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EQUIVALENCE OF WEAK FORMULATIONS OF THE STEADY WATER
WAVES EQUATIONS

EUGEN VARVARUCA AND ARGHIR ZARNESCU

Abstract. We prove the equivalence of three weak formulations of the steady water waves
equations, namely the velocity formulation, the stream function formulation, and the Dubreil-
Jacotin formulation, under weak Hölder regularity assumptions on their solutions.

1. Introduction

We consider the classical problem of travelling waves at the free surface of a two-dimensional
inviscid, incompressible, heavy fluid over a flat bed. Over the past few years this problem
has attracted considerable interest, see [12] for a survey of recent developments. In the most
direct mathematical description, the problem is to find steady solutions of the incompressible
Euler system for the velocity field (u, v) and the pressure field P , together with relevant
boundary conditions, in an unknown domain in the plane. In this form the problem is difficult
to treat mathematically, and other, more convenient reformulations, have been used in the
literature. One such reformulation involves a stream function ψ, whose existence is ensured
by the incompressibility condition. Namely, the stream function ψ satisfies a semilinear
elliptic equation (since vorticity may be present in the flow), together with suitable boundary
conditions. This reformulation retains the difficulty of being a free-boundary problem. The
most general approach to overcoming this difficulty uses a change of variables introduced
by Dubreil-Jacotin in 1934, which transforms the problem to an equivalent one in a strip.
The Dubreil-Jacotin formulation is a cornerstone of the large and growing literature on large-
amplitude travelling water waves with vorticity that began with the work of Constantin
and Strauss [3]. For special vorticity distributions, other methods of transforming the free-
boundary problem for the stream function into a problem over a fixed domain have been used
in [6], [8], [11] and [16]. These alternative approaches are important since, apart from leading
to new existence and regularity results, they have opened up the possibility of investigating
qualitative aspects that are not accessible by other means, such as the flow pattern beneath
the waves (velocity field, particle trajectories, pressure), which so far has been elucidated only
in the irrotational case [2], [4], [13]. However, our paper focuses on formulations of the steady
water waves problem that are valid for general vorticity distributions.

As we discuss in Section 2, following essentially [3], the three formulations of the steady
water waves equations, to which we refer to as the velocity formulation, the stream function
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formulation and the Dubreil-Jacotin (or height) formulation, are equivalent when considered
in the classical sense. However, the recent study [5] by Constantin and Strauss has raised
the question whether the three formulations are still equivalent when considered in a certain
weak sense which we describe in Section 3. (Solutions in a different weak sense of the steady
water waves equations have been studied in [11], [14], [15].) The main result of [5] is a
global bifurcation theory for solutions, periodic in the horizontal direction and of class C1,α

for some α ∈ (0, 1), of the weak Dubreil-Jacotin formulation. Such solutions would formally
correspond to solutions (u, v) and P , periodic in the horizontal direction and of class C0,α, of
the weak velocity formulation, in a domain with C1,α boundary. However, the key question
of the equivalence of the two weak formulations under these regularity assumptions is left as
an open problem by [5]. (A result on the equivalence of the formulations is given in [5], but
under different, and not the most natural, regularity assumptions.)

The main result of the present paper, Theorem 1, which is given in Section 4, provides
an affirmative answer to the above open problem, albeit only in the case when the Hölder
exponent satisfies α > 1/3. More precisely, Theorem 1 proves that, under the above regularity
assumptions, the weak velocity and the weak stream function formulations are equivalent for
any α ∈ (1/3, 1], while the weak stream function and the weak height formulations are
equivalent for any α ∈ (0, 1]. An important consequence of our result is that, at least in the
case α > 1/3, the solutions constructed in [5] of the Dubreil-Jacotin formulation are relevant
(in the sense that they give rise to corresponding solutions) for the velocity formulation of
the steady water waves equations. Our result is in the same spirit as, and its proof is inspired
by, the Onsager conjecture as proved (partially) in [7]. The Onsager conjecture is, essentially,
the statement that solutions of the time-dependent incompressible Euler equations on a fixed
domain (in dimension three, with no external forces), of class C0,α in the space variables for
each value of the time variable, conserve their energy in time if α > 1/3 and may fail to do
so if α ≤ 1/3. The paper [7] proves that α > 1/3 implies conservation of energy (and leaves
open the reverse statement in the conjecture). As in [7], our proof is based on regularizing
the equations and, roughly speaking, the assumption α > 1/3 is used in an essential way to
show that certain remainder terms converge to 0 as the regularization parameter tends to 0.
An important problem left open by the present paper is that of whether the weak velocity
formulation and the weak stream function formulation are also equivalent in the case when
the Hölder exponent satisfies α ≤ 1/3.

