The Dirichlet-to-Neumann map for the elliptic sine Gordon

[thumbnail of PFNonlin.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Fokas, A. S. and Pelloni, B. (2012) The Dirichlet-to-Neumann map for the elliptic sine Gordon. Nonlinearity, 25 (4). 1011. ISSN 1361-6544 doi: 10.1088/0951-7715/25/4/1011

Abstract/Summary

We analyse the Dirichlet problem for the elliptic sine Gordon equation in the upper half plane. We express the solution $q(x,y)$ in terms of a Riemann-Hilbert problem whose jump matrix is uniquely defined by a certain function $b(\la)$, $\la\in\R$, explicitly expressed in terms of the given Dirichlet data $g_0(x)=q(x,0)$ and the unknown Neumann boundary value $g_1(x)=q_y(x,0)$, where $g_0(x)$ and $g_1(x)$ are related via the global relation $\{b(\la)=0$, $\la\geq 0\}$. Furthermore, we show that the latter relation can be used to characterise the Dirichlet to Neumann map, i.e. to express $g_1(x)$ in terms of $g_0(x)$. It appears that this provides the first case that such a map is explicitly characterised for a nonlinear integrable {\em elliptic} PDE, as opposed to an {\em evolution} PDE.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/26388
Identification Number/DOI 10.1088/0951-7715/25/4/1011
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher Institute of Physics
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar