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Office Rent Determinants: A Hedonic Panel Analysis  

 

It has been frequently observed that office markets are subject to particularly high 

fluctuations in rents and vacancy levels, thus exposing real estate investors to 

considerable risk regarding expected future income streams. This paper tries to analyze 

the determinants of office rents and their variability over time and across submarkets of a 

city in order to gain additional empirical insights into the rent price formation process.  

 

1. Introduction  

The determining factors of office rental rates are well researched and documented in a 

host of empirical studies. The existing research literature converges on a number of 

relevant factors to explain the variation in office rental rates such as age and size of the 

property as well as accessibility by various modes of transportation. The relevance of 

these factors appears to be almost universally acknowledged in the empirical literature. 

Commercial real estate markets, however, are characterized by spatial constraints, 

extensive product differentiation and information asymmetries that give rise to 

economically fragmented markets. A number of previous studies have demonstrated that 

such distinct submarkets do exist within urban office markets. The highly localized 

patterns of occupancy and rental rate determination found in these studies are indicative 

of market fragmentation. The question of market fragmentation is of immediate 

relevance for rental rate determinants. If markets are fragmented, office rents are highly 

likely to be determined by heterogeneous pricing schemes. Therefore, two identical 

properties would yield different rental rates if they are located in two different 

submarkets.  

 

Similarly, the relative weight of rent determinants may change over time favoring 

buildings with certain features over others depending on the position in the real estate 

cycle. To date, very few studies have sought to systematically analyze the stability of 

office rent determinants. A closer examination of their spatio-temporal variability appears 

therefore warranted.  

 



 

The remainder of this chapter is organized as follows. The first section reviews previous 

studies on spatial differentiation and cyclical fluctuations of commercial real estate 

markets. Next, the volatility of the Manhattan office market is examined using descriptive 

statistics. In a further step, I test if variables reflecting individual characteristics of 

buildings such as average age, density and accessibility are able to explain the variation in 

rental rates. Next, I test the significance of various characteristics in different phases of 

the market cycle using a hedonic model. The stability of parameters is analyzed cross-

sectionally to test the independence of submarket observations. Instead of applying a 

classical fixed-effects model, hedonic regressions are estimated separately for each time 

period and submarket. In order to take the analysis one step further, full panel data 

models (Arellano-Bond models, random effects models) are estimated and the results of 

both the OLS estimation and the panel data analysis are discussed. Finally, I discuss the 

implications of the empirical results.  

 

2. Relevant background  

There exists a host of studies on the relevance of the intrametropolitan level-data in 

explaining the functional structure and development of office markets (Clapp 1980; 

Ihlanfeldt and Raper, 1990; Mills 1990; Hanink 1997; Bollinger et al. 1998). These studies, 

however, typically neglect the dynamic time-series aspect of the data. Conversely, most 

of the time-series research on real estate market cycles is aspatial in that it assumes a 

simultaneous adjustment of all intraurban locations to changing supply and demand 

relations at the metropolitan level. Hence, very few studies seek to combine cross-

sectional and time series office market data at the intra-urban level (Mourouzi-Sivitanidou 

2002).  

 

Market efficiency  

In general, all empirical models take one of the two possible positions: 1) The 

metropolitan area forms a unitary real estate market and 2) submarkets within a city are 

fragmented and in many cases out-of-sync with the overall development of a metropolitan 

area. The first research tradition bases its assumptions on urban location theory which 

implies that the relative price differences between intra-urban submarkets remain stable 

over time irrespective of cyclical oscillations in absolute prices (constant ratio 



 

hypothesis). This stability is ascribed to the high degree of intraurban mobility of office 

tenants, a high price elasticity of demand and possibilities to arbitrate in a situation of 

mispricing (DiPasquale and Wheaton 1996). Following this theory, a change in the relative 

price hierarchy of an urban market is only possible if major changes in either the physical 

attributes of particular locations or in transportation and communication technologies 

occur.  

 

If, however, one assumes a less than fully efficient market, office buildings turn out not 

to be close substitutes for each other and information asymmetries cause the market to 

split up into several functional or spatial submarkets (Evans 1995). Empirical studies 

supporting this hypothesis also point out that the increasing functional specialization of 

spatial submarkets has resulted in additional economic fragmentation of markets 

(Sivitanidou 1995, 1996, Bollinger et al. 1998). In a further study of the housing market, 

Can (1996) examined the presence of spatial segmentation, as reflected in heterogeneous 

pricing schemes. She contends that if neighborhood effects enter as direct determinants 

of housing prices, such as a premium, then one can assume a uniform housing market 

under investigation, since there will be one price schedule. In contrast, if neighborhood 

differentials lead to varying attribute prices, one can assume the presence of independent 

price schedules, thus the existence of a spatially segmented market. 

 

Do submarkets matter?  

Numerous empirical studies have shown that an elaborate functional division of labor 

exists indeed between various submarkets in a metropolitan area. This functional 

specialization which may give rise to fragmented submarkets is reflected in the spatial 

organization patterns of office firms, such as front office – back office divisions and 

industry clusters in particular areas of a city (Shilton 1999, Schwartz 1992, Hanink 1997, 

Sivitanidou 1996). It is thus pertinent for commercial real estate analysis to devise 

methods that are capable of capturing the cross-sectional and time-series dynamics of 

rent determining factors. In this context, one promising approach is panel data analysis, 

which is applied in this study along with OLS hedonic regression models. 

 



 

In their seminal study of the constancy of rent variations and the robustness of coefficient 

estimates, Glascock, Kim and Sirmans (1993) apply random effects and heteroskedastic 

autroregressive models. The authors find that the coefficients vary across time, location 

and class of building. They also conclude that random-effects models are superior over 

fixed-effects methodologies. The present study also applies a random-effects model and 

compares the results to the OLS regression analysis. In an empirical study of the Orlando 

office market, Archer (1997) found that there is at least limited evidence of a transitory 

and in some cases even permanent segmentation of submarkets. Moreover, he finds that 

segmentation of submarkets is continuous rather than divided by sharp boundaries. Slade 

(2000) estimated rent determinants during market decline and recovery but did not 

include any explicitly spatial variables in his study. Dolde and Tirtiroglu (1997) included 

submarkets in their analysis and found distinct patterns of temporal and spatial diffusion 

of real estate prices using GARCH-M methods. The present study revisits the question of 

spatiotemporal stability by analyzing the coefficients of rent determinants in a hedonic 

OLS and random-effects framework. 

 

Rent determinants  

The following section gives an overview of the most important rent determinants 

identified in previous empirical studies. Most of these studies apply a hedonic model to 

test the relative importance and order of these factors.  

 

Vacancy levels are among the most important drivers of rental rate formation in the 

existing research literature. Sirmans, Sirmans and Benjamin (1989) find an the inverse 

relationship between vacancy rates and rents for apartment buildings and Sirmans and 

Guidry (1993) confirm these results for retail rents. Studies of office rent determinants, 

such as Clapp (1993) and Mills (1992) also find this variable to be highly significant in their 

respective empirical studies. In general, vacancy rates may be interpreted as a proxy for 

the general attractiveness of a building. This hypothetical relationship is transmitted in 

practice by the behavior of landlords who tend to lower asking rents in response to rising 

vacancy in a building in order to attract new tenants.  

 

 



 

The rentable building area of a given property is a proxy for increased opportunity for 

face-to-face interaction within a large building. Clapp (1980) confirms the value of face-

to-face contact in management decisions. More recent studies have shown that the value 

of face-to-face communication persists despite widespread availability of information and 

communication technology (Gat 1998). Apart from this, large tenants are typically willing 

to pay a rent premium for sizable units of contiguous office space (10,000 square feet and 

above) that enable their internal operations to run more smoothly than a situation with 

several scattered locations. Thus, Bollinger, Ihlanfeldt, and Bowes (1998) find average 

floor area to be a significant variable in determining rents in the Atlanta office market, 

most likely for the same reason.  

 

Building age shows up significant in a host of studies on office market rent determinants 

(Bollinger, Ihlanfeldt and Bowes 1998, Slade 2000, Dunse et al 2003). In this study, 

building age is expressed as year built so that a more recent construction date has a 

positive impact on rental rates. In case a property underwent major renovation, the 

original construction date is replaced by the renovation completion date. The age of a 

building is typically a proxy for the quality of the technological infrastructure and 

adequacy of the floor layout.  

 

The number of stories of a building represents more sophisticated elevator systems in tall 

buildings, the availability of panoramic views and a potential landmark status for very tall 

buildings. Shilton and Zaccaria (1994) found a convex relationship of building height in an 

earlier study of the Manhattan office market, 

 

Amenities and in-house services are included in many hedonic studies of office rents. Ho 

et al (2005) report that functionality, services, access and circulation, presentation, 

management and overall amenities are the order of importance in assessing office building 

quality. The amenities variable used in this study is a compound measure of the 

availability of up to 34 building amenities, including banking, mailing, medical, retail and 

hotel facilities in the building as well as onsite facility management, availability of large 

trading floors, showrooms, courtyards, fitness clubs and atriums, subway access on 

premises, waterfront location, and onsite management. It is expected that tenants pay a 



 

premium for convenient access to these amenities which is confirmed in the significance 

levels of this variable throughout the estimated period.  

 

Turning to location-specific price determinants, a number of variables were included in 

the hedonic model used in this study. The importance of spatial variables in hedonic 

modeling is almost universally acknowledged in the literature. The broad variety and 

potential cross-influence of spatial variables poses some intricate methodological 

problems, however. The goal of hedonic modeling should be to maximize the efficiency of 

the estimators while minimizing information loss due to elimination of important variables 

in an effort to reduce multicollinearity. In an effort to categorize spatial variables, Can 

(1996) proposed to distinguish between adjacency and neighborhood effects. Adjacency 

effects which are externalities and spillover effects due to the geographic position of a 

property relative to other points of reference (i.e. other properties, transportation 

infrastructure) can be captured by geostatistical methods and various accessibility 

measures. Neighborhood effects, which are distinct perceived or observable 

characteristics of an area, also have an impact upon property prices and rental rates 

although their contribution to price formation is more difficult to measure.  

 

Access to commercial centers is included in various forms in hedonic studies of office 

rents (see Sivitanidou 1995). In a study of Atlanta office rents, Bollinger, Ihlanfeldt and 

Bowes (1998) find that proximity to concentrations of office workers exert a positive 

impact on rent levels. In general, this variable reflects ease of access to clients and 

business services in the immediate vicinity of the building. In the present study, this 

variable is operationalized as the average distance to the 20 closest office buildings and is 

calculated with a nearest neighbor algorithm in a Geographic Information System. The 

inverse of the distances calculated for each building distance pair is weighted by the 

square footage of the neighboring building and entered into the model. Therefore a 

positive sign is expected for the coefficients to the extent that larger square footage and 

shorter distances yield higher values. Similarly, the amount of office space located within 

1500 feet of an office building indicates whether a building is located in a major office 

cluster. Therefore, a positive impact of this variable is expected. Rosenthal and Strange 

(2001) found evidence that such knowledge spillovers operate almost exclusively at the 



 

small-scale level. The authors conclude from their observations that such spillovers 

evaporate rapidly across space. 

 

The distance to the nearest subway station measures ease of access to public transit 

network. Cervero and Duncan (2002) found that office properties located close to a public 

transit public transit stations command higher prices per unit in the order of 120 percent 

for commercial land in a business district within a quarter mile of a commuter rail station. 

Although very few office buildings in Manhattan are located outside a radius of this size, 

this variable is included to test whether even smaller differences in average distance to 

mass transit stations have an impact on rental rates.  

 

Finally, the latitude and longitude coordinates of a property are included in various 

hedonic models. While not meaningful per se, these variables are potentially capable of 

capturing spatial effects not operationalized in the other variables of the model as the 

coefficients of these variables are allowed to vary parametrically over space. This 

approach was developed and applied in a number of previous studies such as Can and 

Megbolugbe (1997), Casetti (1997) and Clapp (2003, 2004).  

 

3. Methodology  

In the first step of the empirical analysis, some basic descriptive measures are used to 

investigate volatility and cross-sectional variability of rental rates. To explore potential 

lags in the adjustment of submarkets to changing market conditions, cross-correlation 

measures will be examined.  

 

Hedonic analysis 

Hedonic regression modeling has become the standard methodology for examining price 

determinants in real estate research. The quintessential log-linear hedonic rent model is 

specified in the following form:  

 

iiiii ZxR εφβα +++=ln         (1) 

 



 

Where Ri is asking rent per square foot in dollars for a given office building, xi is a vector 

of the natural log of several explanatory locational and physical characteristics, β  and φ  

are the respective vectors of parameters to be estimated. Zi is a vector of time-related 

variables and iε  is a random error and stochastic disturbance term that is expected to 

take the form of a normal distribution with a mean of zero and a variance of σe

2

. The 

hedonic weights assigned to each variable are equivalent to this characteristic’s overall 

contribution to the rental price (Rosen 1984).  

 

Rent determinants can be roughly grouped into neighborhood/building-specific and 

accessibility/location factors (see for example Des Rosiers et al 2000) For the purpose of 

this study, I specify two hedonic models. While Model I captures building-specific factors, 

Model II contains locational attributes. The final specification of Model I used to estimate 

the empirical results reported below is:  

 

(Model I)  iiiiiiii ASTBVR εβββββα ++++++= lnlnlnlnlnln 54321    (2) 

 

where Vi represents the vacancy rate of a building, Bi is the rentable building area in 

square feet, Ti indicates the year of construction or major renovation, Si is the number of 

stories and Ai is a vector of in-house amenities. Model II was specified as follows:  

 

(Model II)  iiiiiiii WNMFDR εβββββα ++++++= lnlnlnlnlnln 109876   (3) 

 

where Di represents the inverse of the distance of the twenty office buildings with the 

shortest distance to the property in question (weighted by their square footage), Fi is the 

amount of square feet of office space within a distance of 1500 feet, Mi is the distance to 

the nearest subway station and Ni and Wi are the longitude and latitude coordinates of the 

property.  

 

To detect differences in the weight of parameter estimates across submarkets, a standard 

fixed effects model can be estimated (Hsiao 2003):  

 



 

iinitnititit xR εβδαδαδα ++++= ...ln 2211     (4) 

 

In this model, the incidental parameters iα  are fixed constants and jitδ is a submarket-

specific indicator (dummy variable). This Least Squares Dummy Variable (LSDV) model can 

be used to detect both longitudinal and cross-sectional heterogeneity. The drawback of 

the LSDV model is, however, that it only allows intercepts to differ across space while 

assuming constant variable coefficients. Thus, instead of estimating a single LSDV model, 

it is more appropriate to estimate the full hedonic model separately for each submarket 

and time period when investigating the time-series cross-sectional variability of rent 

determinants. Alternatively, a full random-effect panel model can be estimated as 

outlined in the following section.  

 

Random-effects panel data estimation 

In order to expand the scope of the hedonic framework by simultaneously analyzing the 

longitudinal and cross-sectional components of the data, a panel regression model is 

introduced. The fixed-effects model as outlined in the previous section assumes that 

differences across units of observation are captured by differences in the constant term.  

 

        (5) 

 

A fixed effects model estimation is limited, however, by the fact that this model assumes 

the intercepts iα  are fixed, estimable parameters so that individual effects cannot be 

captured with this approach. The random effects model assumes that the observations are 

random draws from the same distribution and therefore part of a composite error term of 

the following form: 

 

        (6) 

 

where iu  is a group-specific random element which captures unobserved property-

specific factors. In the random effects model all three components (intercept, time-

specific and cross-sectional error components) are assumed random and not fixed. The 

itiitit xR εαβ ++=ln

itiiitit xR εµαβ +++=ln



 

prerequisite for applying a random-effects model is, however, that this unobserved 

heterogeneity be normally distributed and uncorrelated with the explanatory variables Xit. 

The main advantage of this approach is that the number of parameters to be estimated is 

substantially reduced compared to a fixed-effects approach or any repeated-measurement 

sequential estimation. Especially when there is serial correlation of the composite error 

term, the random effects GLS approach yields superior results compared to the OLS and 

fixed effects approach.  

 

In a time-series estimation of rental rate determinants, it appears reasonable to assume 

that one of the more important determinants is the rental rate of the past period. 

Inclusion of lagged values of the dependent variable is problematic, however, because 

these values are typically correlated with the residuals. Therefore, the lagged dependent 

variable must be instrumented. Arellano and Bond (1991) and Arellano and Bover (1995) 

developed an estimation approach that solves this problem.  

 

Parameters are estimated by assuming that future error terms do not affect current 

values of the explanatory variables and that the error term εit is serially uncorrelated. It is 
also assumed that changes in the explanatory variables are uncorrelated with the 

unobserved property-specific and/or subarea-specific effects. This set of assumptions 

generates moment conditions that allow estimation of the relevant parameters. The 

instruments corresponding to these moment conditions are appropriately lagged values of 

both levels and differences of the explanatory and dependent variables. A frequent 

problem with this type of estimation is that the moment conditions tend to overidentify 

the regression model, which can be diagnosed using the Sargan test for overidentifying 

restrictions. A second important diagnostic test is the Arellano-Bond test for 

autocovariance of the residuals. While the presence of first-order autocovariance does not 

preclude that the estimators of the hedonic model are consistent and efficient, the 

presence of second-order autocovariance would be a clear sign of misspecification 

(Arellano-Bond 1991, 281-2).  

 



 

Testing for longitudinal and cross-sectional structural change  

Based on Slade's (2000) proposition that market participants value physical, rental and 

locational characteristics of a building differently during distinct phases of the market 

cycle, I estimate the parameters of both model specifications for each quarter from 1999 

through 2004 individually and compare the resulting parameter estimates over time. Each 

of the quarterly estimates is assigned to one of three periods in the market cycle that 

occurred during the observed period: (1) market recovery, (2) peak, and (3) decline. I 

then test for cross-sectional parameter stability of the hedonic estimates across 

submarkets in the next step. Under the assumption of an efficient market with a city-wide 

unified pricing scheme, the expectation is that the coefficients of the hedonic 

characteristics be equal in all areas. This is expressed by the null hypothesis:   

 

H0:   β1 = β1r =β1p = β1d;   

  β2 = β2r = β2p = β2r;  

  …  

  βn = βnr = βnp = βnd 

 

against the alternative 

 

Ha:  H0 is not true 

 

In this notation the coefficients βn are the parameter estimates of a particular variable 

with the second subscript denoting the respective phase of the market cycle (r= recovery, 

p=peak, d=decline). A Chow test can be applied to determine whether the set of 

regression parameters is equal across groups (Chow 1960): 
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where RSSp is the residual sum of squares of the pooled regression model, i and j are the 

two subsamples to be compared, and n and m are the number of observations in the 

subsamples i and j respectively. If the resulting F statistic is significant, we discard the 



 

null hypothesis of structural stability of hedonic regression parameters and accept the 

alternative hypothesis of structural heterogeneity.  

 

In the cross-sectional analysis, the hedonic regressions for each of the three quality 

classes (A,B,C) are estimated separately and the results are compared to one another. 

Hence, accepting the alternative hypothesis would provide evidence of heterogeneous 

pricing schemes. Besides the Chow test, the Tiao-Goldberger F-statistic is computed to 

test for individual parameter stability. 

 

The Tiao-Goldberger test is an F-test of the following form:  
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where L is the number of models, ijb̂  are the OLS estimates of the ith parameter in the jth 

independent model, Pij is the diagonal element for the ith parameter of (X’X)j-1, SSRj the 

sum of squared residuals for the jth model; Tj the number of observations used to 

estimate the jth model and Kj the number of parameters in the jth model. Alternatively, 

the Chow and Tiao-Goldberger test statistics can be calculated by including an interaction 

term in a General Linear Model (GLM) framework. The GLM pools the sums of squares and 

degrees of freedom for submarkets and submarkets times the independent variable (X) in 

question and reports the F-test value. Computed separately for each of the variables, the 

resulting F test values indicate parameter stability of each of the variables used in the 

regression. 

In the next step, hypothesis test outlined above is applied to time-series observations. 

Under the assumption of an efficient market with a unified pricing scheme, we expect the 



 

coefficients of the hedonic characteristics to be equal in all time periods. We reject the 

null hypothesis of equal coefficients if the test statistics reveal that the coefficients differ 

significantly at various points of the market cycle.  

 

Defining the phases of the market cycle  

In order to test the implications of quarterly parameter estimates for the cyclical 

development of the market, it is necessary to first identify the phases and turning points 

of the market cycle. This is typically achieved by estimating a general trend around which 

cyclical fluctuations occur. There exist several econometric tools, most notably the 

Hodrick-Prescott filter, for detrending time series data. The present study does not follow 

this methodological strand of defining turning phases in that no effort is made to 

determine time series trends and/or hypothetical long-term equilibria. Instead, phases 

are defined based on the sign and strength of rental rate growth rates over a minimum 

duration of four quarters. Other applications of this method can be found in Mintz (1969), 

Watson (1994), Artis, Kontolemis and Osborn (1997), Mueller (1999) and more recently in 

Krystaloggiani, Matysiak and Tsolacos (2004).  

 

The time series data analyzed in this study –albeit rather short for detecting generalizable 

patterns- lends itself particularly well for the study of real estate market cycles since the 

individual phases are clearly discernable with practically no ambiguous periods or 'noisy' 

oscillations. Consequently, no smoothing methods have to be applied prior to defining the 

start and end points of cycle phases. The five-year rental rate time series of Manhattan 

exhibits three distinct phases of the cycle: recovery, peak and decline. Each dataset in 

the quarterly series is assigned to one of the three phases that occurred within the 

observed time span by applying three simple rules.  

 

  

If  012 >∆∧∆∧∆ −− ttt RRR ,   Phase = recovery 

If  012 <∆∧∆∧∆ −− ttt RRR ,   Phase = decline 

If  )3(max(max)3max( 11 +− ∧=∧= ttt RRR ,  Phase = peak 



 

Put differently, periods of positive growth of rental rates for more than three quarters are 

identified as part of the recovery phase while negative rental rate growth for more than 

three quarters is considered to mark the decline phase of the market. The peak phase 

includes the three consecutive quarters with the highest absolute rental rates in the time 

series. Additionally, the maximum point is also defined as the turning point from positive 

growth (recovery) to contraction (decline) to make sure that the sequence of the phases is 

recovery-peak-decline. Figure 1 contains an illustration of the timeline of the three 

cycles.  

 

 

 

 

 

Figure 1: Phases of the Manhattan office market cycle 

 

 

Recovery  Q1-1999 through Q2-2000 

Peak   Q3-2000 through Q1-2001 

Decline Q2-20001 through Q2-2004 

recovery decline peak 



 

4. Data issues 

The empirical estimation of the model is drawn from the CoStar property information 

system which covers the Manhattan office market almost completely on a building-to-

building basis. The time increment used in this model is one quarter, which is different 

from most other modeling studies which use either annual or semi-annual data. Quarterly 

data are typically subject to greater fluctuations than annual or semi-annual averages. 

The longer time-intervals eliminate a large part of the variation of more fine-grained data 

which contains important information on dynamic adjustment mechanisms of the market. 

Although the time-series of building data was relatively short (22 quarterly observations in 

6 years), three distinct phases of the real estate market cycle could be identified during 

this period. To put this relatively short period in perspective, the two subsequent figures 

demonstrate the longer term development of rental rates in Manhattan and its major 

subdivisions. Figure 2 illustrates the trajectory of quarterly Manhattan rental rates from 

1980 through 2004. Figure 3 shows rental rates broken down by subarea from 1992 through 

2004.  

 

Figure 2: Average rental rates in the analyzed period by subarea (in constant dollars). 