2. Classical formulations of the steady water waves problem

2.1. The velocity formulation. We consider a wave travelling with constant speed and
without change of shape on the free surface of a two-dimensional inviscid, incompressible
fluid of unit density, acted on by gravity, over a flat, horizontal, impermeable bed. This
means that, in a frame of reference moving at the speed c of the wave, the fluid is in steady
flow in a fixed domain. Let the free surface be given by y = η(x), for some function η : R → R,
and the flat bottom be given by y = 0, so that the fluid domain is

Dη
def
= {(x, y) : x ∈ R, 0 < y < η(x)}.
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Then the fluid motion is described, see [3] for details, by the following equations and boundary
conditions for a steady velocity field (u, v) and a pressure field P in Dη:

ux + vy = 0 in Dη,(2.1a)

(u− c)ux + vuy = −Px in Dη,(2.1b)

(u− c)vx + vvy = −Py − g in Dη,(2.1c)

v = 0 on y = 0,(2.1d)

v = (u− c)ηx on y = η(x),(2.1e)

P = Patm on y = η(x),(2.1f)

where Patm is the constant atmospheric pressure and g is the gravitational constant of acceler-
ation. More precisely, (2.1a) describes mass conservation, (2.1b)–(2.1c) describe momentum
conservation, (2.1d) expresses the fact that the velocity at the bottom is horizontal, (2.1e) is
the kinematic condition that the same particles always form the free surface, while (2.1f) is
the dynamic condition that at the free surface the pressure in the fluid equals the constant
atmospheric pressure. This is a free-boundary problem, because the domain Dη is not known
a priori. The system (2.1) will be referred to as the velocity formulation of the steady water
waves equations. Throughout the paper we make the assumption, motivated both by field
observations and by laboratory experiments (see [3] for references), that no fluid particle has
a horizontal velocity equal to the speed of the wave. For definiteness, we assume that

(2.2) u < c in Dη.

(All the results discussed in the paper have corresponding analogues if instead of (2.2) one
assumes that u > c in Dη.)

For the remainder of this section we describe informally, following [3], two other formulations
of (2.1), and sketch the well-known proof of their equivalence to it if the solutions are smooth
enough. The equivalence of these three formulations under weak regularity assumptions is
the main aim of the paper, which will be addressed in the subsequent sections.

2.2. The stream function formulation. Suppose that (2.1) and (2.2) hold. Equation
(2.1a) implies the existence of a function ψ in Dη, called a (relative) stream function, such
that

(2.3) ψy = u− c, ψx = −v in Dη.

The boundary conditions (2.1d) and (2.1e) imply that ψ is a constant on each of y = 0 and
y = η(x). Since ψ is only determined up to an additive constant, one can assume that ψ = 0
on y = η(x), and then we obtain that there exists a constant p0 such that ψ = −p0 on y = 0.
The condition (2.2) can be rewritten as

(2.4) ψy < 0 in Dη,

a consequence of which is that p0 < 0. After expressing the left-hand side in (2.1b) and (2.1c)
in terms of ψ, differentiation of the first of these equations with respect to y and of the second
with respect to x allows us to eliminate the pressure, leading to

(2.5) (∆ψ)xψy = (∆ψ)yψx in Dη,
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where ∆ denotes the Laplace operator. Note that (2.4) shows that all the level sets of ψ are
graphs over the x coordinate, and (2.5) then implies that ∆ψ is constant on each level set of
ψ. Thus there exists a function γ : [0,−p0] → R such that

−∆ψ = γ(ψ) in Dη.

(Since the quantity ω
def
= vx − uy = −∆ψ has a physical interpretation as the vorticity of the

flow, the function γ is customarily referred to in the literature as the vorticity function.) Let

(2.6) Γ(p)
def
=

∫ p

0

γ(−s) ds for all p ∈ [p0, 0].

It is then easy to verify, using (2.1b)–(2.1c), that

(2.7) P +
1

2
|∇ψ|2 + gy − Γ(−ψ) = constant in Dη.

In view of (2.1f) and the fact that ψ = 0 on y = η(x), it follows that

|∇ψ|2 + 2gy = Q on y = η(x),

for some constant Q. We have therefore obtained the stream function formulation of the
steady water waves equations, which is to find a domain Dη and a function ψ in Dη such that

∆ψ = −γ(ψ) in Dη,(2.8a)

ψ = −p0 on y = 0,(2.8b)

ψ = 0 on y = η(x),(2.8c)

|∇ψ|2 + 2gy = Q on y = η(x),(2.8d)

for some constants p0 < 0 and Q, and some function γ : [0,−p0] → R.
Conversely, suppose that ψ satisfies (2.8) and (2.4) in a domain Dη. Then one can define

in Dη a velocity field (u, v) by (2.3) and a pressure field P by (2.7) with a suitable choice of
the constant in the right-hand side, and easily check that (2.1) and (2.2) hold.

2.3. The height (or Dubreil-Jacotin) formulation. An elegant way to overcome the
difficulty that in (2.8) the fluid domain Dη needs to be found as part of the solution was first
observed by Dubreil-Jacotin: the fact that ψ is constant on the top and the bottom of Dη can
be used to transform (2.8) into a nonlinear elliptic boundary-value problem in a fixed domain.
More precisely, suppose that (2.8) and (2.4) hold, and let us consider the partial hodograph
(or semi-Lagrangian) mapping

(2.9) (x, y) 7→ (q, p) = (x,−ψ(x, y)),

which is, as a consequence of (2.4), a bijection between Dη and the closure of the strip

R = {(q, p) : q ∈ R, p ∈ (p0, 0)}.

