( ) ( ) 32
0

32
0

31 8209.5353256 −− ≈Γ= ρρπµ A  (with ( )•Γ  here 

indicating the usual Gamma function), and its standard deviation is ( ) 32
04804.0 −≈ ρσ A ; 

• the average volume is, by definition, ( ) 1
0
−= ρµ V , whereas its standard deviation is 

( ) 1
04231.0 −≈ ρσ V . 

2.c Simulations 

For all 2D and 3D crystals we introduce a symmetry-breaking homogeneous ε-Gaussian noise, 
which randomizes the position of the points xi about their deterministic positions with a spatial 
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variance 2ε . We define 222
Slαε = , thus expressing the mean squared displacement as a fraction  

of the natural squared length scale, where  in the 2D case and 

2α
1

0
2 −= ρSl

32
0

2 −= ρSl  in the 3D case. When 

ensembles are considered, the probability distribution of the points xi  is still periodic. The parameter 
 can be loosely interpreted as a normalized temperature of the lattice. By definition, if 2α 0=α  we are 

in the deterministic case. We study how the statistical properties of the resulting Voronoi cells change 
with α, covering the whole range going from the symmetry breaking, occurring when α becomes 
positive, up to the progressively more and more uniform distribution of xi, obtained when 1>>α , so 
that the distributions of nearby points xi overlap more and more significantly. The actual simulations 
are performed by applying, within a customized routine, the MATLAB7.0® functions voronoin.m 
and convhulln.m, which implement the algorithm introduced in [31], to a set of points xi generated 
according to the considered random process. The function voronoin.m associates to each point the 
vertices of the corresponding Voronoi cell and its volume, whereas the function convhulln.m is 
used to generate the convex hull of the cell. 

In the 2D case, we actually perform our statistical analyses by considering M=1000 members of the 
ensemble of Voronoi tessellations generated for each value of α ranging from 0 to 5 with step 0.01, 
plus additional values aimed at checking the weak- and high-noise limits. Tessellation has been 
performed starting from points xi ( 100000 =ρ ) belonging to the square 

, but only the cells belonging to [ ] [ ] [ ] [ 1,01,02.1,2.02.1,2.0 1 ⊗=Γ⊃−⊗− ] 1Γ  have been considered for 
evaluating the statistical properties. Since the external shell having a thickness of 0.2 comprises about 
20 layers of cells, boundary effects due to one-step Brownian diffusion of the points nearby the 
boundaries, which, in the case of large values of α, cause 0ρ  depletion, become negligible. Another set 

of simulations is performed by computing an ensemble of 1000 Poisson-Voronoi tessellations 
generated starting from a set of uniformly randomly distributed 0ρ  points per unit volume. 

In the 3D case, the statistical analysis is performed over M=100 ensemble members of Voronoi 
tessellations with 10000000 =ρ  generated for all values of α  ranging from 0 to 2 with step 0.01, plus 

additional values aimed at checking the weak- and high-noise limits, and the Poisson-Voronoi case. 
Similarly to the 2D case, tessellation has been performed starting from points xi belonging to the 
square [ ] [ ] [ ] [ ] [ ] [ ]1,01,01,01.1,1.01.1,1.01.1,1.0 1 ⊗⊗=Γ⊃−⊗−⊗− , but only the cells belonging to 1Γ  
have been considered.  

A serious complication arises for the 3D case, where the convex hull is given in terms of 2-
simplices, i.e. triangles. Whereas this information is sufficient for computing the total surface area of 
the cell, an additional step is needed in order to define the topological properties of the cell. In fact, in 
order to determine the actual number of faces of the cell and define exactly what polygon each face is, 
we need to explore whether neighbouring simplices are coplanar, and thus constitute higher order 
polygons. This is accomplished by computing the unit vector orthogonal to each simplex  and 

computing the matrix of the scalar products 
kî ks

kj ii ˆ,ˆ  for all the simplices of the cell. When the scalar 

products qp ii ˆ,ˆ , with , of unit vectors orthogonal to n neighbouring simplices  

with  are close to 1 - within a specified tolerance 

1, −+≤≤ nmqpm ks

1−+≤≤ nmkm ξ , corresponding to a tolerance of 

about ξ2  in the angle between the unit vector - we have that  is a polygon with n+2 sides. We U
1−+

=

nm

mk
ks
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have consistently verified that when choosing any tolerance smaller than  we obtain basically 
the same results.  

810−=ξ

 

Figure 1. Ensemble mean of the mean  - (a) -  and of the standard deviation – (b) – of the number of 
sides (n) of the Voronoi cells. Note that in (a) the number of sides of all cells is 4 (3) - out of scale - for 
α=0 in the case of regular square (triangular) tessellation. Half-width of the error bars is twice the 

standard deviation computed over the ensemble. Poisson-Voronoi limit is indicated. 

(a)  

(b)  
 

3. Results 

3.a Two-dimensional case 
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3.a.1 Number of sides of the cells 

In the case of the regular square tessellation, the introduction of a minimal amount of symmetry-
breaking noise induces a transition in the statistics of ( )nµ  and ( )nσ , since ( )nµ  and ( )nσ  are 

discontinuous in 0=α . In Figs. 1a)-1b) we plot the functions ( )nµ  and ( )nσ ; the half-width of the 
error bars are twice the corresponding values of ( )[ ]nµδ  and ( )[ ]nσδ , whereas the Poisson-Voronoi 
values are indicated for reference. We have that ( ) ( ) +==

=≠=
00

64
αα

µµ nn , where by 
+=

•
0α

we 

mean the limit for infinitesimal noise of the quantity • , practically obtained by considering very 

small positive values of the parameter α . The regular square tessellation results to be structurally 
unstable, as the introduction of noise breaks the special quadrivalent nature of the vertices of the 
Voronoi cells and drives the system to the generic behaviour described by Euler’s theorem. Moreover, 

( ) ( ) +==
≈≠=

00
93.00

αα
σσ nn , which shows that the width of the distribution of the number of 

sides is finite also for infinitesimal noise. The ensemble fluctuations ( )[ n ]µδ  and ( )[ ]nσδ  are 
discontinuous functions in 0=α , since they reach a finite positive value as soon as the noise is 
switched on. Considering larger values of α, we have that ( )nσ  is almost constant (within few 

percents) up to 35.0≈α , where its value begins to quickly increase before reaching the asymptotic 
value ( ) 33.1≈nσ  for 2>α , which essentially coincides with what obtained in the Poisson-Voronoi 

case. The function ( )nµ  is, in agreement with Euler’s law, constant within few permils around the 

value of 6 for all 0>α , so that the mean topological charge is zero. These results suggest that, 
topologically speaking, the route to randomness from the square regular tessellation to the Poisson-
Voronoi case goes through a finite range 35.00 << α , where the statistical properties of the topology 
of the cells are rather stable. Moreover, in this range, hexagons dominate and their fraction is almost 
constant (within few percents), whereas for larger values of  α  the fraction of hexagons declines but is 
still dominant (not shown). 

