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Abstract. Controllers for feedback substitution schemes demonstrate a trade-off between noise 
power gain and normalized response time. Using as an example the design of a controller for a 
radiometric transduction process subjected to arbitrary noise power gain and robustness 
constraints, a Pareto-front of optimal controller solutions fulfilling a range of time-domain 
design objectives can be derived. In this work, we consider designs using a loop shaping design 
procedure (LSDP). The approach uses linear matrix inequalities to specify a range of objectives 
and a genetic algorithm (GA) to perform a multi-objective optimization for the controller 
weights (MOGA). A clonal selection algorithm is used to further provide a directed search of 
the GA towards the Pareto front. We demonstrate that with the proposed methodology, it is 
possible to design higher order controllers with superior performance in terms of response 
time, noise power gain and robustness.  

1.  Introduction 
 
In its simplest form, a feedback substitution scheme (FSS) comprises a transducer, followed by a filter 
and controller as well as a second transducer re-converting the energy back to the original domain as 
illustrated in Fig. 1. Wr(s) is the external signal to be nulled through the first transduction process, G(s) 
is the transfer function of the transducer that measures the external input, F(s) represents a low pass 
filter related to a lock-in amplifier involved in the demodulation of the incoming signal, which would 
be normally modulated above the 1/f  noise floor, K(s) is the controller to be designed and Wf (s) is the 
transfer function of the second transducer, which aims to oppose the effect of Wr(s) in the first 
transduction process . The output Wf (s) is the combination of the input and noise 

transfer functions. The feedback signal Wf is generated to counteract the external input. This signal 
incorporates the low-pass characteristics of the detection process as well as the dynamics of the 
controller. The entire system operates within certain specifications in terms of response time and 
overshoot. The main objective in this system is to optimize the two conflicting requirements; response 
time  and noise power gain . The response time  is defined as the time required for the system 
to produce a signal W  where  is a tolerance level [1]. 

( ( ) ( )f rW s W s= −

G

( )Trf W ε−−=
rt rt

Tε±
 

 
Figure 1. Block diagram for a generic feedback substitution scheme  
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In the simplest implementation of the system, the transfer function of the transducer is of first order 

/ (1 )dG μ τ= +  with time constant τ  and gain dμ . This is a part of the system that may not be 
changed. The filter ( )( ) 1fF s sμ τ= + f  and the controller 1( ) (1 ( ) )iK s s iτ μ−= +  have transfer functions that 

can be changed accordingly (by changing , ,i i ,f fτ μ τ μ ) to obtain the desired response. 

2.  Loop shaping design procedure and analysis of robustness 
The system described in section 1 can be converted into the system shown in Figure 2a where a Loop 
Shaping Design Procedure (LSDP) and an H-infinity controller can be synthesized as described by 
McFarlane and Glover [2]. A co-prime factorization of the shaped plant sG  can also be performed as 
shown in Figure 2b. The introduction of an explicit co-prime factorization of the system permits the 
design of a controller with explicit parametrization of robustness. This is of interest as different design 
procedures such as the one described by Clare and White as well as the new LSDP formulation have 
different robustness.  

 

Figure 2. a) LSDP formulation and b) co-prime factorization of the system. 
 
In the original systems shown in Figure 1, the optimization parameters are an overall gain of the 

system as a single parameter d f iμ μ μ μ= , a normalized time constant of the filter with respect to the 
detector time constant τ  denoted as x  and a normalized integration time constant of the controller, . 
In the loop shaping design procedure, the design parameters µ, 

y

/fx τ τ= /i, and y τ τ  are substituted 
by weighting functions 1W  and 2W  shape e plant G to achieve the desired response. A normalized 
co-prime factorization of the shaped plant 1−= NMGs sati 1

=

to  th
sfying =+NUV  is used to model uncertainty 

as perturbations NΔ  and M

M
Δ  to the co-prime factors of the shaped plant.  

The perturbations  and NΔ MΔ  are stable transfer functions with uncertain dynamics and parameters, 
the only thing known about this transfer functions is that their H∞ norm is less than a value smε  which is 
interpreted as the stability margin of the system. The resulting perturbed plant equation is: 

 

( ) ( ){ }1 :M N N M smG M N ε−
Δ ∞
= + Δ + Δ Δ Δ <⎡ ⎤⎣ ⎦      (1) 