Then the inverse mapping, from R to Dη, necessarily has the form

(2.10) (q, p) 7→ (x, y) = (q, h(q, p)),

for some function h : R → R. More precisely, the following two relations hold:

(2.11) −ψ(q, h(q, p)) = p for all (q, p) ∈ R, h(x,−ψ(x, y)) = y for all (x, y) ∈ Dη.
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(These relations show that, for each (q, p) ∈ R, one may interpret h(q, p) as the height of the
streamline ψ = −p above the point (q, 0) on the bed.) The condition (2.4) can be expressed
as

(2.12) hp > 0 in R.

Note also that

(2.13) hq = −ψx

ψy

, hp = − 1

ψy

, ψx =
hq
hp
, ψy = − 1

hp
,

and

(2.14) ∂x = ∂q −
hq
hp
∂p, ∂y =

1

hp
∂p, ∂q = ∂x −

ψx

ψy

∂y, ∂p = − 1

ψy

∂y.

Using these identities, one can easily reformulate (2.8) as the following system for the function
h defined above:

(1 + h2q)hpp − 2hqhphqp + h2phqq = −γ(−p)h3p in R,(2.15a)

h = 0 on p = p0,(2.15b)

1 + h2q + (2gh−Q)h2p = 0 on p = 0.(2.15c)

This is the height (or Dubreil-Jacotin) formulation of the steady water waves equations.

Conversely, suppose that h satisfies (2.15) and (2.12). Let η : R → R be given by η(q) =
h(q, 0) for all q ∈ R. Then (2.12) implies that (q, p) 7→ (x, y) = (q, h(q, p)) is a bijection
between R and Dη. Defining ψ by (2.11), the formulae (2.13)–(2.14) are valid, and one can
easily deduce from (2.15) and (2.12) that (2.8) and (2.4) hold.

3. Weak formulations of the steady water waves problem

3.1. Weak velocity formulation. For sufficiently smooth functions η, u, v, and P , (2.1) is
easily seen to be equivalent to

(u− c)x + vy = 0 in Dη,(3.1a)

((u− c)2)x + ((u− c)v)y = −Px in Dη,(3.1b)

((u− c)v)x + (v2)y = −Py − g in Dη,(3.1c)

v = 0 on y = 0,(3.1d)

v = (u− c)ηx on y = η(x),(3.1e)

P = Patm on y = η(x).(3.1f)

However, (3.1) may be given a meaning for functions of weaker regularity than those of (2.1),
namely by interpreting (3.1a)–(3.1c) in the sense of distributions. Of particular interest for
us will be solutions of (3.1) with η ∈ C1,α(R) and (u, v, P ) ∈ C0,α(Dη) for some α ∈ (0, 1],
with (3.1d)–(3.1f) being satisfied in the classical sense, and (3.1a)–(3.1c) being satisfied in the
sense of distributions. (Under the same regularity assumptions, it is not clear how to give a
meaning directly to (2.1), because the multiplication of a distribution by a function of finite
differentiability is not well defined.)
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3.2. Weak stream function formulation. For sufficiently smooth functions ψ and γ, the
algebraic identity

(ψxψy)x −
1

2
(ψ2

x − ψ2
y)y − (Γ(−ψ))y = ψy(∆ψ + γ(ψ))

shows that, in the presence of (2.4), (2.8) is equivalent to

(ψxψy)x −
1

2
(ψ2

x − ψ2
y)y − (Γ(−ψ))y = 0 in Dη,(3.2a)

ψ = −p0 on y = 0,(3.2b)

ψ = 0 on y = η(x),(3.2c)

|∇ψ|2 + 2gy = Q on y = η(x).(3.2d)

Again, (3.2a) may be required to hold in the sense of distributions. We will be interested in
solutions of (3.2) with η ∈ C1,α(R), ψ ∈ C1,α(Dη) and Γ ∈ C0,α([p0, 0]) for some α ∈ (0, 1],
with (3.2b)–(3.2d) being satisfied in the classical sense, and (3.2a) being satisfied in the sense
of distributions (with ψx, ψy being understood in the classical sense).

3.3. Weak height formulation. For sufficiently smooth functions h and γ, the algebraic
identity{

−
1 + h2q
2h2p

+ Γ(p)

}
p

+

{
hq
hp

}
q

=
1

h3p

{
(1 + h2q)hpp − 2hqhphqp + h2phqq + γ(−p)h3p

}
shows that, in the presence of (2.12), (2.15) is equivalent to{

−
1 + h2q
2h2p

+ Γ(p)

}
p

+

{
hq
hp

}
q

= 0 in R,(3.3a)

h = 0 on p = p0,(3.3b)

1 + h2q
2h2p

+ gh− Q

2
= 0 on p = 0.(3.3c)

We will be interested in solutions of (3.3) with h ∈ C1,α(R) and Γ ∈ C0,α([p0, 0]) for some
α ∈ (0, 1], with (3.3b)–(3.3c) being satisfied in the classical sense, and (3.3a) being satisfied
in the sense of distributions (with hp, hq understood in the classical sense).

4. Equivalence of the weak formulations

Weak solutions, in the sense described in the previous section, of the steady water waves
problem have been studied only very recently in [5]. That paper deals with waves which
are periodic in the horizontal direction, the subscript per being used in what follows to
indicate this periodicity requirement. In [5] the authors develop a global bifurcation theory
for weak solutions of (3.3) with h ∈ C1,α

per (R), under the assumption Γ ∈ C0,α([p0, 0]), for some
α ∈ (0, 1). These would formally correspond to solutions of the weak velocity formulation
with η ∈ C1,α

per (R) and u, v, P ∈ C0,α
per (Dη). However, no rigorous proof of this equivalence

is given in [5]. The only result there on the equivalence of the weak formulations, see [5,
Theorem 2], is the following:

Let 0 < α < 1 and r = 2
1−α

. Then the following are equivalent:



WEAK FORMULATIONS OF THE WATER WAVES EQUATIONS 7

(i) the weak velocity formulation (3.1) together with (2.2), for η ∈ C1,α
per (R) and u, v, P ∈

W 1,r
per(Dη) ⊂ C0,α

per (Dη);
(ii) the stream function formulation (2.8) together with (2.4), for γ ∈ Lr([0,−p0]), η ∈

C1,α
per (R) and ψ ∈ W 2,r

per(Dη) ⊂ C1,α
per (Dη);

(iii) the weak height formulation (3.3) together with (2.12), for Γ ∈ W 1,r([p0, 0]) and h ∈
W 2,r

per(R) ⊂ C1,α
per (R).

As one can see, in the above result the velocity field (u, v), the pressure P , the stream
function ψ, the height h, and the function Γ, are assumed to have more regularity, namely an
additional weak (Sobolev space) derivative, than one would really like.

Our main result, given below, proves the equivalence of the weak formulations under the
‘right’ regularity assumptions, albeit only for the case when the Hölder exponent satisfies
α ∈ (1/3, 1]. (In particular, under our assumptions, the function Γ need not have a (weak)
derivative.) While the weak stream function and the weak height formulations will be seen
to be, in fact, equivalent for any α ∈ (0, 1], it remains an open problem whether the weak
velocity and the weak stream function formulations are equivalent for α ∈ (0, 1/3] also. For
simplicity, we state our result for solutions which are periodic in the horizontal direction,
though this assumption is not essential, and the result can be easily extended to cover other
important situations, for example that of solitary waves [9].

Theorem 1. Let α ∈ (1/3, 1]. Then the following are equivalent:

(i) the weak velocity formulation (3.1) together with (2.2), for η ∈ C1,α
per (R) and u, v, P ∈

C0,α
per (Dη);

(ii) the weak stream function formulation (3.2) together with (2.4), for Γ ∈ C0,α([p0, 0]),
η ∈ C1,α

per (R) and ψ ∈ C1,α
per (Dη);

(iii) the weak height formulation (3.3) together with (2.12), for Γ ∈ C0,α([p0, 0]) and h ∈
C1,α

per (R).

A key ingredient in our proof is regularization of the relevant equations. Therefore, we
start with some background results on regularization, valid in any number d of dimensions,
where we use x, y and z to denote points in Rd. Let ϱ ∈ C∞

0 (Rd) be a given function, such
that

ϱ ≥ 0 in Rd, supp ϱ ⊂ B1(0), ϱ(x) = ϱ(−x) for all x ∈ Rd, and

∫
Rd

ϱ(x) dx = 1,

and let us denote ϱε
def
= 1

εd
ϱ(x

ε
). Let V be an open set in Rd, and consider, for any ε > 0, the

set V ε def
= {x ∈ V : dist(x,Rd \ V ) > ε}. For any f ∈ L1

loc(V ) and any ε > 0 such that V ε is
not empty, consider in V ε the function

f ε(x)
def
= f ∗ ϱε(x)(4.1)

=

∫
V

ϱε(x− y)f(y) dy

=

∫
B1(0)

ϱ(z)f(x− εz) dz for all x ∈ V ε.
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For any f, g ∈ L2
loc(V ), we also introduce in V ε the function

(4.2) rε(f, g)(x)
def
=

∫
B1(0)

ϱ(z)(f(x− εz)− f(x))(g(x− εz)− g(x)) dz for all x ∈ V ε.

We further denote

(4.3) Rε(f, g)
def
= rε(f, g)− (f − f ε)(g − gε) in V ε.

Then one can easily check that we have, at every point in V ε,

(4.4) (fg)ε = f εgε +Rε(f, g).

(It may be worth pointing out that, while it is not immediately clear from (4.3) that Rε(f, g)
is a smooth function in V ε, this smoothness becomes obvious from (4.4).)

Lemma 1. Let V be an open set in Rd, K a compact subset of V , ε0
def
= dist(K,Rd \ V )/2

and K0
def
= {x ∈ Rd : dist(x,K) ≤ ε0}. Then there exists a constant C such that, for any

f, g ∈ C0,α
loc (V ) and ε ∈ (0, ε0), the following estimates, in the notation (4.1), hold:

(i)
∥f ε − f∥C0(K) ≤ Cεα∥f∥C0,α(K0),

(ii)
∥∇f ε∥C0(K) ≤ Cεα−1∥f∥C0,α(K0),

(iii)
∥Rε(f, g)∥C0(K) ≤ Cε2α∥f∥C0,α(K0)∥g∥C0,α(K0).

Proof of Lemma 1. Note first that, for any ε ∈ (0, ε0), K is a subset of V ε, so that f ε, gε and
Rε(f, g) are well-defined and smooth on an open set containing K.

(i) For every x ∈ K, we have that

|f ε(x)− f(x)| =
∣∣∣∣∫

B1(0)

ϱ(z)(f(x− εz)− f(x)) dz

∣∣∣∣
≤ ∥f∥C0,α(K0)

∫
B1(0)

ϱ(z)εα|z|α dz

≤ Cεα∥f∥C0,α(K0).

(ii) For every x ∈ K, we have, using the fact that ϱ is compactly supported in B1(0), that

|∇f ε(x)| =
∣∣∣∣ 1

εd+1

∫
V

∇ϱ
(
x− y

ε

)
f(y) dy

∣∣∣∣
=

1

ε

∣∣∣∣∫
B1(0)

∇ϱ(z)f(x− εz) dz

∣∣∣∣
=

1

ε

∣∣∣∣∫
B1(0)

∇ϱ(z) (f(x− εz)− f(x)) dz

∣∣∣∣
≤ 1

ε
∥f∥C0,α(K0)

∫
B1(0)

|∇ϱ(z)|εα|z|α dz

≤ Cεα−1∥f∥C0,α(K0).
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(iii) Using (4.2) and (4.3) and reasoning analogously as in the proof of (i) we obtain the
required estimate. �

Lemma 2. Let V be an open set in Rd and f1, ..., fd ∈ L1
loc(V ). We use the notation ∂k,

k ∈ {1, ..., d}, to denote the partial derivative with respect to the kth variable, either in the
classical sense, or in the sense of distributions. Suppose that

(4.5)
d∑

k=1

∂kfk = 0 in the sense of distributions in V .

Then, for any ε > 0 such that V ε is not empty, where V ε def
= {x ∈ V : dist(x,Rd \ V ) > ε},

we have:

(4.6)
d∑

k=1

∂kf
ε
k = 0 in the classical sense in V ε.

Proof. Fix any ε > 0 such that V ε is not empty. Let φ ∈ C∞
0 (V ε) be arbitrary, and observe

that φε ∈ C∞
0 (V ), where φε def

= φ ∗ ϱε in Rd. Assumption (4.5) implies that

d∑
k=1

∫
V

fk(x)∂kφ
ε(x) dx = 0.

Using the fact that the regularization operator commutes with differentiation on smooth
functions (see for instance [10, Chapter 3]), then Fubini’s Theorem, and then integration by
parts, we obtain

0 =
d∑

k=1

∫
V

fk(x)(∂kφ)
ε(x) dx

=
d∑

k=1

∫
V

fk(x)

(∫
V ε

∂kφ(y)ϱ
ε(x− y) dy

)
dx

=
d∑

k=1

∫
V ε

∂kφ(y)

(∫
V

fk(x)ϱ
ε(y − x) dx

)
dy

=
d∑

k=1

∫
V ε

f ε
k(y)∂kφ(y) dy

= −
∫
V ε

(
d∑

k=1

∂kf
ε
k (y)

)
φ(y) dy.

Since φ ∈ C∞
0 (V ε) was arbitrary, the required conclusion (4.6) follows.

�

After these preliminaries on regularization, we are now in a position to give the proof of
our main result.
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Proof of Theorem 1. We prove first the equivalence of (ii) and (iii) which, as we shall see, is
valid for any α ∈ (0, 1].

Suppose that (ii) holds. Let ψ ∈ C1,α
per (Dη) be such that (3.2) and (2.4) hold, where Γ ∈

C0,α([p0, 0]). Defining h as in Section 2, we then have that h ∈ C1,α
per (R), and the formulae

(2.13)–(2.14) are still valid. (We regard (2.14) as a relation between the classical derivatives
of any C1 function with respect to the (x, y) variables and those with respect to the (q, p)
variables, and do not assign to it any meaning in the sense of distributions.) Clearly (3.2b)–
(3.2d) imply (3.3b)–(3.3c), and (2.4) implies (2.12). Let us now write explicitly the weak form
of (3.3a), which we need to prove: for any φ̃ ∈ C1

0(R),

(4.7)

∫
R

(
−
1 + h2q
2h2p

+ Γ(p)

)
φ̃p +

hq
hp
φ̃q dqdp = 0.

For any such φ̃, let φ ∈ C1
0(Dη) be given by φ(x, y) = φ̃(x,−ψ(x, y)) for all (x, y) ∈ Dη. By

changing variables in the integral, using (2.13)–(2.14), one can rewrite (4.7) as

(4.8)

∫
Dη

Γ(−ψ)φy − (ψxψy)φx +
1

2
(ψ2

x − ψ2
y)φy dxdy = 0.

But (4.8) is valid, as a consequence of (3.2a). This shows that (3.3a) holds. We have thus
proved that (iii) holds.

Suppose now that (iii) holds. Let h ∈ C1,α
per (R) be such that (3.3) and (2.12) hold, where

Γ ∈ C0,α([p0, 0]). Defining η and ψ as in Section 2, we then have that η ∈ C1,α
per (R) and

ψ ∈ C1,α
per (Dη), and the formulae (2.13)–(2.14) are still valid. Clearly (3.3b)–(3.3c) imply

(3.2b)–(3.2d), and (2.12) implies (2.4). The weak form of (3.2a), which we need to prove, is
written explicitly as (4.8), for any φ ∈ C1

0(Dη). For any such φ, let φ̃ ∈ C1
0(R) be given by

φ̃(q, p) = φ(q, h(q, p)) for all (q, p) ∈ R. By changing variables in the integral, using (2.13)–
(2.14), one can rewrite (4.8) as (4.7). But (4.7) is valid, as a consequence of (3.3a). This
shows that (3.2a) holds. We have thus proved that (ii) holds.

We now prove the equivalence of (i) and (ii), making essential use of the assumption α >
1/3.

Suppose that (i) holds. Since η ∈ C1,α
per (R) and u, v ∈ C0,α

per (Dη), it follows from (3.1a), by
arguments similar to those in [1, Lemma 3], in which our Lemma 2 plays a key role, that there
exists ψ ∈ C1,α

per (Dη), uniquely determined up to an additive constant, such that (2.3) holds.
Clearly, (2.2) implies (2.4). Also, it follows from (3.1d) and (3.1e) that ψ is constant on each
of y = 0 and y = η(x). The additive constant in the definition of ψ may be chosen so that
(3.2c) holds, and then (3.2b) also holds for some constant p0 < 0. Using the definition of ψ
we rewrite (3.1b)–(3.1c) in the weak distributional form (with ψx, ψy in the classical sense):

(ψ2
y)x − (ψxψy)y = −Px in Dη,(4.9a)

−(ψxψy)x + (ψ2
x)y = −Py − g in Dη.(4.9b)

Let us denote

(4.10) F
def
= P +

1

2
|∇ψ|2 + gy in Dη.
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It follows from (4.9) that we have, in the sense of distributions (with ψx, ψy in the classical
sense):

Fx =
1

2
(ψ2

x − ψ2
y)x + (ψxψy)y in Dη,(4.11a)

Fy = (ψxψy)x −
1

2
(ψ2

x − ψ2
y)y in Dη.(4.11b)

We now show that there exists a function Γ ∈ C0,α([p0, 0]) such that

(4.12) F (x, y) = Γ(−ψ(x, y)) for all (x, y) ∈ Dη.

Let us consider again the transformations (2.9)–(2.11), and note that (2.13)–(2.14) are valid
under the present regularity assumptions. Let F̃ : R → R be given by F̃ (q, p) = F (q, h(q, p))
in R, which is equivalent to F (x, y) = F̃ (x,−ψ(x, y)) in Dη. Then our desired conclusion
(4.12) is that

(4.13) F̃ (q, p) = Γ(p) for all (q, p) ∈ R,

for some Γ ∈ C0,α([p0, 0]). To this aim, we shall prove that, for any φ̃ ∈ C1
0 (R),

(4.14)

∫
R

F̃ φ̃q dqdp = 0,

which, together with the condition F̃ ∈ C0,α
per (R), will imply (4.13) for some function Γ ∈

C0,α([p0, 0]). For any such φ̃, let φ ∈ C1
0(Dη) be given by φ(x, y) = φ̃(x,−ψ(x, y)) for all

(x, y) ∈ Dη. By changing variables in the integral, using (2.13) and (2.14), (4.14) can be
rewritten as

(4.15)

∫
Dη

F (ψyφx − ψxφy) dxdy = 0.

Thus our aim is to prove (4.15) for any φ ∈ C1
0 (Dη). Note for later reference that this

statement can be written in the sense of distributions (with ψx, ψy in the classical sense) as

(4.16) (Fψy)x − (Fψx)y = 0 in Dη.

Note also that, for any function θ of class C2, a direct calculation shows the identities

1

2
(θ2x − θ2y)x + (θxθy)y = θx∆θ,(4.17a)

(θxθy)x −
1

2
(θ2x − θ2y)y = θy∆θ.(4.17b)

(The expressions in the left-hand side of (4.17) are similar to those occurring in the right-hand
side of (4.11), however (4.17) cannot be applied with θ := ψ, since ψ is not of class C2 in

Dη.) Let V
def
= Dη and let, for any ε > 0, V ε def

= {(x, y) ∈ V : dist((x, y),R2 \ V ) > ε}. Using
Lemma 2, the system (4.11) implies that, for any ε > 0 such that V ε is not empty, in the
notation (4.1) and using (4.4) with suitable f and g,

F ε
x =

1

2
((ψε

x)
2 − (ψε

y)
2)x + (ψε

xψ
ε
y)y +

1

2
Rε(ψx, ψx)x −

1

2
Rε(ψy, ψy)x +Rε(ψx, ψy)y in V ε,

F ε
y = (ψε

xψ
ε
y)x −

1

2
((ψε

x)
2 − (ψε

y)
2)y +Rε(ψx, ψy)x −

1

2
Rε(ψx, ψx)y +

1

2
Rε(ψy, ψy)y in V ε.
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Using the identities (4.17) with θ := ψε, the above can be rewritten as