Similarly, the triangular tessellation results to be unstable: we have that 
( ) ( ) +==

=≠=
00

63
αα

µµ nn  and ( ) ( ) +==
≈≠=

00
17.10

αα
σσ nn , and again the ensemble 

fluctuations ( )[ n ]µδ  and ( )[ n ]σδ  are discontinuous functions in 0=α . As expected, for all values 
0>α  ( ) 6=nµ , with hexagons being the dominant class of polygons. The introduction of an 

infinitesimal noise destroys the peculiar hexavalent vertices of the Voronoi cells and makes the system 
obey the Euler’s theorem. Also in this case, we find a finite range 45.00 << α - slightly wider than for 
the square tessellation - such that ( )nσ  and the fraction of hexagons, are numerically almost 

constant. This property seems to define robustly a topologically quasi-stable weakly perturbed state. 
When considering the regular hexagon honeycomb tessellation, the impact of introducing noise in 

the position of the points xi is quite different from what previously observed. Results are also shown in 
Figs. 1a)-1b). The first feature is that an infinitesimal noise does not affect at all the tessellation, in the 
sense that all cells remain hexagons. Moreover, even finite-size noise basically does not distort cells in 
such a way that figures other than hexagons are created. We have not observed non n=6 cells for up to 

12.0≈α  in any member of the ensemble. This has been confirmed also considering larger densities 
(e.g. 10000000 =ρ ). It is more precise, though, to frame the structural stability of the hexagon 

tessellation in probabilistic terms: the creation of non-hexagons is very unlikely for the considered 
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range. Since the presence of a Gaussian noise induces for each point xi a probability distribution with – 
an unrealistic- non-compact support, it is possible to have low-probability outliers that, at local level, 
can distort heavily the tessellation. Anyway, for all values of α  we have that ( ) 6=nµ  within few 

permils, as imposed by the Euler’s theorem. For 12.0>α , ( )nσ  is positive and increases 

monotonically with α ; this is accompanied by a monotonic decrease with α  of the fraction of 
hexagons, which are nevertheless dominant for all values of α . For 5.0>α  the value of ( )nσ  is not 

distinguishable from what obtained for perturbed square and triangular tessellations. This implies that, 
from a statistical point of view, the variable n loses memory of its unperturbed state already for a rather 
low amount of Gaussian noise, well before becoming undistinguishable from the random Poisson case. 

Figure 2. Ensemble mean of the mean  - (a) -  and of the standard deviation – (b) – of the area (A) of 
the Voronoi cells. Half-width of the error bars is twice the standard deviation computed over the 

ensemble. Poisson-Voronoi limit is indicated. In (b), linear approximation for small values of α is also 
shown. Values are multiplied times ρ0 in order to give universality to the ensemble mean results.  

(a)   

(b)  
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3.a.2 Area and Perimeter of the cells 

For all of the perturbed regular tessellations considered in this study, the parametric dependence on 
α  of the statistical properties of the area of the Voronoi cells is more regular than for the case of the 
number of sides. Results are shown in Figs. 2a)-2b). 

In general, the ensemble mean value ( )Aµ  of the area of the Voronoi cells is, basically by 

definition, constrained to be ( ) 10 =Aµρ  for all values of α , whereas for all perturbed tessellations 
the size of fluctuations ( )[ ]Aµδ  increases with α  and reaches for 3>α  an asymptotic value, 
coinciding with that observed in the Poisson-Voronoi case. The α -dependence of ( )Aσ  is more 

interesting. We first note that the functions ( )Aσ  computed from the three perturbed tessellation are 
very similar, and the same occurs for ( )[ ]Aσδ . This implies that the impact of adding noise in the 
system in the variability of the area of the cells is quite general and does not depend on the unperturbed 
patterns. We can be confident of the generality of this result also because for relatively small values of  
α  (say, 5.0<α ), ( )Aσ  has a specific functional form reminding of symmetry breaking behaviour: 

in such a range we have that ( ) ( )
PV

AA σασ 1.1≈ . The agreement with a linear approximation is 

worse for the triangular tessellation case. For 2>α , ( )Aσ  is almost indistinguishable from the 

Poisson-Voronoi value, so that we can estimate an asymptotic value ( ) 53.00 ≈
PV

Aσρ . 

Results for the statistical estimators of the perimeter of the Voronoi cells are shown in Figs. 3a)-3b). 
When considering the perturbed square tessellation, ( )Pµ  basically coincides with that of the 

Poisson-Voronoi case for 1>α . Note that also ( ) 4
00 =

=α
µρ P , which also agrees with the 

asymptotic Poisson-Voronoi limit. Anyway, ( )Pµ  is a function with some interesting structure: for 

25.0≈= mαα  ( )Pµ  features a distinct minimum ( ) ( )
V

PP
m

µµ
αα

975.0≈
=

, whereas for 

75.0≈= Mαα  a maximum for ( )Pµ  is realized, with ( ) ( )
V

PP
M

µµ
αα

01.1≈
=

.  

The unperturbed honeycomb hexagonal tessellation is optimal in the sense of perimeter-to-area 
ratio, and, when noise is added, the corresponding function ( )Pµ  increases quadratically (not shown) 

with α  for 3.0<α , whereas for 5.0>α  its value coincides with what obtained starting from the 
regular square tessellation. Finally, in the case of triangular tessellation, the unperturbed case features 
the largest perimeter-to-area ratio, which is strongly reduced as soon as the noise is switched on, so 
that a relative minimum is then obtained again for 5.0≈= mαα , with ( ) ( )

PV
PP

m
µµ

αα
05.1≈

=
. 

