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The interactions between shear-free turbulence in two regions (denoted as + and −)
on either side of a nearly flat horizontal interface are shown here to be controlled by
several mechanisms, which depend on the magnitudes of the ratios of the densities,
ρ+/ρ−, and kinematic viscosities of the fluids, µ+/µ−, and the root mean square (r.m.s.)
velocities of the turbulence, u0+/u0−, above and below the interface. This study focuses
on gas–liquid interfaces so that ρ+/ρ− � 1 and also on where turbulence is generated
either above or below the interface so that u0+/u0− is either very large or very small.
It is assumed that vertical buoyancy forces across the interface are much larger than
internal forces so that the interface is nearly flat, and coupling between turbulence
on either side of the interface is determined by viscous stresses. A formal linearized
rapid-distortion analysis with viscous effects is developed by extending the previous
study by Hunt & Graham (J. Fluid Mech., vol. 84, 1978, pp. 209–235) of shear-free
turbulence near rigid plane boundaries. The physical processes accounted for in our
model include both the blocking effect of the interface on normal components of
the turbulence and the viscous coupling of the horizontal field across thin interfacial
viscous boundary layers. The horizontal divergence in the perturbation velocity field
in the viscous layer drives weak inviscid irrotational velocity fluctuations outside the
viscous boundary layers in a mechanism analogous to Ekman pumping. The analysis
shows the following. (i) The blocking effects are similar to those near rigid boundaries
on each side of the interface, but through the action of the thin viscous layers
above and below the interface, the horizontal and vertical velocity components differ
from those near a rigid surface and are correlated or anti-correlated respectively.
(ii) Because of the growth of the viscous layers on either side of the interface, the
ratio uI/u0, where uI is the r.m.s. of the interfacial velocity fluctuations and u0 the
r.m.s. of the homogeneous turbulence far from the interface, does not vary with
time. If the turbulence is driven in the lower layer with ρ+/ρ− � 1 and u0+/u0− � 1,
then uI/u0− ∼ 1 when Re (=u0−L−/ν−) � 1 and R = (ρ−/ρ+)(v−/v+)1/2 � 1. If the
turbulence is driven in the upper layer with ρ+/ρ− � 1 and u0+/u0− � 1, then
uI/u0+ ∼ 1/(1 + R). (iii) Nonlinear effects become significant over periods greater
than Lagrangian time scales. When turbulence is generated in the lower layer, and the
Reynolds number is high enough, motions in the upper viscous layer are turbulent.
The horizontal vorticity tends to decrease, and the vertical vorticity of the eddies
dominates their asymptotic structure. When turbulence is generated in the upper
layer, and the Reynolds number is less than about 106–107, the fluctuations in the
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viscous layer do not become turbulent. Nonlinear processes at the interface increase
the ratio uI/u0+ for sheared or shear-free turbulence in the gas above its linear value of
uI/u0+ ∼ 1/(1 + R) to (ρ+/ρ−)1/2 ∼ 1/30 for air–water interfaces. This estimate agrees
with the direct numerical simulation results from Lombardi, De Angelis & Bannerjee
(Phys. Fluids, vol. 8, no. 6, 1996, pp. 1643–1665). Because the linear viscous–inertial
coupling mechanism is still significant, the eddy motions on either side of the interface
have a similar horizontal structure, although their vertical structure differs.

Key words: air/sea interactions, turbulence theory

1. Introduction
We consider two fluids separated by an interface. Each fluid is in turbulent motion,

and there is no mean flow. The literature (e.g. Brutsaert & Jirka 1984) indicates the
wide range of flow phenomena involving interface motion and the coupling between
the adjacent velocity and scalar fields. The nature of the coupling is characterized by
the ratios of the densities, ρ+/ρ−, the viscosities, µ+/µ−, and the root mean square
(r.m.s.) values of velocity fields far from the interface, u′

+/u′
− (here + and − denote

properties above and below the interface), and by the interface Froude number, which
is defined by

FI =
u2

0

g′L
, (1.1)

where the reduced gravity is

g′ = g
(ρ− − ρ+)

0.5(ρ− + ρ+)
(1.2)

and u0 and L are the velocity and length scales of the forcing turbulence (either
above or below the interface). The Reynolds numbers are taken to be large so that
Re+ = u′

+L/v+ � 1 and similarly Re− � 1.
There are four broad classes of interface motion that are qualitatively different.
(i) Turbulence forced in the lower fluid: when ρ+/ρ− � 1 and FI � 1 and if initially

u′
− � u′

+, turbulence within the lower region is blocked by the interface and drives
fluctuations in the upper region by viscous action

(ii) As ρ+/ρ− and FI increase, turbulence in the lower region produces moving
distortions of the lower interface which produce larger motions in the upper region
by viscous stresses (Brocchini & Peregrine 2001; Fulgosi et al. 2003; Teixeira &
Belcher 2006; Lin et al. 2008).

(iii) Turbulence forced in the upper fluid: when ρ+/ρ− � 1 and FI � 1 and if
initially u′

− � u′
+, turbulence in the upper region is blocked by the interface and

drives fluctuations in the lower region by viscous action
(iv) For larger values of ρ+/ρ− < 1 and for FI ∼ 1 turbulence in the upper region

distorts the interface by driving surface waves (e.g. Belcher & Hunt 1998) and triggers
Kelvin–Helmholtz instabilities so that motions in the lower region are driven by shear
stresses and normal motions of the interface (Teixeira & Belcher 2006). The waves
themselves then further distort the turbulence (Teixeira & Belcher 2002).

In regime (i) the flow is driven by turbulent fluctuations in the lower layer (e.g.
by rain drops impinging on the interface; Takagaki & Komori 2007), which then,
through viscous coupling across the flat interface, drive motions in the upper layer.
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The imposed turbulence is either isotropic or, if anisotropic, statistically orientated
symmetrically (i.e. normal or perpendicular) with respect to the interface so that no
mean flow is generated (Nagata et al. 2006). This coupling also affects transport
across the interface, especially when there is also a turbulent flow in the upper layer
(Komori, Nagaosa & Murakami 1993). Magnaudet (2003) has shown theoretically
why the linear inviscid blocking mechanism of Hunt & Graham (1978) controls the
normal fluctuation of the interface over long periods even when nonlinear effects
become generally significant. But he did not consider the significant changes in eddy
structure that develop over large times. These distortions of the surface and of the
eddy structure near the surface are greater in regime (ii): when ρ+/ρ− ≈ 1, FI � 1 and
Re � 1 motions in region + driven by the lower layer are largely irrotational and are
similar to those outside other non-turbulent–turbulent interfaces (e.g. the edge of a
wake; Phillips 1955; Carruthers & Hunt 1986).

Regime (iii) occurs when turbulent motions in the upper layer drive motions in the
lower layer, such as gas convecting over warmer liquid. Then the gas motions drive,
through viscous shear stresses at the interface, eddying in the lower layer. Depending
on the relative thermal diffusivities (K+/K−), this eddying controls the heat transfer
into the upper layer and affects the buoyancy forces, the latter of which in turn
determines the strength of turbulence in the upper layer and the ‘plume’ or unsteady
‘puff-like’ structure of the large eddies (Hunt et al. 2003).

In regime (iv), when FI is larger, the interface is substantially deflected, and strong
interfacial wave motions are generated, which eventually break down into a layer
of spray droplets and foam. The coupling of the turbulence is first increased by the
surface deflections but eventually decreases as the foam layer forms and isolates the
two flow fields.