 

 

Figure 3: Longer-term index of Manhattan real rental rates (Q1-1980=100) 

Data: Real Estate Board of New York, Grubb & Ellis 

 

 

Inventory, occupancy and vacancy data  

Quarterly building data were obtained from CoStar spanning a period of about six years. 

The sample contains data on location, building area, story height, asking rents, vacancy 

rates, sublet space as well as other building characteristics. The entire sample contains 

492 million square feet of office space and nearly 3,000 Manhattan office buildings. While 

this database contains practically all Manhattan office buildings with more than 10,000 

square feet, only 870 to 950 buildings (depending on the time period and number of 

variables included in the specification) of the full sample could be used for the purpose of 

the hedonic analysis due to missing data for most of the smaller office buildings. While six 

years or 16 quarterly observations constitute a rather short time series, three typical 

phases of the real estate market cycle are contained within them. Moreover, longer time-

series hedonics typically face the problem of controlling for the effect of new product 

being introduced into the market while the obsolete stock is being phased out (Hulten 



 

2003). While this heterogeneity of the analyzed sample potentially hampers comparability 

over time, changes in the composition of office inventory due to new construction and 

demolition are below one percent and thus not critical for the longitudinal comparability 

of parameter estimates.  

 

Rental data 

The data on rent used in this study are asking rents per square foot aggregated from a 

large sample of buildings in the CoStar property information system. Asking rents, as 

opposed to actual rents which are based on lease transactions, are known to be 

inaccurate. Assuming that the error is systematic but not fixed, the differences between 

asking and actual rents vary with the position in the market cycle. For instance, it can be 

assumed that the difference between asking rents and actual rents will be highest 

immediately at the outset of a recession. This is due to the fact that landlords are 

reluctant to lower asking rents after a prolonged period of growth but will instead 

concede free rent periods and other incentives to prospective tenants. Only when market 

conditions have deteriorated considerably and vacant space becomes a serious problem, 

landlords will adaptively discount asking rents in order to attract tenants. While rents 

based on actual leases would be preferable, they are generally not available to 

researchers and pose additional problems, such as the adequate incorporation of non-

monetary or non-rent-related incentives in the lease. In the absence of actual rents, 

asking rents are being used in this study despite their known inaccuracies and 

shortcomings. The asking rents and all other monetary variables are adjusted for inflation 

with the implicit price deflator as applied in the National Income and Product Accounts 

(NIPA).  

 

Accessibility data  

A number of accessibility measures were calculated to capture spatial variables at the 

submarket and building level. All buildings in the database provided by CoStar were 

geocoded using a Geographic Information System. After assigning x and y coordinates to 

each building, the distance between each building and the closest subway station was 

calculated (see Figure 4 for a visualization of the geocoded buildings). As a measure of 

regional accessibility, the distance from each building to the three major public transit 



 

hubs Grand Central Station, Penn Station and the World Trade Center PATH Station was 

calculated. Moreover, the distance from each office building to the closest office 

buildings was calculated using a nearest neighbor algorithm. To capture the opportunity 

of face-to-face interaction within walking distance, the amount of square feet of office 

space within a distance of 1500 feet was calculated. Instead of using straight line 

distances, so-called Manhattan distances were used which take into account the grid 

structure of the case study area.  

 

Class A/B/C categorization  

Although the A,B,C distinction of buildings is mainly used in industry market reports to 

describe the development of the three quality segments of the markets, it also proved to 

be useful and significant in a number of previous academic studies. Archer and Smith 

(2003) present a model of industry economies of scale for Class A space and tenants and 

introduce a working definition whereby Class A office space is characterized by a lesser 

degree of sensitivity to rental expenses and a higher relevance of image and prestige 

factors of tenants compared to the Class B and C categories. CoStar (2007) defines Class A 

as investment-grade properties that are well located and provide efficient tenant layouts 

and floor plans, have above-average maintenance and management as well as the best 

quality materials and workmanship in their trim and interior fittings. Class B buildings 

offer functional space without special attractions, and have ordinary design, if new or 

fairly new; good to excellent design if an older non-landmark building. These buildings 

typically have average to good maintenance, management and tenants. Class C comprises 

older buildings that offer basic space and command lower rents or sale prices. Such 

buildings typically have below-average maintenance and management, and could have 

mixed or low tenant prestige, inferior elevators, and/or mechanical/electrical systems. 

These buildings lack prestige and must depend chiefly on a lower price to attract tenants 

and investors. 
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Figure 4: Spatial distribution of office space in Manhattan (snapshot of geocoded 

properties). Data: CoStar Group 

 

© Franz Fuerst 2006 
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Study area  

The Manhattan office market is characterized by a number of distinctive features. 

It is by far the largest agglomeration of office space in the United States - more 

than twice as large as Chicago. Second, growth rates of office employment and 

demand for office space are on average low compared to younger markets in 

Southern and Western regions. Nevertheless, Manhattan exhibits a unique 

concentration of financial services firms and is one of the most important financial 

centers in the world. About 80 percent of New York City's office space is 

concentrated in Manhattan. The market suffered a significant shock by the 

destruction of 14.5 million square feet of office space on September 11, 2001.  

 

Despite these unique features, Manhattan is an ideal case study for exploring 

submarket fragmentation and small-scale locational dynamics. It has a large 

number of specialized sub-centers such as the Wall Street area and the Insurance 

District with large industry clusters. Regarding the inventory of office buildings, 

the market exhibits a great degree of heterogeneity regarding the vintage, size, 

technology and amenities of buildings. Because of the high density and maturity of 

Manhattan, submarkets with distinctly different supply and demand characteristics 

can be found within a relatively short distance from one another.  

 

For the purpose of real estate market studies, Manhattan is commonly divided into 

three subareas (Midtown Core, Midtown South and Downtown). Each of these 

subareas is further subdivided into submarket areas.  

 

 

5. Empirical Results 

In the first step, hedonic regressions are estimated based on the Manhattan office 

property database described in the previous section. Table 1 shows descriptives of 

the variables included in the final specifications. As mentioned above, two 

separate models were estimated in this study. A log-linear specification was found 

to perform best in all regressions reported here. Table 2 shows the results of the 

quarterly estimation for the building-specific model (Model I). As expected, 



 

 

22 

vacancy levels of a building have a negative impact on rents although this variable 

does not reach the desired significance level in all cases. In contrast, the rentable 

area of a building exerts a positive impact on rent levels. The variable 'year built', 

which reflects either the construction date or year of major renovation shows a 

particularly strong impact and is highly significant. Although building age was 

reported as a relevant factor in most hedonic studies, it is remarkable that it is 

also valid in the Manhattan context with its relatively mature inventory of office 

buildings (median age of 85 years). Building amenities such as in-house retail 

facilities, facility management, availability of large trading floors, showrooms, 

courtyards, fitness clubs and atriums and subway access on premises.  The 

expectation that tenants pay a premium for the availability of these amenities is 

confirmed in the present study, particularly in the more recent periods.  

 

Table 1: Descriptive statistics of the Manhattan office building database  

Data: CoStar Group 

   

Average 

rent 

Building 

area 

Year   

built 

Year 

renovated 

No. of 

stories 

Typical 

floor size 

Midtown Mean 37.5 196,977 1932 1989 15.0 10,459 

(n=594) Median 35.8 66,000 1925 1990 12.0 6,000 

  Std. Dev. 19.5 352,236 25.0 13.3 12.6 12,382 

Midtown South Mean 27.3 87,941 1914 1988 8.3 9,057 

  (n=332) Median 26.0 42,550 1911 1990 7.0 5,200 

  Std. Dev. 7.7 183,011 18.9 15.6 4.9 13,598 

Downtown Mean 30.0 242,603 1924 1985 14.0 12,196 

 (n=147) Median 29.0 45,000 1920 1986 7.0 6,643 

 Std. 