For 6.0>α  the value of the function ( )Pµ  basically coincides with those resulting from the two 

other tessellations. We deduce that there is, counter-intuitively, a specific amount of noise which 
optimizes the mean perimeter-to-area ratio for the two unstable regular tessellation – corresponding to 

mαα = for the square one and to mαα =  for the triangular one - whereas, for Mαα =  the opposite is 
realized for all tessellations. When considering the functions ( )Pσ , we are in a similar situation as 

for the statistics of mean cells area: the result of the impact of noise is the same for all tessellations. 
For 5.0<α , ( )Pσ  is proportional to α , with ( ) ( ) ασσ ×≈

PV
PP 05.1 ; also in this case the 
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triangular tessellation has a worse agreement with this low-noise approximation. Moreover, for 2>α , 
( )Pσ  becomes undistinguishable from the asymptotic value realized for Poisson-Voronoi process, 

given by ( ) 98.00 ≈
PV

Pσρ . 

Figure 3. Ensemble mean of the mean  - (a) -  and of the standard deviation – (b) – of the perimeter (P) 
of the Voronoi cells. Half-width of the error bars is twice the standard deviation computed over the 

ensemble. Poisson-Voronoi limit is indicated. In (b), linear approximation for small values of α is also 
shown. Values are multiplied times ρ0

½  in order to give universality to the ensemble mean results.  

(a)   

(b)  
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3.a.3 Area and perimeter of n-sided cells 

A subject of intense investigation has been the characterization of the geometrical properties of n-
sided cells; see [39] and references therein for a detailed discussion. We have then computed for the 
considered range of α  the quantities ( )

n
Aµ , ( )[ ]nAµδ , ( )

n
Pµ , and ( )[ nP ]µδ , obtained  by 

stratifying the outputs of the ensemble of simulations with respect to the number of sides n of the 
resulting cells. The 2-standard deviation confidence interval centered around the ensemble mean is 
shown in Figs. 4a)-4b) for the area and the perimeter of the cells, respectively, for selected values of 
α . Note that for larger values of n the error bar is larger because the number of n-sided cells is small.  

Figure 4. Ensemble mean of A - (a) -  and of P – (b) – of n-sided Voronoi cells. Half-width of the error 
bars is twice the ensemble standard deviation. Full ensemble mean is indicated. Linear (a) and square 

root (b) fits of the Poisson-Voronoi limit results as a function of n is shown. Values are multiplied 
times ρ0 (a) and ρ0½ (b) in order to give universality to the ensemble mean results.  

(a)   

(b)  
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The results of the three perturbed regular tessellations basically agree for 5.0>α , thus confirming 
what shown previously. In particular, for 2>α , the results coincide with what resulting from the 
Poisson-Voronoi case. In this regime, we verify the Lewis law [61], i.e. ( ) ( 201 anaA

n
+≈ ρµ ) . Our 

data give , which is slightly less than what resulting from an asymptotic computation  [48], 
where obtained a linear coefficient of 0.25 is reported. Secondly, and more interestingly, we confirm 
that Desch's law [62] is violated, i.e. 

23.01 ≈a

( ) ( )21 bnbP
n

+≠µ , as shown, e.g., in [46]. Nevertheless, 

instead of a polynomial dependence on n, we find that a square root law can be established, i.e. 
( ) ( )201 cncP

n
+≈ ρµ . Our data give 71.11 ≈c , again slightly less than the asymptotic 

computation [48], where 77.11 ≈= πc  is obtained. We note that the Lewis law and such a law allow 

the establishment of a weakly n-dependent relationship such as ( ) ( )[ ]2

nn
PA µµ ∝ , which seems to 

fit properly with a well-defined 2D isoperimentric ratio 24 PAq π= . Moreover, this agrees with the 

asymptotic result for large n, ( ) ( )[ ]241
nn

PA µπµ =  , which derives from the fact that cells with 

many sides tend to have a circular shape, or, in other terms, their isoperimetric ratio tends to unity  
[48]. In the next section we will analyze more in detail the problem of relating perimeters and areas of 
the cells and quantify how the typical shape of the cells varies when cells of different perimeters are 
considered.  In the intermediate range ( 25.0 << α ), we have that the Lewis law and the square root 
law are not verified, and, quite naturally, the functions ( )

n
Aµ  and ( )

n
Pµ  get more and more 

similar to their Poisson-Voronoi counterparts as α  increases. 
An interesting result is that, for 1>α , ( )

60 =n
Aµρ  agrees within statistical uncertainty of few 

permils with ( ) 10 =Aµρ . This implies that ( ) 65.16116 1221 −≈−≈⇒≈+ aaaa . Similarly, for 

1>α , ( )
60 =n

Pµρ  constitutes an excellent approximation within 1% to ( )Pµρ0 , whose value, 

as shown in Fig. 3a), is rather close to 4 for 1>α , but agreement within statistical uncertainty is 
basically not found, except, marginally, for very large values of α . This implies that 

( ) 49.06446 2
1221 −≈−≈⇒≈+ cccc . The ensemble mean estimators restricted to the non-

hexagonal polygons are instead heavily biased (positive bias for n>6 and negative bias for n<6). The 
fact that the ensemble mean of the area and perimeter of the Voronoi cells is so accurately 
approximated when selecting only the most probable state from a topological point of view - hexagons 
- is surely striking, also because in the considered range hexagons are dominant but other polygons are 
also well-represented. In fact, for, e.g., 1>α ,  the density of hexagons is smaller than the sum of the 
densities of pentagons and heptagons.  

3.a.4 Anomalous Scaling 

We define the constant πε 4q=  such that for each cell indexed by j we have , where in 
general 

2
jj PA ε=

πε 410 << , where the first inequality excludes the possibility of fractal objects and the 
second inequality implies that no cells can have an isoperimetric ratio larger than circles.  As we have 
seen, in the considered Voronoi tessellations the cells are definitely not similar, with cells having a 
larger number of sides associated to larger areas and perimeters. In order to quantify how their shape 
changes, we consider the possibility of a scaling law approximating the (statistical) relationship 
between the area and the perimeter of the cells of the form ( ) ( ) 2PPPA ε=  with , which ( ) '' ηεε PP =
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corresponds to expressing .  Therefore, if ( ) ''4 ηπε PPq = 0'>η , ( )Pε  is monotonically increasing with 
P. Note also that, since the Voronoi tessellation is not a fractal with non-integer dimension, the 
proposed scaling law makes sense at most in the limited range ( ) '1'410 ηπε<< P .. We then take the 
ensemble average for the exponent η  among the equivalent tessellations. In the Poisson-Voronoi limit 

17.2≈η  (Fig. 5), which suggests the occurrence of a 7/3 exponent.  
 

Figure 5. Joint distribution of the perimeter and of the area of the Voronoi cells in the Poisson-
Voronoi tessellation limit in 2D. The black solid  line indicates the best log-log least squares fit, with 

ensemble mean of the exponent 17.2'2 =+= ηη . The dashed black line reports the fit of 

isoperimetric quotient (see right vertical axis), which scales with the area with exponent 17.0' =η . 