Lombardi et al. (1996) considered turbulent pressure-driven flows in a domain half
filled with gas and half filled with liquid, with the interface constrained to be flat but
across which the horizontal velocity and shear stress were continuous. They performed
simulations and investigated the turbulence structure in each case for various values
of the ratio of the fluid densities, namely ρ−/ρ+ = 1, 100, 900 (the latter corresponds
approximately to an air–water interface, where ν−/ν+ = 1/10 and µ+/µ− ∼ 10−2).
Significant differences were found between the turbulent motions above and below
the interface. In particular, they found that for air–water flow, the turbulent motions
in the upper gas layer (+) have a similar streak-like structure to a wall-bounded
turbulent shear flow. But the turbulence in the lower liquid layer (−) has a different
structure because it is driven both by the mean shear and by horizontal fluctuations
of the interface. Although the shear produces a similar streak-like structure, there are
qualitative and quantitative differences with the upper layer turbulence. For example,
the turbulent intensities and the Reynolds shear stress near the interface increase
with ρ−/ρ+, and the horizontal velocity fluctuations on the liquid side develop a
peak at the interface when ρ−/ρ+ =900 (but not for the case ρ−/ρ+ = 100, where
these fluctuations are damped by the viscous stresses at the interface, and they peak
below the interface). Turbulent kinetic energy production and dissipation rates near
the interface are about the same in the liquid as in the gas. They also examined the
instantaneous flow structure near the interface, using a conditional-sampling quadrant
analysis of the Reynolds stress contributions and visualization of quasi-streamwise
vortices. In the gas, they found that ‘sweep’ (or fourth-quadrant) events occur with
high probability over regions with large interfacial stress, while ‘ejection’ (second-
quadrant) events occur over low-stress regions. This behaviour is similar to that
in turbulent boundary layers over a rigid surface (e.g. Kim, Moin & Moser 1987;
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Guezennec, Stretch & Kim 1990). In the liquid motions, however, this correlation of
sweeps and ejections with the local instantaneous shear stress was not observed. They
concluded that turbulence in the liquid is relatively more ‘inactive’. The numerical
simulations provide valuable data but do not explain, for example, why the structure
of the turbulent motions in the liquid changes as the density ratio ρ−/ρ+ increases.
It is also interesting to consider how turbulence in the upper layer gas is affected by
turbulence in the liquid layer.

Here we investigate these processes by using rapid-distortion theory. The
mechanisms are analysed by calculating the ‘rapid’ response of initially homogeneous
shear-free turbulence to the presence of the interface, so as to calculate how the
velocity fluctuations are coupled dynamically and kinematically across the interface.

Rapid-distortion theory (referred to here as RDT) is formally valid only over a short
period following a sudden change of the boundary conditions or the mean flow when
nonlinear interactions between eddies are relatively small. However, in many distorted
flows, turbulence statistics such as ratios of moments tend to vary slowly with time
according to RDT predictions and, as measurements and simulations demonstrate,
also over longer times of order TL ∼ L0/U0. Hunt & Graham (1978), Townsend (1976),
Hunt & Carruthers (1990) and Magnaudet (2003) developed theoretical arguments
to explain why the nonlinear effects are weak near interfaces. The present analysis
applies to initially homogeneous shear-free turbulence near nearly flat fluid interfaces
by firstly considering thin viscous layers above and below the interface and secondly
using these solutions to provide coupling of the fluctuations in the source layers.
The Kelvin–Helmholtz instabilities and waves are negligible for the parameter regime
considered where FI � 1. The results of the analysis also indicate some of the key
coupling/transfer processes for turbulent shear flows.

2. Mathematical formulation of the problem
Suppose that initially a fluid of density ρ− lies in z < 0 below a fluid of density

ρ+ in z > 0. Then at time t = 0 the fluid in the lower region z < 0 (region −) is set

into homogeneous turbulent motion, u
(H )
− , with velocity scale u0, length scale L0 and

Reynolds number Re = u0L0/ν � 1. There is no mean shear so that (for small times)
ū = 0. When the turbulence is generated the interface transmits a ‘rapid’ distortion
of the turbulence in the lower fluid layer. Pressure fluctuations generated in the two
layers match at the interface, leading to the deformation of the interface, with an
amplitude that depends on the Froude number FL (Fernando & Hunt 1997). In this
paper we focus on flows in which FL � 1 and the interface is flat (the dynamical
condition for which is given in the Appendix) so that the vertical velocity fluctuations
are zero at z = 0. The flow in the upper layer is then driven by the continuity of
horizontal viscous stresses at the interface. This coupling is analysed here using RDT,
when the nonlinear interactions are weak compared with the effects of the boundary
conditions. The analysis is then valid for a time t that is smaller than an eddy turnover
time L0/u0, and hence it is valid for longest times for the largest eddies, which are
also the most energetic (Hunt & Graham 1978, hereafter HG).

For short times when the nonlinear interactions between turbulent eddies are
small, the response to the sudden imposition of the interface can be described by
the linearized Navier–Stokes equations (in both layers), together with the continuity
equation,

∂u
∂t

= − 1

ρ
∇p + ν∇2u, ∇ · u = 0. (2.1)
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When the Reynolds number is large, Re � 1, the viscous effects are important only
in narrow boundary layers on either side of the interface; the bulk of the flow is
inviscid.

The mathematical theory that follows focuses on regimes (i) and (iii). Similar
methods of solution are used for each regime, although the solutions differ in
important respects. Since the governing equations and boundary conditions are linear,
linear superposition can be used to study the combined effects of turbulence generated
in the upper and lower layers simultaneously (e.g. Wu & Fernando 1999).

3. Mathematical formulation of the problem, mechanisms and scaling
3.1. Turbulence driven in the lower layer: regime (i)

First consider the evolution of turbulence on either side of the interface when initially
there is homogenous turbulence, u(H )

− , in the lower fluid z < 0 only. Its r.m.s.
velocity is u0− abbreviated to u0. The effect of the sudden imposition of the interface
is to distort the turbulence into a four-layer structure, which is shown schematically
in figure 1. As discussed below, the solution to the linear equations (2.1) are then
written as three components, which are also developed in HG, describing homogeneous
(H ), source (S ), and viscous (V ) layers. Here these components are augmented by a
component arising from the viscous layer–source layer interaction denoted (V, S ) and
also by coupling across the interface. Hence the solution for the velocity, u =(u, v, w),
is written as

u = u− = u(H )
− + u(S)

− + u(V )
− + u(V,S)

− , z < 0,

u = u+ = u(V )
+ + u(V,S)

+ , z > 0.

}
(3.1a)

The initial conditions at t =0+ are as follows:

u− = u(H )
− , z < 0; u+ = 0, z > 0. (3.1b)

The boundary conditions are

u− → u(H )
− as z → −∞,

u+ → 0 as z → ∞.