Deviation 7.6 436,319 29.7 14.9 12.8 14,621 

Total Mean 33.3 165,746 1923 1988 12.5 10,227 

 (n=1,073) Median 30.0 53,508 1920 1990 9.0 5,750 

 Std. Dev. 16.1 325,076 25.3 14.4 11.0 13,195 
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The results of the location-specific model (Model II) are reported in Table 3. The 

inverse of the weighted average distance of the 20 closest office buildings proves 

significant in this estimation as well as the number of square feet of office space 

located within 1500 feet. Distance to a subway station is also confirmed to be 

relevant in rental rate determination. Finally, latitude and longitude coordinates, 

proxying spatial effects not operationalized in the other variables of the model are 

also significant in the hedonic regression. The negative coefficient of the latitude 

variable indicates that average rental rates decrease the further south a property 

is located in Manhattan. While this is a highly generalized finding, it is in line with 

observations that office rents are highest in the northern section of Midtown while 

buildings in Midtown South and Downtown command lower rents on average. 

Similarly, the longitude variable also has a negative sign which entails that 

buildings located in the western part of Manhattan have lower rents than those 

located in the eastern part. While office locations on the western sections of 

Midtown Manhattan have experienced positive dynamics in recent years, the 

overall prime office locations are still to be found in the largest office cluster 

around the Plaza District located in the northeastern section of Midtown 

Manhattan.  
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Hedonic analysis and spatiotemporal stability of rent determinants 

Parameter estimates and phases of the market cycle  

The explanatory power of the quarterly estimations varies considerably with R squares of the 

hedonic models ranging from 0.284 in the first quarter of 2001 to 0.408 in the third quarter of 

2001 for Model I and 0.486 in the first quarter of 1999 to 0.326 in the third quarter of 2000 for 

Model II. Among individual parameter estimates, it is noteworthy that the parameter value of 

the amenities variable appears to be low in times of increasing rents and increases during the 

subsequent recession, which may indicate that the predictive power of these distinctive quality 

features for the average rent level of a building diminishes during a general shortage of space 

in the peak phase of the real estate cycle.  

 

In the next step, the two hedonic models outlined above were pooled for each of the phases of 

the market cycle as defined in the methodology section. The results are reported in Table 4. 

There are considerable differences in parameter estimates between the peak phase on the one 

hand and the recovery and decline phases on the other as evidenced by the Chow tests for the 

entire model and the Tiao-Goldberger F tests for individual parameters. The Chow tests reject 

the null hypothesis of equal parameters in all three phases for all variables in both models. 

Individual FTG values show that parameter values are significantly different in each phase of the 

market cycle.  

 

The results appear counter-intuitive at first sight. All variables with the exception of the 

number of stories have higher coefficients during the recovery and decline phase than they do 

during the peak phase. A possible explanation for this phenomenon is that the price 

convergence during the peak phase lowers the explanatory value of most quality features of 

buildings. During the peak phase of the market, Class A buildings are typically fully rented and 

demand for office space spills over to Class B buildings. As a consequence, the rent gap 

between Class A and Class B buildings narrows. Figure 5 illustrates the convergence dynamics of 

the three categories. I will explore this potential 'spillover effect' in more detail in the next 

section.  
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Figure 5: Quarterly growth rates of office rents by A/B/C quality class 

Table 4: Hedonic regression (Model I and II) at various phases in the market cycle (longitudinal) 

Model I 
 recovery peak decline pooled FTG 

Intercept 

 

-69.577 

(-19.974) 

-43.771 

(-10.033) 

-65.781 

(-29.584) 

-63.376 

(-35.708) 12.39* 

Ln vacancy 

 

-.003 

(-1.142) 

.012 

(4.114) 

-.005 

(-2.715) 

-.005 

(-3.840) 8.24* 

Ln building area 

 

.072 

(8.881) 

.038 

(3.853) 

.041 

(8.410) 

.051 

(12.757) 4.109* 

Ln year built 

 

9.466 

(20.395) 

6.132 

(10.559) 

9.005 

(30.382) 

8.676 

(36.685) 4.218* 

Ln stories 

 

.121 

(8.113) 

.145 

(7.866) 

.172 

(19.523) 

.159 

(21.893) 3.956* 

Ln amenities 

 

.130 

(8.008) 

.147 

(7.406) 

.157 

(15.583) 

.148 

(18.261) 3.699* 

Adjusted R2 .344 .289 .373 .345  

Chow Test     17.483* 
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Model II 

 recovery peak decline pooled FTG 

Intercept 

 

9447.545 

(29.516) 

6709.689 

(17.436) 

7763.999 

(40.165) 

7997.713 

(50.637) 12.87* 

Ln distance 20 

buildings 

.064 

(15.472) 

.057 

(11.283) 

.061 

(21.948) 

.062 

(28.663) 7.353* 

Ln space 1500 feet .170 

(17.520) 

.117 

(9.804) 

.164 

(27.944) 

.159 

(33.173) 3.955* 

Ln distance subway -.103 

(-15.127) 

-.087 

(-10.607) 

-.105 

(-24.737) 

-.101 

(-29.406) 8.022* 

Ln longitude -1863.439 

(-32.276) 

-1370.784 

(-19.761) 

-1558.919 

(-44.859) 

-1601.620 

(-56.321) 8.191* 

Ln latitude -384.823 

(-18.042) 

-217.973 

(-8.427) 

-284.172 

(-21.505) 

-297.632 

(-27.848) 8.119* 

Adjusted R2 .405 .360 .423 .392  

Chow Test     27.494* 

* significant at the 5% level 

 

 

Cross-sectional parameter stability and market fragmentation  

To test the hypothesis of parameter stability across submarkets, both hedonic models are 

parametrized separately for each of the three aggregated submarkets (Midtown, Midtown South 

and Downtown Manhattan) and subsequently compared to the pooled model. Table 5 shows the 

parameter estimates for both models. Among the three submarkets tested, the model performs 

best for Midtown and Downtown Manhattan but barely reaches the required significance levels 

for Midtown South. The t values of individual coefficients indicate that some variables that are 

positive and significant in the other two submarkets do not necessarily show the expected 

contribution to rental rates in a third market. Moreover, building age has a negative signs in 

the Midtown South market. This might be attributable to specifics of the Midtown South 

submarket inventory. A large proportion of the buildings in this market are either historic 

buildings with landmark status (Madison Square, Gramercy Park) or former warehouse buildings 

converted for office use, particularly for the information technology industry. Consequently, 

older buildings generally command higher rents in this submarket than more recently 

constructed buildings.  
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With regard to the submarket estimates of location-specific variables (Model II), Midtown 

Manhattan exhibits significantly better explanatory power than the other two submarkets 

(Table 5). This is particularly evident in the Downtown market where the spatial variables 

barely reach the desired significance levels. Geographical characteristics of the Downtown area 

may explain this phenomenon. First, due to the narrowness of the land area between the 

Hudson and East Rivers there is no distinct differentiation of the submarket into a western and 

an eastern section as is the case in Midtown Manhattan. Second, because of the narrowness of 

the geographic shape of the area and the resulting high density of the subway system in the 

Downtown area, accessibility by subway and proximity to other office buildings are of lesser 

predictive value for rental rates than in Midtown South which exhibits a more even grid-like 

pattern with both core and peripheral locations and longer average distances between subway 

stations. While easy access to rapid transit is almost ubiquitous in the Downtown area, this is 

not necessarily the case in the Midtown Manhattan.  