The effective range of applicability of the scaling law is between 1.5 and 6  in units of normalized area. 
Correspondingly, q ranges between 0.65 and 0.78, and ε between  0.052 and 0.062. Details in the text. 

 
 

If 2' −= ηη  is larger than zero, we have that, typically, a cell with a larger volume has a 

relatively smaller surface, and, in other terms, a larger isoperimetric quotient (which increases '2ηP∝  ) 
The values of the best estimates of η  for the perturbed triangular, square, and hexagonal tessellations 

are shown in Fig. 6 as a function of α . In all cases we find that η  is larger than 2, with typical 

uncertainties of the order of at most . With infinitesimal noise, anomalous scaling is observed for 
the perturbed square and triangular tessellations. In the former case, 

310−

( ) 32.20 ≈= +αη , the exponent 
has a local minimum for the same value of α  which optimizes the mean perimeter-to-area ratio. In the 
latter case, the simple logarithmic fit applies reasonably well only for values of α  slightly larger than 
zero, and anomalous scaling is observed in all cases. When considering the perturbed hexagonal 
tessellation, anomalous scaling is observed for all finite values of noise, but, interestingly, 
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( ) 20 == +αη , which implies that for infinitesimal noise anomalous scaling is not observed. 
Therefore, in the limit of vanishing noise large cells tend to have a larger isoperimetric quotient in the 
perturbed triangular and square tessellations, whereas, in the perturbed hexagonal case, such a 
selection does not take place: cell shape are better preserved. In all cases, the value of the scaling 
exponent becomes undistinguishable from the Poisson-Voronoi limit for 5>α , with rather small 
discrepancies already for 2>α . 

Figure 6. : Ensemble mean of the scaling exponent η  fitting the power-law relation ηPA ∝  for the 
perturbed square, hexagonal and triangular Voronoi tessellations. The anomalous scaling ( 2>η )is 

apparent. The error bars, whose half-width is twice the ensemble standard deviation, are too small to 
be plotted. The Poisson-Voronoi limit (see Fig. 5)  is indicated. Details in the text. 

 

3.b Three-dimensional case   

3.b.1 Faces, Edges, Vertices 

If 0=α , we deal with actual SC, BCC, and FCC lattices. When spatial noise is present in the 
system, the resulting Voronoi cells are generic polyhedra, so that degenerate quadrivalent vertices, 
such as those present in the rhombic dodecahedron [58] are removed with probability 1. Therefore, we 
expect that ( ) ( )ve µµ 23= , ( ) ( ) 221 += vf µµ , ( ) ( )ve σσ 23= , and ( ) ( )vf σσ 21= . 

These relations have been verified up to a very high degree of accuracy in our simulations, so that, in 
order to describe the topology of the cell, it is sufficient to present the statistical properties of just one 
among e, f, and v. In Fig.7 we present our results relative to the number of faces of the Voronoi cells.  

In the case of the SC and FCC crystals, a minimal amount of symmetry-breaking noise impacts as a 
singular perturbation the statistical properties of ( )fµ  and ( )fσ , since ( )fµ  and ( )fσ  are 

discontinuous in 0=α . In the SC case, the average number of faces jumps from 8 to slightly above 
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16, whereas, as shown in [58], the disappearance of the quadrivalent vertices in the rhombic 
dodecahedron case (FCC crystal) causes an increase of two units (up to exactly 14) in the average 
number of faces. Near 0=α , for both SC and FCC perturbed crystals, ( )fµ  depends linearly on α  

as ( ) ( ) γαµµ
α

+≈
+=0

ff . The proportionality constant has opposite sign in the two cases, with 

05.05.1 ±−≈γ  for the SC case and 05.01±≈γ  for the FCC case.  
 

Figure 7. Ensemble mean of the mean and of the standard deviation of the number of faces of the 
Voronoi cells for perturbed SC, BCC and FCC cubic crystals. The error bars, whose half-width is 

twice the standard deviation computed over the ensemble, are too small to be plotted. The Poisson-
Voronoi limit is indicated. 

 
Moreover, the introduction of noise generates the sudden appearance of a finite standard deviation 

in the number of faces in each cell ( )
+=0α

σ f , which is larger for SC crystals. In the case of FCC 

crystals, in [58] a theoretical value ( ) 34
0

=
+=α

σ f  is proposed, whereas our numerical estimate is 

about 10% lower, actually in good agreement with the numerical results presented in [58]. Somewhat 
surprisingly, the ( )fσ  is almost constant for a finite range near 0=α  ranging up to about  3.0≈α  

for the SC crystal and 2.0≈α  for the FCC crystal, thus defining an intrinsic width of the distribution 
of faces for a – well-defined - “weakly perturbed” state. In the case of the perturbed FCC crystals, in 
such a range of weak noise we only observe cells having 12 up to 18 faces: this defines the range of 
applicability of the weak noise linear perturbation analysis [58]. 

When considering the BCC crystal, the impact of introducing noise in the position of the points xi is 
rather different. Results are also shown in Fig. 7. Infinitesimal noise does not affect at all the 
tessellation, in the sense that all Voronoi cells are 14-faceted (as in the unperturbed state). Moreover, 
even finite-size noise basically does not distort cells in such a way that other polyhedra are created,. 
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We have not observed – also going to higher densities - any non-14 faceted polyhedron for up to 
1.0≈α  in any member of the ensemble, so that ( ) 14=fµ  and ( ) 0=fσ  in a finite range. 

However, since the Gaussian noise induces for each point xi a pdf with a non-compact support, as 
discussed in section 3.a.1, we may have extreme fluctuations distorting heavily the tessellation. 
Therefore, we should interpret this result as that finding non 14-faceted cells is highly – in some sense, 
exponentially - unlikely. 

In Fig. 7 the Poisson-Voronoi limiting case is indicated; our simulations provide results in perfect 
agreement with analytical results [63]. For 1>α  the values of ( )fµ  and ( )fσ  of the Voronoi 

tessellations of the three perturbed crystals asymptotically converge to what resulting from the 
Poisson-Voronoi tessellation, as expected. We should note, though, that in the 2D case the asymptotic 
convergence has been shown to be much slower [59] so that spatial noise in 3D seems to mix things up 
much more efficiently. Similarly to the 2D case, the perturbed tessellations are statistically 
undistinguishable – especially those resulting from the BCC and FCC distorted lattices – well before 
converging to the Poisson-Voronoi case, thus pointing at some general behavior. 

Additional statistical properties of the distribution of the number of faces in the Voronoi tessellation 
need to be mentioned. The mode of the distribution is quite interesting since the number of faces is, 
obviously, integer. In the FC and BCC cases, up to 3.0≈α  the mode is 14, whereas for larger values 
of α  15-faceted polyhedra are the most common ones. Also the Voronoi tessellations of medium-to – 
highly perturbed SC crystals are dominated by 15-faceted polyhedra, whereas 16-faceted polyhedra 
dominate up to 25.0≈α .  

3.b.2 Area and Volume of the cells 

The statistical properties of the area and of the volume of the Voronoi tessellations of the perturbed 
cubic crystals have a less pathological behavior with respect to what previously described when noise 
is turned on, as all properties are continuous and differentiable in 0=α . Still, some rather interesting 
features can be observed.  

As mentioned above, the ensemble mean of the mean volume of the cells is set to  in all cases, 
so that we discuss the properties of the ensemble mean 

1
0
−ρ

( )Vσ , shown in Fig. 8. We first observe that 

for all cubic structures the standard deviation converges to zero with vanishing noise, thus meaning 
that small variations in the position in the lattice points do not create dramatic rearrangements in the 
cells when their volumes are considered. Moreover, for 3.0<α ,  a well-defined linear behavior 

( ) Χ≈ ασ V  is observed for all SC, BCC, and FCC structures. The proportionality constant X is not 

distinguishable between the BCC and the FCC perturbed crystals, and actually ( )
PV

Vσ≈Χ , where 

the pedix refers to the asymptotic Poisson-Voronoi value; the SC curve is somewhat steeper near the 
origin. The three curves become undistinguishable for 4.0>α , so when the noise is moderately 
intense and reticules are still relatively organized. As previously observed, this seems to be a rather 
general and robust feature. It is also interesting to note that the attainment of the Poisson-Voronoi limit 
is  quite slow, as compared to the case of the statistical properties of the number of faces of the cell, 
and a comparable agreement is obtained only for 3>α  (not shown).  
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Figure 8. Ensemble mean of the standard deviation of the volume (V) of the Voronoi cells for 
perturbed SC, BCC and FCC cubic crystal. The ensemble mean of the mean is set to the inverse of the 
density. Values are multiplied times the appropriate power of the density in order to obtain universal 

functions. The error bars, whose half-width is twice the standard deviation computed over the 
ensemble, are too small to be plotted. The Poisson-Voronoi limit is indicated. 

 

Figure 9. Ensemble mean of the mean and of the standard deviation of the area (A) of the Voronoi 
cells for perturbed SC, BCC and FCC cubic crystals. Values are multiplied times the appropriate 

power of the density in order to obtain universal functions. The error bars, whose half-width is twice 
the standard deviation computed over the ensemble, are too small to be plotted. The Poisson-Voronoi 

limit is indicated. 
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When considering the area of the cells (Fig. 9), further interesting properties can be highlighted. 
First, the behaviour of the ensemble mean ( )Aσ  is rather similar to what just discussed for ( )Vσ . 

Nevertheless, in this case the agreement between the three perturbed structure is more precisely 
verified – the three curves are barely distinguishable for all values of  α . Moreover, we again observe 
a linear behavior like ( ) ( )

PV
AA σασ ≈ , which suggests that the systems closely “align” towards 

Poisson-like randomness for small values of α . This closely mirrors what observed in the 2D case for 
the expectation value of the standard deviation of the perimeter and of the area of the Voronoi cells 
[59]. 

The properties of ( )Aµ  for the perturbed crystal structures are also shown in Fig. 9. A striking 

feature is that, similarly to what noted in the case of triangular and square tessellations of the plane, 
there is a specific amount of noise that optimizes the mean surface for the perturbed SC crystals. We 
see that the mean area of the cells decreases by about 8% when α  is increased from 0 to about 0.3, 
where a (quadratic) minimum is attained. For stronger noise, the mean area of the Voronoi cells of the 
perturbed SC crystals decreases, and, for 6.0>α , the asymptotic value of the Poisson-Voronoi 
tessellation  is reached. In terms of cell surface minimization, the unperturbed cubic tessellation is 
about 3% worse than the “most random” tessellation.  

Figure 10. Ensemble mean of the mean and of the standard deviation (see the different scales)  of the 
isoperimetric quotient 3236 AVQ π=  of the Voronoi cells for perturbed SC, BCC and FCC cubic 

crystals The error bars, whose half-width is twice the standard deviation computed over the ensemble, 
are too small to be plotted. The Poisson-Voronoi limit is indicated. Details in the text. 

 
 

The dependence of ( )Aµ  with respect to α  is very interesting also for the perturbed BCC and 

FCC cubic crystals. In both cases, the mean area increases quadratically (with very similar coefficient) 
for small values of α , which shows that the Voronoi tessellations of the BCC and FCC cubic crystals 
are local minima for the mean surface in the set of space-filling tessellations. We know that neither the 
truncated octahedron nor the rhombic dodecahedron are global minima, since (at least) the Weaire-
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Phelan structure has a smaller surface [55]. It is reasonable to expect that a similar quadratic increase 
of the average surface should be observed when perturbing with spatial gaussian noise the crystalline 
structure corresponding to the Weaire-Phelan cell. For 3.0>α , the values of ( )Aµ  for perturbed 

BCC and FCC crystals basically coincide, and for 6.0>α  the Poisson-Voronoi limit is reached within 
a high accuracy. 

3.b.3 Shape of the cells  

The analysis of the properties of the joint area-volume pdf for the Voronoi cells of the considered 
tessellations sheds light on the statistics of fluctuations of these quantities. A first interesting statistical 
property where the joint cells area-volume pdf has to be considered is the isoperimetric quotient 

3236 SVQ π= . The quantity Q is strictly positive and smaller than 1 for 3D objects, where 1 is 
realized in the optimal case given by the sphere. Instead, Q is zero for any object with Hausdorff 
dimension smaller than 3. When evaluating the expectation value of the mean isoperimetric quotient of 
an ensemble of Voronoi tessellation, we have: 

( ) ( ) ( ) ( ) 3232 3636 AVAVQ µµπµπµ ≠= .   (5) 

The presence of fluctuations implies that testing the average sphericity – which is basically what Q 
measures - of a random tessellation is a slightly different problem from testing the average surface for 
a given average volume, which is what Fig. 9 refers to, whereas in regular tessellations the two 
problems are equivalent. In Fig. 10 we present our results for the three perturbed crystal structures. In 
agreement with what observed in Fig. 9, we have that by optimally tuning the intensity of the noise 
( 3.0≈α )  perturbing the SC crystal, ( )Qµ  reaches a maximum, whereas the isoperimetric quotient 

of the perturbed FCC and BCC crystals has a local maximum for vanishing noise and is monotonically 
decreasing with α . For 5.0≥α , the value of ( )Qµ  basically coincides for the three perturbed 

crystalline structures, so that agreement is obtained well before the Poisson-Voronoi limit is attained. It 
is notable, and counterintuitive, that in the case of the regular SC crystal the isoperimetric quotient is 
lower than the value of ( )Qµ  obtained in the Poisson-Voronoi limit. 

In order to analyze the variability of  shape of the cells, we have also analyzed ( )Qσ . Results are 

also depicted in Fig. 10. We observe that for all perturbed crystalline structures the variability of the 
isoperimetric quotient increases with the intensity of noise, as suggested by intuition. This does not tell 
us much more than what could be derived from the inspection of Figs. 8 and 9. More interesting 
features appear when considering specifically the weak noise limit of ( )Qσ . For all of the three 

perturbed crystals, ( ) 0
0

=
+=α

σ Q , again, consistently with what shown in  Figs. 8 and 9. 

Nevertheless the way such limit is approached varies considerably. In the SC and BCC case,  for small 
values of  α ,  a well-defined linear behavior ( ) ασ Χ≈Q  is observed, with a much larger coefficient 

for the SC case than in the BCC case, where ( ) 3SCPVBCC Q Χ≈≈Χ σ . Instead, in the FCC case, the 

approach to 0 of ( )Qσ  is quadratic, so that for small values of α  we have that ( ) 2ασ YQ ≈ . 

Therefore, the FCC structure preserves the shape of its cells much more efficiently when noise is 
introduced. Note that what observed in the weak noise limit is confirmed qualitatively for all values of 
α , as we always have ( ) ( ) ( )

SCBCCFCC
QQQ σσσ << .  
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Figure 11. Ensemble mean of the isoperimetric quotient of the Voronoi cells for perturbed SC (a), 
BCC (b) and FCC(c) cubic crystals, where averages are taken over cells having f faces.. A white 

shading indicates that the corresponding ensemble is empty. More faceted cells are typically bulkier. 

a)  

b)  

c)  
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For 5.0≥α  the results for the SC, FCC and BCC crystals basically agree and converge to the 

Poisson-Voronoi limit for 1≥α . Therefore, whereas the Voronoi tessellation of the BCC crystal is the 
most stable against noise when the topological properties of the cells are considered (see Fig. 7), when 
analyzing the shape of the cells from a metrical point of view, the FCC crystal is actually the most 
stable.  

In order to further clarify the variability of the shapes of the cells, we take advantage of a strategy of 
investigation commonly adopted for studying Voronoi tessellations, i.e. the stratification of the 
expectation values of the geometrical properties with respect to classes defined by the number of sides 
of the cells [46, 48, 59]. In the present case, it would be profitable to study quantities such as ( )

f
Vµ  

and ( )
f

Aµ , where the pedix indicates that the averages are performed only on cells with f faces. It is 

readily observed that, in all cases,  both ( )
f

Vµ  and ( )
f

Aµ  increase with f (not shown), for the 

basic and intuitive reason that cells with a larger number of faces are typically larger in volume and 
have larger areas. 

Moreover, and this is a more interesting point, (typically large) cells with a large number of faces 
have typically a large isoperimetric quotient Q, which makes sense in the context of Kendall’s 
conjecture [41, 42, 43, 48]. In Figs. 11(a), 11(b), and 11(c) we present the expectation value of the 
isoperimetric quotient ( )

f
Qµ  as a function of α  for the three perturbed cubic crystals.  

We observe that in all cases, for a given value of α , ( )
f

Qµ  increases significantly with f, thus 

confirming the geometrical intuition. Moreover, whereas in the BCC and FCC case ( )
f

Qµ  for a 

given f decreases monotonically with α , in the SC perturbed crystal for all values of f we have an 
increase of  ( )

f
Qµ  with α  up to 3.0≈α  . For 1>α  the results of the three perturbed crystals tend to 

converge to the Poisson-Voronoi limit. Therefore, in all considered cases the kind of dependence of the 
average isoperimetric quotient ( )Qµ  with respect to noise observed in Fig. 10 is realized also in each 

class of cells as defined by the f label.  At any rate, the main additional information contained in Figs. 
11 is that for all perturbed crystal structures the number of faces acts as a very good proxy variable for 
the isoperimetric quotient, and for the shape of the cells. 

3.b.4 Fluctuations and Anomalous Scaling 

As discussed above, the areas and the volumes of the Voronoi cells resulting from a random 
tessellations cells are highly variable. See Fig. 12 for the joint cells area-volume distribution in the 
case of Poisson-Voronoi tessellation. All considered perturbed crystal structures give qualitatively 
similar results, but feature, as obvious from the previous discussion, more peaked distributions. We 
follow the same approach outlined in Sec. 3.a.4.  

If the space is tessellated with finite-size cells which are geometrically similar, their shape 
determines Q and, consequently, the constant πε 36Q=  such that for each cell indexed by j we have  

23
jj AV ε= , where in general πε 3610 << , where the first inequality excludes the possibility of 

fractal objects and the second inequality implies that no tessellations can beat spheres. As we have 
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seen, in the considered Voronoi tessellations the cells are definitely not similar, with larger (and more 
faceted) cells associated to larger isoperimetric quotients. In order to quantify this, we take the 
following approach. We consider the possibility of a scaling law approximating the (statistical) 
relationship between the volume and the area of the cells of the form ( ) ( ) 23AAAV ε=  with 

, so that , if ( ) '' ηεε AA = 0'>η , ( )Aε  is monotonically increasing with A, It should be mentioned that 
this parameterization of ( )Aε  amounts to defining Q as ( ) '22'36 ηπε AAQ = . Note also for all values of 
A the constraint ( ) πε 3610 <≤ A  holds, so that the proposed (anomalous) scaling law makes sense 

at most in the limited range ( ) '212'3610 η
πε<< A .  