}
(3.1c)

At the interface, the velocity and stress are continuous:

(u−, v−) = (u+, v+), w− = w+ = 0,

µ−

(
∂u−

∂z
,
∂v−

∂z

)
= µ+

(
∂u+

∂z
,
∂v+

∂z

)
,

⎫⎪⎬
⎪⎭ at z = 0. (3.1d )

3.2. Source layer S−

The flat interface is imposed at t = 0, and it remains flat; then the dynamic condition
for the interface is satisfied (see the Appendix). The kinematic boundary condition
that the vertical velocity is zero (i.e. w− = 0) is satisfied at z = 0 by the addition of a
new velocity field u(S)

− such that at the surface w
(S)
− (z = 0) = −w

(H )
− (z =0). The u(S)

−
velocity field may therefore be thought of as generated by a collection of ‘virtual
sources’ on the interface that lead to a source layer, with a depth of order L0. The
linearized vorticity equation, derived from (2.1), reduces (as in HG) to

∂ωi−

∂t
≈ ν−∇2ωi−. (3.2a)
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u+
(V, S)

u+
(V )

u–
(V)

u–
(V, S )

uB–

u–
(V)

u(H)

u(z)

S+

S–

H–

V+

V–

uI

z

uB

(a)

(b)

Figure 1. Schematic diagrams of (a) the eddy structure and (b) the velocity profile for regime
(i) when turbulence is forced in the lower fluid and when coupling across the interface
produces circulations of the opposite sign in the upper fluid. The dashed lines in (a) denote
the contribution of the viscous perturbation in the lower layer.
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This shows that, for Re � 1, any vorticity generated by the introduction of the
interface at t = 0 is confined to a viscous boundary layer of thickness δ− below the
interface so that for −L0 � z < −δ−, ∂ωi−/∂t ≈ 0. Therefore in the source layer u

(S)
− is

irrotational (HG).
An important feature of the flow distortion in the source layer is that the irrotational

contributions in the source layer lead to the surface convergence and divergence
∂u/∂x+∂v/∂y being initially larger and more organized than in H−. But this decreases
eventually with time. This may explain why surface waves can be either generated
or suppressed by the turbulence under the surface (Rozenberg, Matusov & Mellvile
1998).

Since the boundary has the effect of blocking the velocity fluctuations, it is
convenient in the later analysis to define the ‘blocked’ velocity field at the interface
as

uB = u(H )(z → 0) + u(S)
− (z → 0). (3.2b)

Hence uB has zero vertical velocity by construction of u(S)
− . Notice that, since both

u(H )
− and u(S)

− are of order u0, the blocking velocity in the source layer, uB , is also of
the order of the forcing turbulence, u0.

3.3. Viscous layers V− and V+

The presence of the flat interface initiates the growth on either side of the interface
of thin viscous boundary layers, with thicknesses

δ± ∼ (ν±t)1/2 (t < T0 ∼ L0/u0). (3.3a)

Continuity of the horizontal viscous shear stress τ across the interface mediates
coupling of the horizontal velocity field across the interface.

The strength of coupling across the interface can be understood with scaling
arguments. On referring to figure 1(b), we see that the velocity at the top of the
source layer S− is uB and the velocity at the interface is uI . The change in velocity
across the viscous layer V− is u(V )

− . The motions in the upper source layer S+ are
small, and therefore the change in velocity across the upper viscous layer V+ is uI .

Scaling estimates for uI and u(V )
− can then be found by matching the fluid velocity

and stress at the interface:

uI = uB + u(V )
− , (3.3b)

µ+

∂u+

∂z
= µ−

∂u−

∂z
. (3.3c)

The velocity gradients can be estimated to be ∂u+/∂z ∼ uI /δ+ and ∂u−/∂z ∼ u(V )
− /δ−

– if the very small gradient in uB is ignored (it is retained in the precise analysis in
§ 4). Combination of these estimates then yields

uI ∼ uB/(1 + R−1), (3.4a)

u(V )
− ∼ −uB/(1 + R), (3.4b)

where the coupling parameter is

R =
ρ−

ρ+

(
ν−

ν+

)1/2

� 1. (3.4c)
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These scaling estimates have several noteworthy features. Firstly, since there is no
net horizontal force acting across the interface, conservation of momentum (given in
(4.6a)) integrated from below the lower viscous layer to above the upper viscous layer
shows that the depth-integrated transport in the upper and lower layers balance,∫ 0

−δ−

ρ−u(V )
− dz+

∫ δ+

0

ρ+u(V )
+ dz = 0, (3.5)

so that ρ−u(V )
− δ− ∼ −ρ+uI δ+, which implies that uI ∼ −R u(V )

− (confirming (3.4a,b)).
Secondly, for this regime, (3.4a) implies that the interfacial velocity, uI , is of the same
order as the blocking velocity, uB , and hence the imposed turbulence. Notice that uI

is independent of time because the depths of both viscous layers increase at the same
rate. Hence, although the analysis is formally valid only for short times, we might
expect this result to remain valid for longer times. Thirdly, (3.3c) and (3.4b) show that
the maximum horizontal velocity occurs at the top of the lower source layer S−, below
the interface and the lower viscous layer V− (as sketched in figure 1b). Fourthly, when
R is large, the change in velocity over the lower viscous layer, u(V )

− , is small. Hence the
horizontal components of vorticity are small in the lower viscous layer, V−, below the
interface. As the viscous layer deepens over longer times, of order t ∼ (L0/u0)Re1/2,
the viscous layer becomes δ− ∼ Lo, and the horizontal vorticity is reduced over the
whole source layer. The vertical component of the vorticity, in contrast, is unaffected
by the viscous layer. Then, as the numerical solution of Tsai (1998) and some of
the photographs of Brocchini & Peregrine (2001) nicely demonstrate, in decaying
or remotely generated turbulence the large-scale near-surface flow is dominated by
vortices normal to the interface.

3.4. Vertical motions induced by the viscous layers and (V, S) contributions

The velocity fields in V− and V+ have, in general, a non-zero horizontal divergence.
Hence, there is a vertical velocity at the outer edge of V− that drives a perturbation in
the source layer with irrotational velocity fluctuations denoted by u(V,S)

− . Similarly,
vertical motions are produced in the upper layer at the outer edge of V+, which leads

to an irrotational source layer, with depth of order L0 and with velocity u(V,S)
+ , in the

upper fluid. This mechanism of coupling with the upper fluid is more efficient than
purely viscous coupling, which can only diffuse out to the viscous length δ+. It is
similar to Ekman pumping in large-scale atmosphere–ocean dynamics (see e.g. Gill
1982, p. 326).

By continuity, the largest eddies lead to a vertical velocity in the upper source layer,
S+, of order

w
(V,S)
+ ∼ (δ+/Lo)uI ∼ Re−1/2

(
u0t

L0

)1/2

u0, (3.6)

which is much smaller than u0 for t � T0 = L0/U0. Equation (3.5) can be used to
determine the relative phases of the vertical velocities. The vertical velocities associated
with the viscous motions at the edges of V− and z/L0 → 0 are determined from
continuity so that on taking the horizontal divergence of (3.5), and taking care with
the signs, the vertical (V, S ) velocities are found to be related by

ρ−w(V,S)
− = ρ+w

(V,S)
+ . (3.7)

That is, the vertical ‘pumping’ velocities have the same sign. As discussed in § 6, once
all the components of the solution are added together the phasing is rather different:
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upwelling in the upper fluid is located above upwelling in the lower fluid. This phase
relationship promotes scalar transport across the interface.

3.5. Turbulence driven in the upper layer: regime (iii)

If the turbulence is now driven in the upper layer, with the same conditions of small
Froude number and large density jump, then there is a qualitative difference in the
structure of turbulence across the interface – not merely a 180◦ reflection – as shown
schematically in figure 2(b).