 

Again, the Chow test confirms that the estimated parameters are significantly different from 

one another in the three submarket areas. The individual FTG values show that parameters 

differ significantly both across subareas with two notable exceptions (the amount of space 

within 1500 feet and the distance to the nearest subway station). Since the parameters of 

these variables are not significantly different, one may conclude that these variables are 

valued similarly in all submarkets in determining the rental rate of a given building. For all 

other parameters, significant differences were found.  
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Table 5: Hedonic regression (Model I and II) for subareas (cross-sectional) 

Model I 

 Midtown Midtown South Downtown Pooled FTG 

Intercept -75.906 

(-34.516) 

18.220 

(3.492) 

2.879 

(-6.092) 

-63.376 

(-35.708) 
4.56* 

Ln vacancy -.001 

(-.483) 

-.001 

(-.502) 

-.002 

(-.913) 

-.005 

(-3.840) 
6.06* 

Ln building area .041 

(8.112) 

.144 

(18.469) 

.111 

(12.189) 

.051 

(12.757) 
5.28* 

Ln year built 10.338 

(35.294) 

-2.214 

(-3.190) 

2.563 

(6.678) 

8.676 

(36.685) 
6.08* 

Ln stories .181 

(18.645) 

.034 

(2.367) 

.060 

(3.969) 

.159 

(21.893) 
4.02* 

Ln amenities .195 

(19.317) 

.035 

(2.144) 

-.036 

(-2.294) 

.148 

(18.261) 
3.08* 

Adjusted R2 .399 .122 .246 .345  

Chow Test     9.866* 

Model II 

 Midtown Midtown South Downtown Pooled FTG 

Intercept 6934.917 

(39.304) 

4625.633 

(12.583) 

-5764.091 

(-6.805) 

7997.713 

(50.637) 
8.87* 

Ln distance 20 

buildings 

.060 

(18.758) 

.039 

(10.454) 

.057 

(11.384) 

.062 

(28.663) 
9.69* 

Ln space 1500 feet .134 

(21.049) 

.038 

(2.451) 

.050 

(5.043) 

.159 

(33.173) 
1.41 

Ln distance 

subway 

-.091 

(-22.179) 

-.010 

(-1.288) 

.006 

(.659) 

-.101 

(-29.406) 
1.26 

Ln longitude -1962.017 

(-64.949) 

-562.577 

(-8.506) 

994.468 

(6.430) 

-1601.620 

(-56.321) 
9.95* 

Ln latitude 407.473 

(17.593) 

-593.907 

(-18.413) 

400.899 

(7.952) 

-297.632 

(-27.848) 
9.59* 

Adjusted R2 .513 .114 .102 .392  

Chow Test     13.589* 

* significant at the 5% level 

 

Rental rate convergence of Class A/B/C properties and the market cycle 

As reported above, a convergence effect of rental rates of the three quality classes of office 

buildings (A,B,C) is observed around the peak of the market cycle. Figure 6 illustrates how 

rental rates of Class B buildings approach Class A rents during the peak phase of the market. 

Thus, distinctive quality features of buildings as represented by the variables of the two 

hedonic regressions lose some of their explanatory power as rental rates converge. As soon as 
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the decline phase begins, rental rates start to diverge again, as tenants have a larger variety of 

available office buildings to choose from in times of higher vacancy rates. Therefore, the 

quality features of buildings regain their relative importance and predictive power as the 

spread of rental rates increases. To corroborate these results, I apply a one-way ANOVA test for 

equal means of rental rates to office buildings of the three quality categories A, B, C (Table 6). 

While the mean rental rates differ significantly for these three groups throughout the analyzed 

period (all values are significant at the 1% level), the F test values as well as the robust Welch 

and Brown-Forsythe values are lower at the peak of the cycle (Q3-2000 through Q1-2001), 

indicating that the mean rental rates of the three categories become more similar at the peak 

of the market cycle. Interestingly, as differences of mean rental rates decrease between 

groups, within-group variation increases and vice versa. This may indicate that the reported 

convergence of rental rates affects only a selective group of Class B and C properties with 

competitive features, while the rest of buildings in these categories remain largely unaffected 

by the upswing of the market. Further research is needed, however, to confirm these results.  

 

 

 

Figure 6: Convergence of rental rates during the peak phase of the market cycle: average rental rates 

(above) and rental rates in Class B buildings as a percentage of Class A rental rates. Data: CoStar 

Group, Grubb & Ellis. 
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Panel estimation  

In the next step of the empirical investigation, I estimate random-effects GLS models to 

simultaneously capture cross-sectional and time-series effects.  

Table 6 shows the results of the location-specific model containing all 16,857 

observations. The significance of the variables a) distance to subway, b) 20 closest 

buildings as well as the c) square footage within a 1500 feet radius are confirmed. The R 

square measures reveal that within effects equal zero since the explanatory variables 

used in this specification remain fixed throughout the observed period. The GLS random-

effects model is then estimated for the property-specific factors (Table 7). Again, the 

results confirm that rentable building area, age, height and amenities are significant and 

show the expected signs.  

In the next step, I modify the model so that both location- and property-specific variables 

are included along with the time-varying variables. Not surprisingly, pooling the variables 

of Model I and Model II into a single model yields a larger joint explanation of variance 

(Table 8). At the same time, the number of valid observations decreases sharply from over 

15,000 in the separate models to below 5,000 in the pooled model. This is due to the fact 

that only one third of all buildings have complete and valid entries in all variable columns. 

Thus, the selected sample that fulfills the requirement of complete information is much 

smaller. Because multicollinearity is a more serious concern in the pooled model than it is 

in the separate models, all variables inducing significant multicollinearity are removed 

automatically.  

This pooled model is then used to estimate separate regressions for each of the three 

quality classes (A/B/C). The results illustrate that the hedonic model exhibits the highest 

explanatory power for Class A properties (Table 9) while the model is less significant in 

the Class B (Table 10) and Class C (Table 11). This observation is in line with the 

expectation of a more competitive pricing scheme in the upper segments of the market. A 

closer inspection of individual coefficients yields that many of the variables in the 

specified random-effects model fail to be significant. One possible explanation for this is 

that the prevalence of time-invariant hedonic features in the model reduces the overall 

goodness of fit in a panel data model compared to the initially estimated cross-sectional 

OLS model where no such effect is measured. 
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When estimating the pooled model separately for the three subareas, the highest 

explanatory power is found for the Midtown South area and the lowest for the Downtown 

area with Midtown Manhattan taking an intermediate position (Tables 12 through 14). 

Among individual variables, the distance to the 20 closest buildings does not show up 

significant in any of the estimates. It is noteworthy that the time-varying variables sublet 

rate (significant at 10%) and vacancy rate (significant at 1%) fail to generate a within-

effect of a sufficiently large order of magnitude (R square of 0.0034). There are several 

possible explanations for this. First, the weight of the time-invariant variables diminishes 

the within effects so that the effect of the two time-varying variables is underestimated. 

Second, while vacancy rates contribute to explaining differences in rental rates between 

buildings, the dynamic relationship of vacancy and rental rates within a building over time 

is not easily captured by this model. Although all submarket estimations are jointly 

significant, the values of the coefficients and their individual significance levels vary to a 

great degree. R square values range from 0.13 in Gramercy Park to 0.60 in the World 

Trade Center submarket. The R square of within effects is largely a function of the 

significance of the vacancy rate variable in the model, the only time-varying variable in 

this specification. Direct comparisons of variable coefficients in submarkets are 

encumbered by large differences in sample size, however. Nevertheless, these findings 

corroborate the results regarding non-homogenous parameters across spatial units 

obtained earlier in Chow tests of the OLS models.   

 

Finally, Table 15 reports the Arellano-Bond dynamic panel-data estimation. As outlined 

above, the exogenous variables are used as instrumental variables in the two-step 

estimation process. The included dynamic variables (lagged rent, sublet vacancy rate and 

overall vacancy rate) are significant with a p-value below 5%. While the lagged value rit-1 

explains the largest part of the panel dynamics, the lagged vacancy measures exhibit the 

expected negative impact on subsequent changes in rental rates.  