F ε
x = ψε

x∆ψ
ε +

1

2
Rε(ψx, ψx)x −

1

2
Rε(ψy, ψy)x +Rε(ψx, ψy)y in V ε,(4.18a)

F ε
y = ψε

y∆ψ
ε +Rε(ψx, ψy)x −

1

2
Rε(ψx, ψx)y +

1

2
Rε(ψy, ψy)y in V ε.(4.18b)

Let φ ∈ C1
0(Dη), arbitrary, and let K

def
= suppφ. Let ε0

def
= dist(K,R2 \ V )/2 and K0

def
=

{(x, y) ∈ R2 : dist((x, y), K) ≤ ε0}. Note that K is a subset of V ε, for any ε ∈ (0, ε0). Aiming
to prove (4.15) for φ, we write, for any ε ∈ (0, ε0),∫

Dη

F (ψyφx − ψxφy) dxdy

=

∫
K

(Fψy − F εψε
y)φx − (Fψx − F εψε

x)φy dxdy +

∫
K

F εψε
yφx − F εψε

xφy dxdy

def
= Iε + Jε.

It is a consequence of Lemma 1(i) that Iε → 0 as ε → 0. To estimate Jε, we first integrate
by parts, then use (4.18) to cancel some terms, and then integrate by parts again, to get

Jε = −
∫
K

(F ε
xψ

ε
y − F ε

yψ
ε
x)φdxdy

= −
∫
K

[
1

2
Rε(ψx, ψx)x −

1

2
Rε(ψy, ψy)x +Rε(ψx, ψy)y

]
(ψε

yφ) dxdy

+

∫
K

[
Rε(ψx, ψy)x −

1

2
Rε(ψx, ψx)y +

1

2
Rε(ψy, ψy)y

]
(ψε

xφ) dxdy

=

∫
K

[
1

2
Rε(ψx, ψx)−

1

2
Rε(ψy, ψy)

]
[(ψε

yφ)x + (ψε
xφ)y] dxdy

+

∫
K

Rε(ψx, ψy)[(ψ
ε
yφ)y − (ψε

xφ)x] dxdy.

Expanding the square brackets, we write Jε as a sum of six terms, all of which can be
estimated, by using Lemma 1, in a similar way to the one shown below:∣∣∣∣∫

K

Rε(ψx, ψy)(ψ
ε
xφ)x dx

∣∣∣∣ = ∣∣∣∣∫
K

Rε(ψx, ψy)
(
ψε
xφx + ψε

xyφ
)
dx

∣∣∣∣
≤ C(ε2α∥ψx∥2C0,α(K0)

∥ψy∥C0,α(K0) + ε3α−1∥ψx∥2C0,α(K0)
∥ψy∥C0,α(K0)),

where C is a constant which depends on φ, but is independent of ε ∈ (0, ε0). The assumption
α > 1/3 now implies that Jε → 0 as ε → 0. We have thus proved that (4.15) holds for any
φ ∈ C1

0(Dη). As discussed earlier, this implies the existence of Γ ∈ C0,α([p0, 0]) such that
(4.12) holds. It therefore follows from (4.11) that, in the sense of distributions (with ψx, ψy

in the classical sense),

Γ(−ψ)x =
1

2
(ψ2

x − ψ2
y)x + (ψxψy)y in Dη,(4.19a)

Γ(−ψ)y = (ψxψy)x −
1

2
(ψ2

x − ψ2
y)y in Dη.(4.19b)
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Rearranging (4.19b) gives exactly (3.2a). Also, recalling (4.10), we obtain from (3.1f) the
validity of (3.2d) for some constant Q. We have thus proved that (ii) holds.

Suppose now that (ii) holds. We define in Dη the velocity (u, v) by (2.3) and, up to an
additive constant, the pressure P , by

(4.20) P
def
= −1

2
|∇ψ|2 − gy + Γ(−ψ) in Dη.

Then u, v, P ∈ C0,α
per (Dη). Moreover, the definition of u and v implies (3.1a), while (3.2b)–

(3.2d) imply (3.1d)–(3.1f), provided the additive constant in the definition of P is chosen
in a suitable way. Also, (2.4) implies (2.2). It therefore remains to prove the validity of
(3.1b)–(3.1c). Using our definition of u, v and P , (3.1b)–(3.1c) can be equivalently rewritten
as (4.19). However, (4.19b) is exactly (3.2a), which we are assuming to hold, and therefore it
only remains to prove (4.19a). We now show that (4.19b) implies (4.19a). For notational con-

venience, we denote F
def
= Γ(−ψ). We claim that, with this definition of F , (4.16) necessarily

holds. Indeed, (4.16) can be written explicitly as (4.15) for any φ ∈ C1
0(Dη), which, us-

ing the same notation as earlier in the proof, is equivalent to (4.14) for any φ̃ ∈ C1
0(R),

which is clearly true with our definition of F . Let V
def
= Dη and let, for any ε > 0,

V ε def
= {(x, y) ∈ V : dist((x, y),R2 \ V ) > ε}. Using Lemma 2, (4.16) implies that, for

any ε > 0 such that V ε is not empty, in the notation (4.1) and using (4.4) with suitable f
and g,

(4.21) (F εψε
y)x − (F εψε

x)y +Rε(F, ψy)x −Rε(F, ψx)y = 0 in V ε.