The velocity fields are expressed as

u+ = u(H )
+ + u(S)

+ + u(V )
+ + u(V,S)

+ , z > 0, (3.8a)

u− = u(V )
− + u(V,S)

− , z < 0. (3.8b)

The thicknesses of the viscous and source layers are the same, but the higher density
and viscosity of the fluid in the lower layer reduce the velocity fluctuations at the
interface, denoted uI , to a value much less than the driving turbulence. On referring
to figure 2(b), we see that the velocity at the bottom of the upper source layer, S+, is
uB and the velocity at the interface is uI . The change in velocity across the viscous
layer V+ is u(V )

+ . The motions in the lower source layer, S−, are small, and therefore
the change in velocity across the lower viscous layer, V−, is uI . Scaling estimates for
uI and u(V )

+ can be found by matching the fluid velocity and stress at the interface,
using the methods in § 3.3, which yields

uI ∼ uB/(1 + R), (3.9a)

u(V )
+ ∼ −uB/(1 + R−1). (3.9b)

The solutions are similar to (3.4) for turbulence driven in the lower layer, but with
a 180◦ reflection and with R → R−1. Hence at the interface the velocity fluctuations
are much reduced, and the coupling across the interface is weaker by a factor R−1

when compared with the case in which turbulence is driven in the lower layer. As in
§ 3.4, non-zero divergence in the lower viscous layer drives irrotational motion in a
lower source layer, S−, of magnitude

u(V,S)
− ∼ u(V )

− (δ−/Lo) ∼ uI (δ−/L0) ∼ R−1u0(δ−/L0), (3.10)

again a factor R−1 smaller than the coupling when the turbulence is driven in the
lower layer.

Over longer periods of time, if the Reynolds number of the fluctuations in the
lower viscous layer is large enough (i.e. u

(V )
− δ− > 102) inflection points in this layer

produce a layer of turbulent eddies which spreads downwards and whose length scale
Lx grows with depth,

u′
− ∼ uI (−z/δ−)−1, Lx ∼ (−z), for z < −δ− (3.11)

(Thompson & Turner 1975) (see figure 2c). In practice this layer will be constrained
by stratification or Coriolis effects.

4. Modal solutions
The velocity field is expressed as a Fourier series, assuming horizontal homogeneity:

u(x, t) =
∑

k

û(k1, k2, z, t)exp[i(k1x + k2y)], (4.1)
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u(H)

u(z)

(c)

(a) (b)

H+

S+

V+

V–

S–

uI

z

uB

u+
(V )

Figure 2. Schematic diagrams of (a) the eddy structure distorted by linear processes, (b) the
eddy structure distorted by nonlinear processes (e.g. by shear in the upper fluid and nonlinear
eddy–eddy interaction in the lower fluid) and (c) the velocity profile for regime (iii) when
turbulence is forced in the upper fluid.
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where û are the Fourier components at each wavenumber k. We initiate the analysis
by calculating the response to a single Fourier mode of turbulence û(H )

− in the lower
liquid layer to the sudden imposition of the interface at z =0 and t = 0. Since we
are using a linearized analysis, we can subsequently use superposition to combine a
spectrum of such modes to represent a general turbulent velocity field (e.g. Townsend
1976). As before, it is assumed that ρ−/ρ+ � 1 and FI � 1 so that the interface
remains flat.

4.1. Turbulence driven by the lower layer: regime (i)

In the homogeneous region H− far below the interface −z/L0 � 1, the turbulence
is unaffected by the interface so that u−(x, t) → u(H )

− (x, t), where the contributions
from the regions S− and V− are zero. Following HG, for times small compared with
the Lagrangian time scale of the turbulence, t � T0 = L0/u0, the velocity fields in this
region remains unchanged. Hence

u(H )
− (x, t) = u(H )

− (x, 0). (4.2a)

In the H− and S− regions the vorticity is also unchanged so that

ωi−(x, t) = ωi−(x, 0) = ω
(H )
i− (x, 0). (4.2b)

By considering a single plane-wave Fourier mode in the homogeneous region given
by u(H )

− (x, t) = û(H )
− (k, 0)exp[i(k1x + k2y + k3z)], we now calculate the flow resulting

from this homogeneous mode in the other regions of the flow.

4.1.1. Source layer S−

At times t � 0+ the velocity field in the source region, outside the interfacial viscous
region, is given by

u−(x, t) = u(H )
− (x, 0) + u(S)

− (x, 0) + u(V,S)
− (x, t). (4.2c)

As explained above, the velocity component u(V,S)
− arising from the viscous region

is of order uI (δ−/L0) and can be neglected to first order for large Reynolds numbers.
From (4.2b) it follows that the velocity field u(S)

− is irrotational and can be expressed
in terms of a velocity potential, namely u(S)

− (x) = −∇φ
(S)
− (x), so that

∇2φ(S)
− (x) = 0. (4.3a)

Its boundary conditions are ∇φ
(S)
− → 0 where z/L0 → −∞ and u · n = 0 (where n is

the unit normal) at z/L0 = 0 and t � 0 so that −∂φ
(S)
− /∂z = w

(S)
− = −w

(H )
− on z/L0 = 0.

For a single mode, namely

φ(S)
− (x) = φ̂(S)

− (k1, k2, z)exp[i(k1x + k2y)], (4.3b)

the amplitude φ̂
(S)
− satisfies (∂2/∂z2 − k2

12)φ̂
(S)
− = 0, where k2

12 = k2
1 + k2

2 . The solution
subject to the above boundary conditions is

φ̂(S)
− (x) = ŵ(H )

−
exp(k12z)

k12

. (4.3c)

Hence,

u(S)
− = −ŵ(H )

−

(
ik1

k12

,
ik2

k12

, 1

)
exp(k12z)exp[i(k1x + k2y)]. (4.4)

Notice how u(S)
− → 0 over a distance of order k−1

12 from the interface. For a spectrum
of modes where the most energetic length scales are of order L0, these solutions
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show how the effects of the interface decay on a scale L0 from the interface. Near
the boundary, as z/L0 → 0, after the introduction of the interface for 0< t � T0 the
inviscid blocking solution follows from the above expression as

uB =
(
u(H )

− + u(S)
−

)
(z → 0) =

[(
û(H )

− + ŵ(H )
−

ik1

k12

)
,

(
v̂(H )

− + ŵ(H )
−

ik2

k12

)
, 0

]
× exp[i(k1x + k2y)]. (4.5)

The blocking velocity has only horizontal components and is a function of only
horizontal position, i.e. uB(x, y) = (uB, vB, 0). This is used in the next section as a
boundary condition for calculating the flow in the interfacial viscous regions V−
and V+.

4.1.2. Viscous interfacial layers V− and V+

In the previous section we calculated the kinematic blocking effect of the interface
on the homogeneous component of the flow u(H )

− . At time t =0+ the introduction
of the interface gives rise to a discontinuity in the horizontal velocity field at z = 0.
We now calculate the viscous diffusion of vorticity and horizontal momentum in the
interfacial region, using linearized boundary layer theory and the assumption of large
Re (as in HG). In the boundary layer approximations, pressure variations across the
thin viscous regions are negligible so that the horizontal velocity components satisfy

∂u(V )
±

∂t
= ν±

∂2u(V )
±

∂z2
. (4.6a)

Similarity solutions for the interfacial region subject to continuity of the velocity
and horizontal shear stress (τx, τy) = µ∂/∂z(u, v) at z =0 have been obtained with the
initial and boundary conditions given by

u(V )
− = uB at t = 0+, z � 0, (4.6b)

and

u(V )
− → uB as z/δ− → −∞ and u(V )

+ → 0 as z/δ+ → ∞, (4.6c)

where δ− = (2ν−t)1/2 and δ+ = (2ν+t)1/2 are the vertical length scales of the viscous
regions on either side of the interface. Matching the interface velocity and horizontal
stress at z = 0 leads to

u+(x, t) = uI (1 − erf(z/δ+)), for z > 0, (4.7a)

and

u−(x, t) = {uB + (uI − uB)(1 + erf(z/δ−))}, for z < 0. (4.7b)