 
From a robust analysis perspective, to maximize the stability margin smε , a controller is calculated to 

minimize the function 
 

1 1

1 1

(1 ) 1:
(1 ) sm

K KG M

KG M
γ

ε

− −

− −
∞

⎡ ⎤−
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
≤     (2) 

 
where γ  is the H∞  norm of the system in Fig. 2b and ( ) 11 −− KG  is the sensitivity function .  S
In Figure 3, we consider 3rd order systems composed of a 1st order plant, a 1st order filter and a 1st 

order controller fulfilling an overshoot requirement of a tolerance of 0.001 using the Clare and White 
procedure [1]. We plot the normalized response time /rt τ  as a function of the system gain d f iμ μ μ μ=  
for different filter time constants /fx τ τ=  when the value of y is adjusted to meet the overshoot 
requirement (tolerance 0.001) and evaluate the resulting system noise power gain and robustness. The 
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resulting systems that demonstrate low robustness margin as well as those with an amplification of 
noise are shown. Furthermore, the possible systems that result with an unacceptable undershoot are 
also shown.   

 
Figure 3. Possible 3rd order systems composed of a 1st order plant, a 1st order filter and a 1st order 
controller fulfilling an overshoot requirement of a tolerance of 0.001 using the Clare and White 
procedure. All possible systems that can result by tuning a first-order controller are shown.    

 
Because of the precision of the system’s overshoot requirement, a systematic and iterative strategy 

is needed to design the weighting functions . The problem specifications are casted out as 
inequalities [3]. A genetic algorithm is then used to map the surface of all possible 

1 2,W W

H ∞ controllers that 
can be designed with the specifications provided through the inequalities defined by the designer [2-
8].  

First the system requirements are specified using a representation similar to that used in the method 
of inequalities. These inequalities define a goal attainment problem which is translated into a 
minimization problem. A Multi-objective Optimization with Genetic Algorithms (MOGA) from 
MATLAB’s Genetic Algorithm and Direct Search toolbox V2.4.1 (R2009a) the function ‘gamultiobj’ 
is used to find the parameters and structure of the weighting functions that lead to an optimum 
solution.  

The design requirements for the system are as follows: The output  for a unitary step input 

 must have an overshoot
)(tW f

( ) 1rW t = 0.001Tε =

)(tW f

 which is specified to a numerical precision of ; 
after the first overshoot, the output  must remain within the range 1±

500/Tε

Tε ; the noise power gain 
in the newly designed system must be minimized for all normalized response times considered. 

Additional requirements are a zero steady state and a robust stability margin 
G

smε >0.25. Systems with a 
normalized response time tr/τ in the range 1 to 20 are only considered. Using inequalities, the above 
specifications are casted as follows:  

 

[ ]1 , ( ) ( ) , 0
500

T
h r r TW t W t W t t

ε
ϕ = − ≤ +ε >      (3) 

[ ]2 , ( ) ( ) ,
500

T
h r r TW t W t W t t t

ε
ϕ = − ≤ − rε >     (4) 

2
3 min ( )

4 s jQ s ds
j ω

τϕ
π

∞

=
−∞

= ∫      (5) 

25.0
1

)1(
)1(

11

11

4 ≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

=
∞

−−

−−

MKG
MKGKφ     (6) 

 
A vector of designer objective functions  with [ ]1

Tϕ ϕΦ = … 4 jp design parameters and objectives 

iε  each, with ( )i jp iϕ ε≤  is constructed with an admissible set composed of all admissible points. The 
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minimization problem is then solved using a MOGA. An auxiliary vector  is required to translate the 
goal attainment problem into a minimization MOGA problem. Each element of the vector is given by:  

λ

 

( ) ( )
( ) ( )

0 if
,

if

i j i
i j i

i j i i j i

p
p

p p

ϕ ε
λ ε

ϕ ε ϕ

⎧

ε

≤⎪= ⎨
− >⎪⎩

   (7) 

 
The purpose of this auxiliary vector is to provide the MOGA with a vector of fitness functions 

where the fitness value is a minimum (zero) if the goal is attained. The difference between the actual 
value and the goal is returned if the goal is not attained. 

We assume the weighting function  to be composed of several lead-lag structures of first or 
second order. This approach ensures that we can have complex poles and zeros. The coefficients for 
the lead-lag structures are provided from the design parameters . In order to explore different 
parameters as well as different structures with the same MOGA with the purpose of finding optimum 
solutions, the MOGA has to work in a hierarchical structure as proposed in [8]. Here the parameter 
vector  is divided into two different chromosomes (Figure 4). One chromosome corresponds to the 
coefficients of the weighting function. The other one controls the activation or suppression of elements 
in the lead-lag structure.  

1W

jp

jp

 

 
 

Figure 4. Chromosome separation for hierarchical GA. 
 