Let K be any compact subset of V . Then, for all ε sufficiently small, K is a subset of V ε and,
as a consequence of (2.4),

ψε
y < 0 in K.

For any such value of ε, (4.21) can be rewritten as

(4.22) F ε
x =

ψε
x

ψε
y

F ε
y − 1

ψε
y

[Rε(F, ψy)x −Rε(F, ψx)y] in K.

On the other hand, using again Lemma 2 and (4.19b), we obtain, by using (4.17b) with
θ := ψε, that, for any ε > 0 such that V ε is not empty,

(4.23) F ε
y = ψε

y∆ψ
ε +Rε(ψx, ψy)x −

1

2
Rε(ψx, ψx)y +

1

2
Rε(ψy, ψy)y in V ε.

We deduce from (4.23) using (4.22) that, for all ε sufficiently small,

F ε
x = ψε

x∆ψ
ε +

ψε
x

ψε
y

[
Rε(ψx, ψy)x −

1

2
Rε(ψx, ψx)y +

1

2
Rε(ψy, ψy)y

]
− 1

ψε
y

[Rε(F, ψy)x −Rε(F, ψx)y] in K.(4.24)

We now write explicitly the weak form of (4.19a), which we want to prove: for any φ ∈ C1
0(Dη),

(4.25)

∫
Dη

Fφx −
1

2
(ψ2

x − ψ2
y)φx − (ψxψy)φy dxdy = 0.
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Let φ ∈ C1
0(Dη), arbitrary, and let K

def
= suppφ. Let ε0

def
= dist(K,R2 \ V )/2 and K0

def
=

{(x, y) ∈ R2 : dist((x, y), K) ≤ ε0}. Note that K is a subset of V ε, for any ε ∈ (0, ε0). Aiming
to prove (4.25) for φ, we write, for any ε ∈ (0, ε0),∫

Dη

Fφx −
1

2
(ψ2

x − ψ2
y)φx − (ψxψy)φy dxdy

=

∫
K

[F − F ε]φx −
[
1

2
(ψ2

x − ψ2
y)−

1

2
((ψε

x)
2 − (ψε

y)
2)

]
φx − [(ψxψy)− (ψε

xψ
ε
y)]φy dxdy

+

∫
K

F εφx −
1

2
((ψε

x)
2 − (ψε

y)
2)φx − (ψε

xψ
ε
y)φy dxdy

def
= Kε + Lε.

It is a consequence of Lemma 1(i) that Kε → 0 as ε → 0. Now note that (2.4) implies that
there exists ε̃ ∈ (0, ε0) and δ > 0 such that, for all ε ∈ (0, ε̃),

(4.26) ψε
y ≤ −δ in K.

To estimate Lε, we first integrate by parts using (4.17a) with θ := ψε, then use (4.24) to
cancel some terms, and then integrate by parts again, to obtain, for any ε ∈ (0, ε̃),

Lε = −
∫
K

(F ε
x − ψε

x∆ψ
ε)φdxdy

= −
∫
K

ψε
x

ψε
y

[
Rε(ψx, ψy)x −

1

2
Rε(ψx, ψx)y +

1

2
Rε(ψy, ψy)y

]
φdxdy

+

∫
K

1

ψε
y

[Rε(F, ψy)x −Rε(F, ψx)y]φdxdy

=

∫
K

Rε(ψx, ψy)

(
ψε
x

ψε
y

φ

)
x

− 1

2
Rε(ψx, ψx)

(
ψε
x

ψε
y

φ

)
y

+
1

2
Rε(ψy, ψy)

(
ψε
x

ψε
y

φ

)
y

dxdy

−
∫
K

Rε(F, ψy)

(
1

ψε
y

φ

)
x

−Rε(F, ψx)

(
1

ψε
y

φ

)
y

dxdy.

Thus we have written Lε as a sum of five terms, all of which can be estimated, by using
Lemma 1, in a similar way to the one shown below:∣∣∣∣∣

∫
K

Rε(ψx, ψy)

(
ψε
x

ψε
y

φ

)
x

dxdy

∣∣∣∣∣ =
∣∣∣∣∫

K

Rε(ψx, ψy)

(
ψε
xψ

ε
y

(ψε
y)

2
φx +

ψε
xxψ

ε
y − ψε

xψ
ε
xy

(ψε
y)

2
φ

)
dxdy

∣∣∣∣
≤ C(ε2α||ψx||2C0,α(K0)

||ψy||2C0,α(K0)
+ ε3α−1||ψx||2C0,α(K0)

||ψy||2C0,α(K0)
),

where C is a constant which depends on φ, but is independent of ε ∈ (0, ε̃), and we have
also used (4.26). The assumption α > 1/3 now implies that Lε → 0 as ε → 0. We have
thus proved that (4.25) holds for any φ ∈ C1

0 (Dη), and therefore that (4.19a) holds. This
completes the proof that (i) holds. �
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