Here uI (x, y) = (uI , vI , 0) is the fluctuating velocity at the interface, which, like
uB(x, y) = (uB, vB, 0), has only horizontal components, and therefore u− and u+ also
have only horizontal components in the viscous layers. Furthermore, uI is given by

uI =
R

1 + R

(
uB −

√
π

2
δ−

∂uB

∂z

)
, (4.7c)

where we define ∂uB/∂z = ∂/∂z(u(H )
− + u

(S)
− ) as z/L0 → 0. Equation (4.7c) is consistent

with (3.4a): δ−∂uB/∂z ∼ uBδ−/L0 ∼ uBRe−1/2 so that to leading order uI = uBR/

(1 + R).
Note that the thickness of both viscous layers grows as t1/2 because the unsteady

inertial forces are balanced by the viscous growth rate of the layers and uB is
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effectively constant on a time scale T0. We neglect the small contributions from the
(time-dependent) u(V,S) component in calculating the interfacial viscous region. Note
that as R → ∞, ∂u−/∂z → 0 at z = 0, as expected for a free surface.

For the boundary layer approximations used for calculating the viscous diffusion
of horizontal momentum across the interfacial region we ignore the (small) vertical
velocity, which in V− has two parts: the blocking velocity wB− which increases with
|z|, determined by homogeneous and source contribution near the interface, and the
viscous part that is constant and is driven by the horizontal divergence of the viscous
effects in V−. By contrast, in V+, w+ has just one part, which arises from the viscous
effects. From (3.7) the mass transport associated with the two viscous contributions
is equal:

ρ+w
(V )
+ (z/δ+ → ∞) → −(∇ · uI )

ρ+δ+

π1/2
, (4.8a)

ρ−w(V )
− (z/δ− → ∞) → −(∇ · uI )

ρ+δ+

π1/2
. (4.8b)

Note that uI has only horizontal components. From (4.5), (4.7) and (4.8a) the full
profile for a single mode is

ŵ+(z/δ+ > 0) = −∇ · ûB · R

1 + R

{
z(1 − erf(z/δ+)) +

δ+√
π

(1 − exp[ − (z/δ+)2])

}
× exp(−k12z), (4.8c)

where ∇ · ûB = i{k1(û
(H ) + ŵ(H )ik1/k12) + k2(v̂

(H ) + ik2ŵ
(H )/k12)}.

4.1.3. Source region S+

As shown in the previous section, a horizontal divergence in the interfacial velocity
field gives rise to a vertical velocity field at the outer edge of the viscous regions.
The viscous layer therefore acts like a source distribution which drives an irrotational
velocity field in the region S+ above the interface. The velocity in this region, due

to the turbulence below the interface, can therefore be written as u+ = u(V,S)
+ , where

u(V,S)
+ = −∇φ

(V,S)
+ in which

∇2φ
(V,S)
+ = 0. (4.9a)

The boundary conditions are

u(V,S)
+ → 0 as z/L0 → ∞ and w

(V )
+ (z/δ+ → ∞) = − (∇H · uI )

δ+

π1/2
. (4.9b)

The solution in S+ is (for a single mode)

u(V,S)
+ (x, t) = −(∇ · uI )

δ+

π1/2

(
ik1

k12

,
ik2

k12

, 1

)
exp(−k12z)exp[i(k1x + k2y)]. (4.10)

Note that since |uI | ∼ u0 the magnitude of u+ scales as (δ+/L0)u0 and decays away
from the interface on a scale of order L0 (the length scale of the homogeneous
turbulence in H−).
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4.2. Turbulence driven by the upper layer: regime (iii)

The analysis for this case (described in § 3.5) when Re � 1 follows that in § 4.1. Here
L0 defines the scale of the upper layer fluctuations. In the upper viscous layer, if the
blocking component is defined as

uB = u(H )
+ (z → 0) + u(S)

+ (z → 0), (4.11)

the horizontal component is given by matching the stress and the horizontal
components of velocity at z = 0. Then the horizontal velocity field in V+ is

u+(x, t) = {uB + (uI − uB)(1 − erf(z/δ+))}, (4.12a)

where the velocity at the interface is given by

uI =
1

1 + R
uB. (4.12b)

Below the interface

u−(x, t) = uI (1 + erf(z/δ−)). (4.12c)

For z < −δ−, there is a weak irrotational flow driven by the divergence in the lower
viscous layer (i.e. in the linear regime when t < T0):

u− = u(V,S)
− ∼ û(V,S)

− e−k12z, (4.13)

where (as in (4.10)) |û(V,S)| ∼ (δ−/Lo)|u(V )| ∼ (δ−/Lo)uI .

5. Statistics of the inhomogeneous turbulence
5.1. Spectrum of the forcing turbulence

Once either assumptions or measurements are made to specify the forcing turbulence
the modal solutions derived above can be used to calculate statistics of the
inhomogeneous velocity fields near the interface. For simplicity assume that the
turbulence far from the interface, u(H ), is isotropic with a spectrum tensor of
the form Φij (k) = (δij − (kikj/k

2))(E(k)/4πk2), where k = |k| = kiki and E(k) is the
spectral energy density function. This assumption can be generalized to an anisotropic
turbulence, following Nagata et al. (2006). HG used two forms for the spectral energy
density, namely

E(k) =
u2

0g1k
4L5

0(
1 + g2k2L2

0

)17/6
, (5.1a)

where g1 and g2 are coefficients, which represents very high-Reynolds-number
turbulence, and

E(k) =
8

π

u2
0k

4L5
0(

1 + k2L2
0

)3
(5.1b)

which represents moderate-Reynolds-number turbulence. These forms are suitable for
calculating the statistics of the blocking solutions in S− for regime (i) or S+ for regime
(iii). However, for the viscous interfacial layer, the model developed here assumes that
the scales of the impinging eddies are larger than the thickness of the viscous layer
(which is of the order of the Taylor micro-scale). The smaller, inertial-range eddies
do not penetrate the vortical viscous layer (e.g. Zaki & Saha 2009), because of the
shear sheltering mechanism (Hunt & Durbin 1999). It is therefore consistent to use a
spectral form with a rapid decay for high wavenumbers in order to concentrate on the
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interaction of the larger, energy-containing scales. The exponential form of spectrum
approximates to laboratory experiments and moderate-Reynolds-number numerical
simulations (Townsend 1976; Nagata et al. 2006), i.e.

E(k) =
1

(2π)1/2
u2

0k
4L5

0 exp

(
−1

2
k2L2

0

)
. (5.1c)

We examine regimes (i) and (iii) where u(H )
+ = 0 and uH

− =0, respectively. Thus
initially the turbulence exists only below or above the interface. The derivation of
statistics for cases including turbulence on both sides of the interface can be obtained
by straightforward superposition, provided u(H )

− and u(H )
+ are uncorrelated.

5.2. Mean square velocity fluctuations in the source and viscous layers

Expressions for the mean square velocity fluctuations in the various layers of the flow
follow from the modal solutions derived in § 4. The results in the source layers, S−
and S+, are the same as calculated in HG, if we ignore the small contributions from

u(V,S)
− , which are O(Re−1/2) (see also Calmet & Magnaudet 2003 for measurements).