The activation parameters [ ]11 16 , 0jp p− ∈

1 9−

1 change the structure of the lead-lag filters in , 
whereas the filter coefficients are given from 

1W

, jp p ∈\ . The weighting function  is assumed to 
have a structure of a simple gain given from . In addition, we are including one more integrator 
with a very small value (

2W

10p

) 1s υ − 610υ+  (with −=

1W

) to avoid poles in the origin that lead to internal 
instability when the controller is synthesized.  is calculated from:  

 
( )( )( )

( )( )( )( )
2

5 6 7 8

p
1 9 2

1 2 3 4

s p s p s p s p
W p

s s p s p s p sυ

⎡ ⎤+ + + +
⎢ ⎥    (8) =
⎢ ⎥++ + + +⎢ ⎥⎣ ⎦

 
Each parameter that forms part of  and  in the MOGA is initially randomly initiated. For each 
individual in the population, a controller is synthesized for the system as shown in Fig. 4. That system 
is simulated using a step response so that from the simulation, the objectives (response time, overshoot 
and noise power gain) can be measured. Then the MOGA uses these objectives as fitness functions to 
rank the produced solution according to how close they are to the Pareto-optimal front. The fittest 
solutions are selected for recombination and mutation. The stopping criterion is based on meeting the 
overshoot objective while at the same time minimizing the noise power gain. Instead of finding 
directly the minimum normalized response time, our strategy was to minimize the noise over small 
bands ( ) of set values of response time.  

1W 2W

0.15±

The algorithm starts with random weights which correspond to transfer functions translated into 
state space and two Riccati equations are solved to finally design the controller. The GA mapped the 
surface of all possible H∞ controllers that can be designed with the specifications provided using the 
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defined inequalities. The proposed methodology permits us to analyze designed plants of up to 7th 
order assuming an open structure. 

As discussed in [2], once the stabilizing controller K∞  is designed, the implementation of the final 
controller requires the movement of the two shaping functions at the input and output of the K∞  to 
form a new transfer function block 2 1K W K W∞= as shown in Figure 3.  

 

 
K

Figure 5. Final LSDP implementation of the system once the K∞  controller is designed. 
 

3.  Comparing results from the two procedures 
Figure 6 shows time domain responses for systems designed using the Clare and White procedure as 
well as the LSDP procedure which uses the MOGA to design the optimal controllers. Both systems 
have been selected to have the same normalized response time specifications so a comparison could be 
performed. Both graphs are considering a structured uncertainty by adding a 10% parametric 
uncertainty to the detector time constant τ  as well as to the detector gain dμ . In terms of Robust 
Stability both systems can tolerate the modeled uncertainty, The Clare and White system is 76% more 
sensitive than the LSDP one to variations of dμ , but 7% less sensitive to variations of τ . In terms of 
robust performance, the Clare and White system is 5% less sensitive than the LSDP one to variations 
of dμ , for variations of τ  both systems have the same robust performance. With regard to 
unstructured uncertainty the new methodology had an improvement of 98% in the robust stability 
margin as calculated with equation (2) and a reduction of 10.8% in noise power gain using the LSDP 
MOGA mehtod. 
 

 
Figure 6. Time domain responses of systems to a step input, with optimal controllers designed using a) 
the Clare and White method which results in a 3rd order system and b) the LSDP MOGA mehtod 
which results in systems of higher order. The two horizontal lines close to unity amplitude indicate the 
allowed overshoot and undershoot tolerance specification for the designed systems and the crossed 
line indicates the nominal system response time whereas the other lines indicate step responses for 
systems with parametric perturbation.  
 

4.  Conclusion 
Optimal feedback substitution schemes having a controller of first or second order can be analytically 
found satisfying precise overshoot characteristics, while at the same time minimizing response time 
and noise power gain. The design of higher-order controllers is possible using LSDP and an H∞-
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MOGA procedure. In this work we have handled constrains using MOGA converting them into 
objectives. Because the MOGA has a very limited domain of feasible solutions, we plan to use particle 
swarm optimization combined with GAs in the future. This is so, because the derived MOGA 
population often is outside the feasible solution space and another constrain handling algorithm needs 
to be used to move this population within the feasible solutions space. The current work shows that 
there is a need to adopt alternative computational intelligence algorithms that will tune the parameters 
of higher order systems. An advantage of the proposed approach is that parameters  could also 
be implemented assuming a non-rational function, so that a fractional order controller could be 
designed.   

1 2,W W

The currently developed controller design procedure is applicable to all radiometric detectors 
governed by first order dynamics and may be extended to 2nd order transducers or higher order 
transducers which are not currently employed for absolute measurements.  
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