 

These results have to be interpreted with caution, however, since the value of the Sargan 

test for over-identifying restrictions indicates problems with the correct model 

specification in this case. More importantly, however, the Arellano-Bond tests for 

autocovariance in residuals of order 2 fail to reject the null hypothesis of no 

autocorrelation, which speaks in favor of the selected model specification.  
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Table 6: Pooled model, all observations location-specific model 

Random-effects GLS regression Number of obs = 16857 

 Number of groups = 999 

R-sq: within = 0.0000 Obs per group:  min = 1 

 between = 0.3302  avg = 16.9 

 overall = 0.2770  max = 22 

Random effects u_i ~ Gaussian Wald chi2(4) = 491.79 

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 

ln_rent Coef. Std. Err. z P>z [95% Conf. Interval] 

ln_latitude 206.5662 20.77073 9.95 0.000 165.8564 247.2761 

ln_subway -.0910125 .0131596 -6.92 0.000 -.1168048 -.0652202 

ln_distance_20 bldgs .0640123 .0077423 8.27 0.000 .0488376 .079187 

ln_sq.ft within1500 ft .2196119 .0183301 11.98 0.000 .1836856 .2555382 

_cons -765.7518 76.99502 -9.95 0.000 -916.6592 -614.8443 

sigma_u .275489     

sigma_e .18886561     

rho .6802724 (fraction of variance due to u_i) 

 

Table 7: Pooled model, all observations building-specific model 

Random-effects GLS regression Number of obs = 17338 

 Number of groups = 1055 

R-sq: within = 0.0000 Obs per group:  min = 1 

 between = 0.3567  avg = 16.4 

 overall = 0.3298  max = 22 

Random effects u_i ~ Gaussian Wald chi2(4) = 597.48 

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 

ln_rent Coef. Std. Err. z P>z [95% Conf. Interval] 

ln_building area .0507835    .0138267 3.67 0.000 .0236837 .0778833 

ln_year built 7.406912    .8038323 9.21 0.000 5.831429 8.982394 

ln_stories .1215857     .023873 5.09 0.000 .0747954 .168376 

ln_amenities .159432     .027396 5.82 0.000 .1057367 .2131272 

_cons -53.66099    6.028466 -8.90 0.000 -65.47656 -41.84541 

sigma_u .27087204      

sigma_e .18898711      

rho .6725928 (fraction of variance due to u_i) 
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Table 8: Variables of Model I and Model II combined into a single model 

 

Random-effects GLS regression Number of obs  = 4342 

 Number of groups = 643 

R-sq: within = 0.0034 Obs per group: min = 1 

 between = 0.5001  avg = 6.8 

 overall = 0.4457  max = 12 

Random effects u_i ~ Gaussian Wald chi2(10) = 649.01 

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 

    

ln_rent Coef.  Std. Err. z P>z [95% Conf. Interval] 

ln_latitude 228.0741 21.62577 10.55 0.000 185.6883 270.4598 

ln_subway distance -.0501038 .0143679 -3.49 0.000 -.0782644 -.0219433 

ln_distance 20 bldgs .0001392 .0119052 0.01 0.991 -.0231946 .0234731 

ln_sq.ft within1500 ft .1087543 .0197927 5.49 0.000 .0699614 .1475473 

ln_rba .0377657 .0156743 2.41 0.016 .0070446 .0684868 

ln_year built 6.29816 .9242095 6.81 0.000 4.486742 8.109577 

ln_stories .1300208 .0336101 3.87 0.000 .0641461 .1958954 

ln_amenities .1032081 .0304887 3.39 0.001 .0434513 .1629649 

ln_sublet .006864 .003874 1.77 0.076 -.0007289 .0144568 

ln_vacancy -.0132697 .0050022 -2.65 0.008 -.0230737 -.0034656 

_cons -892.0535 79.61368 -11.20 0.000 -1048.093 -736.0136 

sigma_u .22661135    

sigma_e .14696903    

rho .70391878 (fraction of variance due to u_i)  
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Table 9: Random-effects-model Class A buildings 

 

Random-effects GLS regression Number of obs = 2619 

 Number of groups = 182 

R-sq: within = 0.0110 Obs per group:  min = 1 

 between = 0.2579  avg = 14.4 

 overall = 0.2057  max = 22 

Random effects u_i ~ Gaussian Wald chi2(9) = 91.18 

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 

    

ln_rent Coef. Std. Err. z P>z [95% Conf. Interval] 

ln_latitude 184.2246 32.99628 5.58 0.000 119.5531 248.8961 

ln_subway distance -.0251698 .0215871 -1.17 0.244 -.0674798 .0171403 

ln_distance 20 bldgs .0180864 .0245378 0.74 0.461 -.0300068 .0661795 

ln_sq.ft within1500 ft .0810942 .031123 2.61 0.009 .0200942 .1420942 

ln_building area .010583 .0247113 0.43 0.668 -.0378502 .0590162 

ln_year built 3.789131 1.372138 2.76 0.006 1.099789 6.478473 

ln_stories .0033969 .0473833 0.07 0.943 -.0894726 .0962664 

ln_amenities .072654 .0429925 1.69 0.091 -.0116098 .1569177 

ln_vacancy -.0126262 .0024825 -5.09 0.000 -.0174918 -.0077607 

_cons -709.4369 121.0197 -5.86 0.000 -946.6311 -472.2426 

sigma_u .19089527   

sigma_e .19530804   

rho .48857548 (fraction of variance due to u_i) 
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Table 10: Random-effects-model Class B buildings  

 

Random-effects GLS regression Number of obs = 2199 

 Number of groups = 178 

R-sq: within = 0.0389 Obs per group:  min = 1 

 between = 0.1764  avg = 12.4 

 overall = 0.1439  max = 22 

Random effects u_i ~ Gaussian Wald chi2(9) = 117.20 

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 

    

ln_rent Coef. Std. Err. z P>z [95% Conf. Interval] 

ln_latitude 162.5227 40.43929 4.02 0.000 83.26311 241.7822 

ln_subway distance -.0352427 .0243292 -1.45 0.147 -.082927 .0124417 

ln_distance 20 bldgs .0076225 .0184202 0.41 0.679 -.0284805 .0437255 

ln_sq.ft within1500 ft .0303925 .0360899 0.84 0.400 -.0403424 .1011274 

ln_building area .0193292 .0287236 0.67 0.501 -.036968 .0756264 

ln_year built -1.772343 2.036062 -0.87 0.384 -5.762951 2.218266 

ln_stories .0673277 .0611454 1.10 0.271 -.0525151 .1871704 

ln_amenities .0883962 .054194 1.63 0.103 -.0178221 .1946146 

ln_vacancy -.0231804 .0024416 -9.49 0.000 -.0279659 -.0183949 

_cons -586.502 149.3964 -3.93 0.000 -879.3136 -293.6904 

sigma_u .19686389   

sigma_e .16766166   

rho .5795994 (fraction of variance due to u_i) 
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Table 11: Random-effects-model Class C buildings  

 

Random-effects GLS regression Number of obs = 1158 

 Number of groups = 92 

R-sq: within = 0.0133 Obs per group:  min = 2 

 between = 0.1166  avg = 12.6 

 overall = 0.1526  max = 22 

Random effects u_i ~ Gaussian Wald chi2(9) = 25.95 

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0021 

    

ln_rent Coef. Std. Err. z P>z [95% Conf. Interval] 

ln_latitude -142.4296 111.2004 -1.28 0.200 -360.3785 75.51925 

ln_subway distance -.0861889 .0553612 -1.56 0.120 -.1946948 .022317 

ln_distance 20 bldgs .0352 .0378861 0.93 0.353 -.0390554 .1094555 

ln_sq.ft within1500 ft -.0492671 .0940412 -0.52 0.600 -.2335844 .1350502 

ln_building area .0564381 .0545466 1.03 0.301 -.0504712 .1633475 

ln_year built -.2391288 6.213188 -0.04 0.969 -12.41675 11.9385 

ln_stories -.0190665 .1278381 -0.15 0.881 -.2696245 .2314915 

ln_amenities .1454508 .0811379 1.79 0.073 -.0135765 .3044781 

ln_vacancy -.0134591 .0038312 -3.51 0.000 -.0209681 -.0059502 

_cons 533.2705 404.1833 1.32 0.187 -258.9142 1325.455 

sigma_u .27561645   

sigma_e .20277583   

rho .64881131 (fraction of variance due to u_i) 
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Table 12: Random-effects-model Midtown  

 