In the limit z/L0 → 0, but outside the viscous region V−, V+, the results for the source
layer yield

u2
B =

(
u

(H )
− (0) + u

(S)
− (0)

)2
+

(
v

(H )
− (0) + v

(S)
− (0)

)2
= 3u2

0 and
(
w(H )(0) + w(S)(0)

)2
= 0

(5.2)

for any type of homogeneous forcing turbulence u(H ), independent of the form of
E(k), including anisotropic turbulence and homogeneous shear flows near a plane
boundary (Lee & Hunt 1988; Mann 1994; Nagata et al. 2006). As (5.2) demonstrates
there is a transfer of vertical kinetic energy into the horizontal components as the
wall is approached. The full profiles of the velocity variances in the source regions
do depend on the form of E(k). The exponential cutoff spectrum (5.1c), with reduced
energy at smaller scales, predicts much stronger damping of the vertical velocities
near the wall when compared with the other spectral forms (5.1a,b). Turbulence
measurements below a free surface were compared with theory by Hunt (1984) and
Brutsaert & Jirka (1984).

Consider now the solutions in the viscous layer, first in regime (i), when the
forcing turbulence is in the lower layer. From (4.7ab), when the Reynolds number is
sufficiently large so that δ− � L0, the profile of the velocity variance is

u2
+ = u2

I (1 − erf(z/δ+))2, z > 0, (5.3a)

u2
− =

(
u(H )

− (z) + u(S)
− (z)

)2
+ u2

B− · P−(z), z < 0, (5.3b)

where the projection operator is given by

P−(z) =
1

(1 + R)2
(1 + erf(z/δ−))2 − 2

1

1 + R
(1 + erf(z/δ−)) (5.3c)

and

u2
I = u2

B−R2/(1 + R)2. (5.3d )

Figure 3 shows profiles of the r.m.s. of the horizontal components of
velocity variance, u′/u0 = (u2)1/2/u0, when the forcing turbulence is isotropic.
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Figure 3. Vertical profiles of the horizontal velocity fluctuations across the viscous layers,
when isotropic turbulence is forced in (a) the lower fluid and (b) the upper fluid: solid line,
R = 5; dashed line, R = 10; dot-dashed line, R = 100.

Figure 3(a) shows the case in which isotropic turbulence is forced in the lower
layer, and figure 3(b) shows the one in which isotropic turbulent is forced in the
upper layer. In each case, results are shown for δ+/L0 = 0.01 and δ−/L0 = 0.005
(so that, for example, if L0 = 1 m and u0 = 1 m s−1, then ν+ =5 × 10−5 m2 s−1

and ν− = 1.25 × 10−5 m2 s−1) and for R = 5, 10 and 100 (so that, for example, if
ρ+ = 1 kgm−3, then ρ− = 10, 20 or 200 kgm−3).
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The profiles in figure 3(a) show that when R is large, the velocity profile within
the lower layer is affected little by the upper fluid even in the viscous layer. If the
forcing turbulence is isotropic so that the kth component of the forcing turbulence

has variance (u(H )
k )2 = u2

0, then the blocking velocity is the same in each horizontal

direction and, from (5.2), is given by u2
B = (3/2)u2

0. The variance of the interfacial
velocity is then also the same in each horizontal direction and is given by

u2
I =

3

2

R2

(1 + R)2
u2

0. (5.3e)

Hence, when R is large, u′/u0 ≈ (3/2)1/2 ≈ 1.22 right up to the interface. Deeper
into the lower layer the blocking effect of the interface decreases, and the velocity
fluctuations reduce to u′/u0 = 1 over depths greater than the integral length scale. For
the smaller values of R the velocity fluctuations across the viscous layer reduce to
the value of the interfacial fluctuations. Hence, since the fluctuations also decay with
depth, the maximum velocity fluctuations are in the lower fluid interior, just below
the viscous layer at z ≈ −2δ−. Figure 3(a) also shows that velocity fluctuations, of
order uI , are also driven in the upper fluid and decay over the depth of the upper
viscous layer. Above that are only the very small (V, S ) solutions.

Consider now regime (iii), when the turbulence is forced in the upper fluid. From
(4.12a,b,c) for δ+ � L0,

u2
+ =

(
u(H )

+ (z) + u(S)
+ (z)

)2
+ u2

B+ · P +(z), z > 0, (5.4a)

u2
− =

u2
B+

(1 + R)2
(1 + erf(z/δ−))2, z < 0, (5.4b)

where the projection operator is given by

P+(z) =
R2

(1 + R)2
(1 − erf(z/δ−))2 − 2

R

1 + R
(1 − erf(z/δ−)) (5.4c)

and

u2
I = u2

B+/(1 + R)2 (5.4d )

Following the reasoning leading to (5.3e), when the forcing turbulence is isotropic,
the variance of the interfacial velocity is the same in each direction and is given by

u2
I =

3

2

1

(1 + R)2
u2

0 (5.4e)

Figure 3(b) shows vertical profiles of the velocity fluctuations when the turbulence
is forced in the upper fluid. As in the case of turbulence forced in the lower
fluid, turbulent fluctuations increase towards the interface through the blocking
mechanism and are then reduced across the viscous layer, leading to maximum
velocity fluctuations just above the upper viscous layer. There is a qualitative
difference, however, from the case of turbulence forced in the lower fluid, namely
that the fluctuations at the interface are small for large values of R. Consequently,
fluctuations in the lower fluid are also small.

5.3. Cross-correlations near the interface

The RDT solutions can be used to investigate cross-correlations between the velocity
fields on the same or different sides of the interface. Following Hunt (1984), we define
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Figure 4. Sketches of the cross-correlation of the horizontal velocity, normalized by their
value at z1, when isotropic turbulence is forced in (a) the lower fluid and (b) the upper fluid:
curve (a1), z1 = − δ−; curve (a2), z1 = − L0; curve (b1), z1 = δ+; curve (b2), z1 = L0.

the cross-correlation between the horizontal velocity at z1 and z2 to be normalized by
the velocity at one point, namely

R̂uu =
u(z1)u(z2)

u2(z1)
. (5.5)

The magnitude of this correlation indicates the strength of coupling between the
turbulence on either side of the interface. If z1 = δ−, then the cross-correlation can
be used to investigate coupling of the flows near the interface, such as the streak
motions in the coupled viscous sublayers, described in Lombardi et al. (1996) and
Lee, Moin & Kim (1997). The solutions developed in § 4 demonstrate that there is a
strong correlation between fluctuations across the interface within the viscous layers
when turbulence is forced in the lower layer, and if z1 = δ−, then

R̂uu(z1 = δ−, z) =
R

1 + R
(1 − erf(z/δ+)), z > 0, (5.6a)

R̂uu(z1 = δ−, z) = 1 − 1

1 + R
{1 + erf(z/δ−)} , −δ− < z < 0. (5.6b)

Profiles are sketched in figure 4(a). Across the viscous layers there is a strong
correlation, which drops towards the outer edge of the viscous boundary layer in
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the upper fluid. Above this layer there remains a small correlation with the (V, S )
components of the motion. The correlation with horizontal fluctuations below the
viscous layer decays through the blocking layer over the integral length scale of the
forcing turbulence.

When the turbulence is forced in the upper layer and z1 = δ+ the cross-correlation
across the viscous layers is much weaker:

R̂uu(z1 = δ−, z) = 1 − R

1 + R
(1 − erf(z/δ+)), δ+ > z > 0, (5.7a)

R̂uu(z1 = δ−, z) =
1

1 + R
{1 + erf(z/δ−)} , z < 0. (5.7b)

Profiles are sketched in figure 4(b). The correlation remains large across the upper
viscous layer, but because the interfacial fluctuations are small when R is large (5.4e),
it drops markedly across the interface. We return to this finding in connection with
previous computations in § 6.