 

Figure 12. Joint distribution of the area and of the volume of the Voronoi cells in the Poisson-Voronoi 
tessellation limit. The black solid  line indicates the best log-log least squares fit, with ensemble mean 
of the exponent 67.1'23 =+= ηη . The dashed black line reports the corresponding fit of isoperimetric 

quotient (see right vertical axis), which scales with the area with exponent 34.0'2 =η .  The effective 

range of applicability of the scaling law is between 2 and 10  in units of normalized area. 
Correspondingly, Q ranges between 0.35 and 0.65, and ε between  0.056 and 0.076. Details in the text. 

 
Therefore, in each generated tessellation we attempt a power law fit between the area and the 

volume of the individual cells as  with ηε jj AV '≈ '23 ηη += , by performing a linear regression 

between the logarithm of the volume and of the area of cells. Therefore, given how weight is 
calculated in the regression, we implicitly define an effective limited range where scaling applies, 
which corresponds to the interval of A values corresponding to the bulk of the statistics of the cells. 
Such an interval is, by definition, always included within the largest possible interval 

( ) '212'3610 η
πε<< A . A corresponding range of values of ( )Aε  and of ( )AQ  is then obtained. We then 

take the ensemble average for the exponent η  among the equivalent tessellations. The values of the 
best fit for η  for the perturbed SC, BCC, and FCC crystals are shown in Fig. 13 as a function of α . 
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In all cases we find that η  is larger than 3/2, with typical uncertainties of the order of at most 

. Therefore 3102 −⋅ 'η  is always larger than zero: such an anomalous scaling implies that, typically, a 

cell with a larger volume has a relatively smaller surface, and, in other terms, a larger isoperimetric 
quotient (which increases '2ηA∝  ).  

 

Figure 13. Ensemble mean of the scaling exponent η   fitting the power-law relation  for the 
Voronoi cells of  perturbed SC, BCC and FCC cubic crystals. The presence of an anomalous scaling 
(

ηAV ∝

23>η )  due to the fluctuations in the shape of the cells is apparent. The error bars, whose half-width 
is twice the standard deviation computed over the ensemble, are too small to be plotted. The Poisson-

Voronoi limit (see Fig. 12)  is indicated. Details in the text. 

 
In particular, in the Poisson-Voronoi limit 67.1≈η  - black line in Fig. 12 - which suggests the 

occurrence of a 5/3 exponent. It is also remarkable that, as soon as noise is turned on, anomalous 
scaling due to is observed in for the SC and BCC cubic crystals. In the SC case, ( ) 88.10 ≈= +αη , the 
exponent is monotonically decreasing for all values of α , and becomes undistinguishable from the 
Poisson-Voronoi limit for 2>α . In the BCC case, as opposed to what one could expect given the 
structural stability of the crystal, ( ) 2357.10 >≈= +αη , which implies that a (modest) anomalous 
scaling is observed also for infinitesimal noise. The exponent increases for small values of α , 
overshoots the Poisson-Voronoi limit, and for 6.0>α  its value basically coincides with what obtained 
in the SC case. When considering the FCC perturbed crystal, an anomalous scaling is observed for all 
finite values of noise, but, quite notably, ( ) 230 == +αη , which means that for infinitesimal noise 
anomalous scaling is not observed. So, in this regard, the FCC crystal seems to be more robust than the 
BCC one. In other terms, in the limit of vanishing noise (and of vanishing variability in the statistics of 
the areas and volumes of the cells) large cells tend to have a larger isoperimetric quotient in the 
perturbed SC and BCC crystals. Instead, in the perturbed FCC crystal such a selection does not take 
place: in this sense, shapes are better preserved. 
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As mentioned before, the number of faces provides a good proxy indicator for the shape of the cell, 
or, more precisely, of its isoperimetric quotient. In order to find a robust confirmation of the 
interpretation proposed for the presence of the anomalous exponent 23>η  depicted in Fig. 13, we 

then attempt a power-law fit  separately for each class of cells, each labeled with the number of 
faces. Therefore, for each value of the noise applied to the SC, FCC and BCC crystals, we obtain via 
best fit and ensemble averaging the estimate of the exponent 

ηAV ∝

ff '23 ηη +=  pertaining to the 

subset of cells having f faces. We find that for all cases considered  fη  results to be lower than the 

corresponding “global” η , so that we basically always have 1.0' <fη  (with typical uncertainties of 

the order of ), including when weak perturbation to the SC crystals are considered. We do not plot 210−

fη  as a function of α and f for the three perturbed crystals, since what is obtained is just a plateau 

with no structure along the α or f directions. We then have that since shape fluctuations are greatly 
reduced within each class of the f-faceted cells, the anomalous scaling is greatly suppressed. 

4. Summary and Conclusions 

In this paper we have summarized and extended the main findings presented in [59, 60]; the goal 
has been to perform a numerical study aimed at bridging the properties of regular tessellations in 2D 
and 3D, generated by crystalline structures, to those resulting from Poisson point processes, thus 
analyzing in a common framework symmetry breaking processes and the approach to uniformly 
random distributions. This is achieved by resorting to a simple parametric form of random 
perturbations driven by a Gaussian noise to the positions of the points around which the Voronoi 
tessellation is created. The standard deviation of the position of the points induced by the Gaussian 
noise is expressed as n1

0ραε = (n indicating the dimensionality of the space), where α  is the control 

parameter, 0ρ  is the coarse-grained density of tessellation generating points, and n1
0ρ  is the natural 

length scale. As 2D unperturbed crystalline structures, we consider triangular, square and hexagonal 
regular lattices, corresponding to hexagonal, square and triangular tessellations, respectively. In 3D we 
consider  the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) crystals, 
whose corresponding Voronoi cells are the cube, the truncated octahedron, and the rhombic 
dodecahedron, respectively. By increasing α , we explore the transition from perfect crystals to less 
and less regular structures, until the limit of uniformly random distribution of points is attained. Note 
that, for all values of α , the pdf of the lattice points is periodic. For each value of α , we have 
performed a set of simulations, in order to create an ensemble of Voronoi tessellations in the unit cube, 
and have computed the statistical properties of the cells. 

The first notable result is that spatial noise “reveals” the topological instability of the Voronoi 
tessellations corresponding to the square and hexagonal lattice in 2D and to the SC and FCC lattices  in 
3D. As soon as noise is turned on, their degeneracies – to be intended as non-generic properties of their 
vertices – are removed: ensemble mean of the mean and of the standard deviation have discontinuities, 
and finite ensemble fluctuations appear.  Instead, the topological properties of the Voronoi cells of the 
triangular crystals in 2D and BCC crystal in 3D (which are non-degenerate) are stable against 
infinitesimal noise, as well known from linear theory, so that the zero-noise limit of the Voronoi 
tessellation of their perturbed structure is coincident with the unperturbed case. As a new result, we 



Symmetry 2009, 1 
 

 

28

have that the topology of these tessellations is robust also against small but finite noise. For strong 
noise, the statistical properties of the tessellations of the perturbed crystals converge to those of the 
Poisson-Voronoi limit, but, quite notably, the memory of the specific initial unperturbed state is lost 
already for moderate noise, since the statistical properties of the perturbed tessellations are typically 
indistinguishable for 5.0>α . 

In the case of perturbed square (triangular) tessellation, for a specific intensity of the noise 
determined by 25.0≈= mαα  ( 5.0≈= mαα ), it is possible to minimize the mean isoperimetric ratio 
of the Voronoi cells, whereas by choosing 75.0≈= Mαα  we obtain a relative maximum for 
perimeter-to-area ratio for all perturbed tessellations. Similary, the mean area of the perturbed SC 
structure has a local minimum for 3.0≈α . So, counter-intuitively, both in 2D and 3D noise can act as 
an “optimizer”.  As in the case of the perimeter for 2D hexagonal tessellations, for perturbed BCC and 
FCC structures the mean area increases only quadratically with α  for weak noise, thus suggesting that 
the unperturbed Voronoi tessellations are local minima for the interface area.  

The observation that the truncated octahedron is a “large” local maximum for the isoperimetric ratio 
in 3D for space-filling tessellations suggests a weak re-formulation of the Kelvin conjecture of global 
optimality of the truncated octahedron, which has been proved false [55, 56]. For large values of α  
(e.g. )2>α , quite expectedly, the statistical properties of the perturbed regular tessellations converge, 
both in terms of ensemble mean and fluctuations, to those of the Poisson Voronoi process with the 
same intensity. 

The cells shape can also be investigated by analysing what kind of scaling exists between their n-
measure and the n-1 measure of their boundaries. Practically, we attempt power law fits ηPA ∝  
between the perimeters and the areas of the 2D cells, and  between the surface areas and the 
volumes of the 3D cells. We obtain with a very high degree of precision, for all perturbed tessellations, 
and for any intensity of noise, a positive anomalous scaling, so that 

ηAV ∝

( )1−> nnη  (in n-dimensional 

space). In particular, we have 17.2≈η  and 67.1≈η  in the Poisson-Voronoi limit in 2D and 3D, 

respectively. A positive anomaly  is observed also for infinitesimal noise, except in the case of the 
perturbed triangular crystal (with hexagonal tessellation) in 2D and of the  perturbed FCC crystal in 
3D. These crystals feature the smallest anomaly in the exponent ( )1' −−= nnηη  for all values of 

α . The anomaly 'η  shows how large and small cells of the tessellation differ in their shape, since 

0' >η  indicates that large cells preferentially feature large isoperimetric quotients (the bigger, the 

bulkier). Therefore, this suggests that in 3D the Voronoi tessellation of the FCC crystal is the most 
stable in preserving the cells’ shape, even if it is topologically unstable. This marks a difference with 
the 2D case, where the hexagonal tessellation is stable both topologically and metrically. Note also 
that, basically because the isoperimetric quotient is strictly larger than zero (Voronoi tessellation is not 
a fractal) and strictly lower than one (no cells can beat n-spheres), these scaling relations make sense 
only within a finite range of values and should be taken as descriptive of the bulk statistical properties 
of the cells. 

In 2D, the geometrical properties of n-sided cells change with α  until the Poisson-Voronoi limit is 
reached for 2>α ; in this limit the Desch law for perimeters is confirmed to be not valid and a square 
root dependence on n, which allows an easy link to the Lewis law for areas, is established. Moreover, 
the ensemble mean of the cells area and perimeter restricted to the hexagonal cells provides a striking 
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approximation to the full ensemble mean for 1>α ; this reinforces the idea that hexagons, apart from 
their bare numerical prominence, can be taken as typical polygons in 2D Voronoi tessellations.  

In 3D we also find that the number of faces of a cell is a good proxy for its isoperimetric quotient: 
cells with a larger number of faces are typically bulkier. A further indication that the fluctuations in the 
shape determine the anomalous scaling between the areas and the volumes of the cells lies in the fact 
that the anomaly is almost suppressed when we classify the cells according to the number of their faces 
and attempt the power law fit class by class. 

This work clearly defines a way of connecting, with a simple parametric control of spatial noise, 
crystal structure to uniformly random distribution of points, thus also defining the range of 
applicability of the weak noise linear perturbation analysis as developed in [58] Such a procedure can 
be in principle applied for describing the “dissolution” of any crystalline structure. The results here 
described may be useful in understanding the physical properties of graphene, which has recently 
received a great deal of attention as first example of truly atomic 2D crystalline matter [64]. In fact, in 
graphene atoms are positioned in a regular hexagonal honeycomb structure and therefore the Voronoi 
tessellation is given, as explained in Section 2, by regular triangles. We have shown in this work that 
such tessellation is rather peculiar as it maximises the perimeter-to-area ratio of the Voronoi cells and 
its topology is unstable with respect to infinitesimal dislocations of  the initial points, thus being 
affected by vibrational motions and defects. In 3D, it would be important to analyze the impact of 
spatial noise on other relevant crystalline structures, such as the lattice whose Voronoi cell is the 
Weaire-Phelan and Gabbrielli structures. Moreover, since the perfect Hexagonal Close Packed (HCP) 
and FCC crystals are in close correspondence and agreement is found also when infinitesimal 
perturbations to the position of the points are considered [58], it would be interesting to compare 
extensively their statistical properties as finite noise of increasing amplitude is considered. Note that 
this analysis may provide some useful information regarding the well-known phase transition between 
white tin (HCP) and grey tin (FCC).  

The impact of noise on higher order statistical properties, such those of neighboring cells [49], 
should be seriously addressed. This matter is especially worth exploring given the recent explanation 
of the violation of the Aboav’s law for Poisson-Voronoi tessellations in 2D [39] and the recent 
investigations on higher dimensional space [65]. Finally, two additional important issues should be 
taken care of. First, some effort should be put on the understanding of why 2-parameter gamma 
distributions do such an amazing job in describing the pdfs of several geometrical properties of the 
Voronoi cells [66] Moreover, whereas most analyses aim at understanding the bulk statistical 
properties of the cells, it may be worthy changing the point of view and studying  the statistical 
properties of the extreme cells by taking advantage of the approach based on Gnedenko’s theorem 
[67].  
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