Random-effects GLS regression Number of obs = 757 

 Number of groups = 58 

R-sq: within = 0.0031 Obs per group:  min = 1 

 between = 0.4719  avg = 13.1 

 overall = 0.2334  max = 22 

Random effects u_i ~ Gaussian Wald chi2(9) = 42.98 

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 

    

ln_rent Coef. Std. Err. z P>z [95% Conf. Interval] 

ln_latitude 56.14352 58.11728 0.97 0.334 -57.76425 170.0513 

ln_subway distance .0041066 .0364894 0.11 0.910 -.0674114 .0756245 

ln_distance 20 bldgs -.0025864 .0300022 -0.09 0.931 -.0613896 .0562168 

ln_sq.ft within1500 ft -.0038186 .0551354 -0.07 0.945 -.1118819 .1042447 

ln_building area .1372989 .0529966 2.59 0.010 .0334274 .2411704 

ln_year built 2.838532 2.395083 1.19 0.236 -1.855743 7.532808 

ln_stories .0579221 .0999664 0.58 0.562 -.1380084 .2538526 

ln_amenities -.0756849 .0896722 -0.84 0.399 -.2514391 .1000694 

ln_vacancy -.0049055 .0040693 -1.21 0.228 -.0128812 .0030703 

_cons -227.9104 212.2494 -1.07 0.283 -643.9116 188.0908 

sigma_u .19294431   

sigma_e .15661679   

rho .60281283 (fraction of variance due to u_i) 
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Table 13: Random-effects-model Midtown South 

 

Random-effects GLS regression Number of obs = 4150 

 Number of groups = 295 

R-sq: within = 0.0127 Obs per group:  min = 1 

 between = 0.4777  avg = 14.1 

 overall = 0.4241  max = 22 

Random effects u_i ~ Gaussian Wald chi2(8) = 59537.30 

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 

    

ln_rent Coef. Std. Err. z P>z [95% Conf. Interval] 

ln_latitude -20.62291 2.853249 -7.23 0.000 -26.21518 -15.03065 

ln_subway distance -.0378858 .0241077 -1.57 0.116 -.085136 .0093643 

ln_distance 20 bldgs .0047784 .0219977 0.22 0.828 -.0383363 .0478931 

ln_sq.ft within1500 ft .1393581 .0383795 3.63 0.000 .0641356 .2145806 

ln_building area .0110209 .0255407 0.43 0.666 -.0390379 .0610797 

ln_year built 10.21902 1.418607 7.20 0.000 7.4386 12.99944 

ln_stories .0996927 .0549891 1.81 0.070 -.0080839 .2074694 

ln_amenities .2012367 .0485637 4.14 0.000 .1060535 .2964198 

ln_vacancy -.0139584 .0019563 -7.14 0.000 -.0177927 -.0101242 

_cons (dropped)      

sigma_u .24843076   

sigma_e .18964999   

rho .63180495 (fraction of variance due to u_i) 
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Table 14: Random-effects-model Downtown  

 

Random-effects GLS regression Number of obs = 1069 

 Number of groups = 99 

R-sq: within = 0.0708 Obs per group:  min = 2 

 between = 0.2678  avg = 10.8 

 overall = 0.1914  max = 22 

Random effects u_i ~ Gaussian Wald chi2(9) = 106.65 

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 

    

ln_rent Coef. Std. Err. z P>z [95% Conf. Interval] 

ln_latitude -519.0381 163.7756 -3.17 0.002 -840.0324 -198.0437 

ln_subway distance .0146929 .045372 0.32 0.746 -.0742346 .1036204 

ln_distance 20 bldgs .0128909 .0307674 0.42 0.675 -.047412 .0731938 

ln_sq.ft within1500 ft .0221679 .0789422 0.28 0.779 -.132556 .1768918 

ln_building area .0855394 .0455937 1.88 0.061 -.0038226 .1749013 

ln_year built -7.219225 3.747701 -1.93 0.054 -14.56458 .1261337 

ln_stories .1859558 .1060475 1.75 0.080 -.0218934 .393805 

ln_amenities -.0060239 .0634921 -0.09 0.924 -.1304661 .1184182 

ln_vacancy -.0343947 .0039245 -8.76 0.000 -.0420865 -.0267029 

_cons 1980.111 610.7183 3.24 0.001 783.1249 3177.097 

sigma_u .24506945   

sigma_e .19543874   

rho .6112547 (fraction of variance due to u_i) 
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Table 15: Arellano-Bond estimation of dynamic variables  

 

Arellano-Bond dynamic panel-data estimation Number of obs = 13944 

 Number of groups = 991 

 Obs per group:  min = 1 

  avg = 14.07064 

  max = 20 

    

 Wald chi2(2) = 5394.32 

One-step results   

Ln_rent Coef. Std. Err. z P>z [95% Conf. Interval] 

ln_rent (lag 2) .7953525 .0110236 72.15 0.000 .7737467 .8169583 

ln_sublet (lag 5)       

ln_vacancy (lag 2) -.0070155 .0011367 -6.17 0.000 -.0092434 -.0047876 

_cons -.0020764 .0002489 -8.34 0.000 -.0025642 -.0015887 

Sargan test of over-identifying restrictions:    

 chi2(438) = 647.74  Prob > chi2 = 0.0000   

 

Arellano-Bond test that average autocovariance in residuals of order 1 is 0:   

 H0: no autocorrelation z = -47.07 Pr > z = 0.0000 

Arellano-Bond test that average autocovariance in residuals of order 2 is 0:   

 H0: no autocorrelation z = 2.01 Pr > z = 0.0607 

 

 

 

6. Conclusions 

The objective of this analysis was to test whether rent determinants are stable both cross-

sectionally and over time. Volatility of rental rates is a major source of risk for real estate 

investors. A hedonic regression framework was developed to produce estimates of rent 

determinants for three submarket areas and 15 submarkets. Datasets used in this analysis 

included time-series information on submarkets and individual buildings. Although the 

time-series of building data was relatively short (22 quarterly observations in 6 years), 

three distinct phases of the real estate market cycle could be identified during this 

period.  

 

The final specification of the building-specific hedonic model included the following 

significant variables:  
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• Vacancy rate of the building,  

• Square footage,  

• Age  

• Height (number of stories)  

• Number of in-house amenities.  

 

Variables of the location-specific models included: 

 

• Weighted sum of distances to the 20 closest buildings,  

• Square feet of office space within walking distance,  

• Proximity to a subway station, 

• Geographic x and y coordinates of the building.  

 

In a further step, a number of hypotheses were investigated with regard to the stability of 

these rental rate determinants. First, tests for structural change confirmed that rent 

determinants differ significantly when measured at different phases of the market cycle. 

Further tests for structural change revealed that rent determinants also differ 

significantly across subareas of Manhattan. Consequently, no support of a unified rental 

pricing scheme was found in this empirical study. More specifically, building-specific 

measures were found to differ to a greater degree across submarkets than location-

specific measures which appear to follow a more unitary scheme. We also found support 

for the existence of price convergence and spillover effects towards the peak of the 

market cycle.  

 

A GLS panel estimation confirmed the relevance of the variables identified in the OLS 

model. Estimating the model separately for the quality classes A/B/C confirmed the 

assumption that pricing of hedonic building and location quality features is reflected more 

consistently in the rental rates of Class A buildings than it is in Class B and particularly 

Class C buildings. Results of a dynamic estimation using an Arellano-Bond panel model 

confirmed that past rental rates along with overall vacancy and sublet vacancy conditions 

in a building are suitable for explaining variations in rental rates.  
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Overall, the results of this study indicate that panel models and tests for structural 

change may be useful tools for gaining additional information about the specific cyclical 

and submarket-related conditions of hedonic rent determinants. Especially the use of 

dynamic panel models such as the Arellano-Bond model are promising as to their potential 

for incorporating time lags and dynamic relationships at the individual building level. A 

number of relevant research questions could be addressed with such a model, for instance 

about the dynamic interaction of vacancy and rental rates in a building. Further research 

is needed, however, to arrive at a truly dynamic model of rental pricing in the presence of 

submarkets and real estate market cycles. Finally, it will be necessary to explore the 

theoretical underpinnings of the empirical results in much greater detail, especially the 

role of market imperfections in explaining market fragmentation and heterogeneous 

valuation of hedonic features.  
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