Consider now the correlations in the vertical velocity. Since the vertical velocity
fluctuations are small across the interface, it is necessary to use a different measure of
the cross-correlation. Here we use the two-point velocity correlation normalized on
the r.m.s. velocity at each point, namely

Rww(z1, z2) =
w(z1)w(z2)(

w2(z1) w2(z2)
)1/2

. (5.8)

Consider the case of turbulence forced in the lower fluid. Following the analysis
through demonstrates that a region of upwelling in the lower layer leads to divergence
at the interface through the blocking mechanism. Viscous coupling across the interface
then leads to divergence in viscous layer in the upper fluid and therefore to a
region of downwelling in the source layer above. This set-up is shown schematically
in figure 1(a). In this case Rww → −1, and the vertical velocity fluctuations are
in perfect anti-correlation within the interfacial viscous regions and decay to zero
exponentially over length scale L0 in the regions on either side of the interface. The
same reasoning follows through to the case in which turbulence is forced in the upper
fluid.

6. Estimates of nonlinear effects and comparison with simulation
If the Reynolds number is high enough, the shearing motions in the viscous layers

become unstable, and a new structure of the interface turbulence emerges. The results
of direct numerical simulation studies for the different regimes provide useful insight
into the nonlinear mechanisms.

In regime (i), when the turbulence is generated in the liquid layer, the Reynolds
number of the fluctuations in the viscous layer below the surface is

Re
(i)
δ−

=
	u δ−

ν−
, (6.1)

where the velocity difference across the layer, 	u = uI/R, is the appropriate velocity
scale to diagnose instability of the layer. Since δ− ∼

√
T0ν− ∼ L0Re−1/2

− , it follows that

Re
(i)
δ−

∼ Re1/2
− /R. (6.2a)
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For the viscous layer in the lower fluid

Re
(i)
δ+

=
uI δ+

ν+

∼ Re1/2
−

(
ν−

ν+

)1/2

. (6.2b)

For an air–water interface, when R is approximately 300, and for typical geophysical
parameter values where Re− ∼ 104–105, the Reynolds number of the water-side
boundary layer is much smaller than in the bulk of the flow, and additional turbulence
is typically not generated there. The Reynolds number of the air-side boundary layer
is typically large enough to generate turbulence, and thence turbulence in the upper
layer.

In regime (iii), when turbulence is generated in the upper layer, the liquid acts
almost like a rigid surface because uI ∼ u0+/R. The Reynolds number of the upper
viscous layer is then

Re
(iii)
δ+

=
u0+δ+

ν+

∼ Re
1/2
+ . (6.3a)

Therefore, for typical engineering or geophysical flows, the boundary layer in the
upper fluid generates its own turbulent eddies.

The liquid layer fluctuations are small compared with those in the gas layer for
many engineering flows. For example, for air–water flow where R ≈ 300 and Re+ ∼ 103,
u0−/u∗+ � 1/10, even for large values of Re+ ∼ (106–107).

Do these liquid layer fluctuations become unstable and develop their own
turbulence? The Reynolds number of fluctuations in the viscous layer in the liquid
for high-Reynolds-number gas flows can be estimated:

Reδ− � u−δ−/ν− ∼ u∗+

√
L+ν−/u∗+

ν−
∼ Re

1/2
+

(
ν+

ν−

)1/2

, if u− ∼ u+. (6.3b)

Hence, for the highly energetic and/or large-scale turbulence in the gas where
Re+ ∼ 107, the Reynolds number Reδ− of the fluctuations in the liquid below the
surface is of order 103. Since the profile of the liquid layer velocity fluctuations u−
has inflection points (see figure 1) a significant level of turbulence can be generated.

In some situations a mixed regime develops, when turbulent flows are generated in
both the liquid and gaseous layers at a sufficiently high Reynolds number such that
both flows are fully turbulent. They are coupled at the interface. A statistically steady
state can develop where the velocity fluctuations and shear stresses are continuous so
that

ρ+u2
∗+ ∼ ρ−u2

∗−. (6.4a)

Since ρ− � ρ+, this implies that u∗− � u∗+. As our analysis of regimes (i) and (iii)
((4.7) and (4.12) respectively) show, the velocity fluctuations at the interface are of the
order of the velocity fluctuations in the liquid layer u−. (For typical high-Reynolds-
number eddies in a shear-free flow near a resistive surface the fluctuating shear stress
velocity u∗+ is proportional to but smaller than u0+; Zilitinkevich et al. 2006.) But
the relation between u∗ and u0 in the upper and lower layers depends on the type of
turbulent flow and the Reynolds number and also on the boundary conditions on the
flows above and below the interface (especially for shear-free turbulence in the liquid
layer).

The results are now compared with direct numerical simulations from Lombardi
et al. (1996). They considered turbulent pressure-driven flows in a domain half
filled with gas and half filled with liquid with the interface constrained to be flat
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but across which the horizontal velocity and shear stress were continuous. They
performed simulations and investigated the turbulence structure in each case for
various values of the ratio of the fluid densities, namely ρ−/ρ+ = 1, 100 and 900 (the
last of which corresponds approximately to an air–water interface, where ν−/ν+ = 1/10
and µ+/µ− ∼ 10−2). When there are turbulent shear flows in the liquid and gas layers
(as in the numerical simulations of Lombardi et al. 1996), the shear stresses are
proportional to the velocity variances, i.e. u∗+ ∼ u+ and u∗− ∼ u− (Townsend 1976).
Therefore, from (6.4a)

u− ∼
(

ρ+

ρ−

)1/2

u+. (6.4b)

Since these two fields of turbulence are generated independently above and below
the interface both fields are blocked by the interface, both of them generate
fluctuations on the opposite side of the interface so that near the interface the
flows are correlated. Note that the blocking effects at an interface are similar whether
there is a mean shear or not (Lee & Hunt 1988). The interaction between these
blocked fields across the interface can be studied using our shear-free model, with the
assumption that u0−/u0+, the velocity fluctuations above and below the interface, are
proportional to u∗−/u∗+. Therefore from (6.4b)

u0−/u0+ ≈
(

ρ+

ρ−

)1/2

. (6.5)

Since from (3.4a) the interface velocity fluctuation is equal to the liquid layer
fluctuations (when R � 1), i.e. uI ≈ u0−, it follows that the model predicts

uI/u0+ ≈
(

ρ+

ρ−

)1/2

= 0.0335, (6.6)

which agrees with the results of the simulations of Lombardi et al. (1996), which yield
a value of 0.0334.

Note that to compare the simulations with our model results we consider only
the spanwise velocity component v because it is less affected by shear, and the
mean square profiles do not vary strongly near any resistive surface; i.e. we assume

u0+ =

√
u2

0 and uI =
√

u2, with the latter at z =0. Our model shows in this case that

the turbulence on the air side contributes only about 3 % to uI with the remaining
97 % coming from the turbulence in the water below the interface. For this high
density ratio, the turbulence on the denser side has a structure similar to that at a
free-slip boundary. For ρ−/ρ+ ≈ 100, the simulations gave vI/u∗+ = 0.1, when non-
dimensionalized on the friction velocity in the upper fluid. Again the model predictions
are in agreement at 0.103, with about 9 % of the horizontal kinetic energy at z = 0
coming from the upper less dense fluid and 91 % from the lower fluid. These results
indicate that the changes to the turbulence structure on the liquid side of the interface
are not due to direct coupling from the gas turbulence but are a consequence of it
changing, as it induces larger fluctuations above the interface (see also Csanady 1997,
who focuses on the critical role of surface waves in sheared flow). Even though only
a very small proportion of the velocity fluctuations in the liquid layer is induced by
the turbulence in the upper layer, they have a distinct ‘streaky’ structure and extend
over a significant distance of order L0 into the liquid layer. Because of this coupling,
as noted in the Introduction, a similar structure of elongated ‘streaks’ is observed in
the liquid layer. But if the wind flow in the gaseous layer is large enough (regime (ii)),
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then waves are formed on the interface; these lead to a further change in the eddy
structure (Thorpe 2004).

7. Conclusions
In this study we have investigated coupling across horizontal planar fluid interfaces

(particularly gas–liquid interfaces) by extending previous work on the distortion of
turbulence structure near plane boundaries by the blocking mechanism in the absence
of mean shear. The analysis also provides a valid physical description of the kinematics
and dynamics of large-scale energetic eddies near an interface and how they vary
as the relative densities and viscosities and turbulence intensities change. Previous
studies of this distorted eddy structure have emphasized how they control mass and
heat transfer across these interfaces, starting with the surface renewal mechanism
of Danckwert (1951). In the case of air–water interfaces, with shear-free turbulence
driven on the water side of the interface (regime (i)), this leads to interfacial velocity
fluctuations of the same order as u0−, with some amplification by the blocking effect
(Calmet & Magnaudet 2003). The eddy structure in the liquid near the surface changes
over a long period to the well-known form of vertical vortices (Tsai 1998). In this
regime (regime (ii)), the velocity fluctuations generated above the interface are of the
same order as those in the lower layer. Although they have a lower Reynolds number,
they are generally turbulent.

When turbulence is driven in the low-density (or air) side above the interface
(regime (iii)), our analysis shows that liquid-side fluctuations near the surface (for
large ρ+/ρ−) are in phase with the gas-side turbulence with a close correlation of the
growth rates of interior viscous layers above and below the interface. The liquid-side
fluctuations can become fully turbulent (at high Reynolds numbers >106 on the air
side); but for moderate Reynolds numbers, the fluctuations on the liquid side become
turbulent only if there is some additional forcing (e.g. mean shear, buoyant convection
or surface waves). But even with separate forcing mechanisms above and below the
surface, the vertical motion induced by the viscous layers at the interface ensures that
the horizontal flow structures above and below the surface remain partly coupled.
This explains the similarity of the streak structure on the gas and liquid sides of
the interface (Lombardi et al. 1996). Other coupling mechanisms are also significant,
involving heat transfer and surface waves (e.g. Rozenberg et al. 1998) and internal
waves generated below the surface (e.g. Keeler, Bondur & Gibson 2005).

It seems likely that the methodology outlined here can provide a useful tool
for assisting in the interpretation of numerical simulations of these flows. It could
also contribute to the development of appropriate models for the interfacial region in
which there is a complex combination of turbulence distortion effects and other trans-
interfacial coupling mechanisms, both of which are likely to influence the interfacial
fluxes (for a recent review, see Hasegawa & Kasagi 2009).

This study began with an EC-funded project in 1994–1995 on atmosphere–ocean
coupling. We are grateful for stimulating conversations with Professors S. Banerjee,
S. Komori, G. Hewitt and K. Hasselman. J.C.R.H. is grateful for support from
the NERC in the Centre for Polar Observation and Modelling at UCL, the UK
Ministry of Defence, from Midi-Pyrenees Innovation at the Institut de Mé canique
des Fluides de Toulouse and from Arizona State University Environmental Fluid
Dynamics Program. Dr J. Clegg, the late E. Bliss and the referees helped greatly in
preparing and revising the paper.
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Appendix. Linear analysis of interface displacement
In order to establish the criteria for the interface to be flat (which is assumed in the

paper) we analyse small fluctuations at z = 0, for different dynamical conditions (with
or without buoyancy forces), following Carruthers & Hunt (1986) and Fernando &
Hunt (1997). As in figure 1, we assume high Re and thin viscous layers (i.e. δ+, δ− � L)
so that the normal velocities and pressure fluctuations are continuous, i.e.

w+(z = δ+) = w−(z = −δ−), (A 1)

p+(z = δ+) = p−(z = −δ−), (A 2a)

from which, taking the horizontal gradient denoted ∇h,

∇2
hp+(z = δ+) = ∇2

hp−(z = −δ−). (A 2b)

From the horizontal divergence of the linearized momentum equation (with g = 0)
we have

∂

∂t

(
ρ+

∂w+

∂z

)
=

∂

∂t

(
ρ−

∂w−

∂z

)
, (A 3a)

where

ρ+

∂w+

∂z
= ρ−

∂w−

∂z
. (A 3b)

First consider regime (i) of an interface without buoyancy forces, between a very
dense fluid below a light fluid, i.e.

ρ+/ρ− � 1. (A 4)

The modal solution in S− is written as a sum of the homogeneous turbulence
far from the interface plus a part that decays away from the interface, as in § 4.1.1,

w− =


w

(S)

− e−k12z +


w

(H )

− eik3z. To satisfy (A 3b) and (A 4)

∂w−/∂z = − 

w

(S)

− k12e
−k12z + ik3



w

(H )

− eik3z = 0 (A 5)

Thence at z = 0,



w

(H )

− = (ik3/k12)


w

(H )

− (A 6a)

so that on taking an ensemble average

w2
− =

(
k2

3

k2
12

+ 1

)
w2

H > w2
H . (A 6b)

This is consistent with the analysis of Eames & Hunt (1997), showing how large
fluctuations occur on the edges of dense fluid in turbulent motion.

However, if the upper layer is significantly denser than the lower layer, i.e. ρ+ � ρ−,
and there are no buoyancy forces, i.e. g = 0, then in S+, ŵ+ = ŵie

−k12z, where ŵ+ = ŵi

at z = 0, so that ∂w+/∂z ∼ (ρ−/ρ+)(ŵH/L) � 1 at z = 0. Thence

w2
i

w2
H

∼
(

ρ−

ρ+

)2

� 1. (A 7)

In this case there are no motions on the interface which remains flat. In the presence
of buoyancy forces, if the displacement is ζ , the Bernoulli equation for the two layers
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can be combined. Then

p− − p+ = g(ρ− − ρ+)ζ −
[
ρ−

∂φ−

∂t
− ρ+

∂φ+

∂t

]
. (A 8a)

Since ∂ζ/∂t = w, operating with (∂/∂t)∇2
H gives (for the linearized analysis)

0 = g	ρ∇2
HwI − ∂2

∂t2

[
ρ−

∂w−

∂z
− ρ+

∂w+

∂z

]
. (A 8b)

Thus if the buoyancy forces are large relative to the inertial forces,
F −1

I =(g1T 2
L )/L � 1 where TL (∼L/u0) is the time scale of the fluctuations (in the

upper or lower layers). Thence from (A 8b) ∇2
Hw =0 at the fixed interface, zi . However,

if F −1
I = (g1T 2

L )/L ∼ 1 the turbulence in the upper or lower layer induces waves on the
interface and resonance. But where the phase speed (w/k12 for the given frequency
and wavenumbers) is equal to the wave speed on the interface ((g	ρ/ρ)k12)

1/2, wave
breaking and dissipation occur (see Fernando & Hunt 1997; Fedorov & Mellville
1998).
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