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ABSTRACT

Currently, most operational forecasting models use latitude–longitude grids, whose convergence of me-

ridians toward the poles limits parallel scaling. Quasi-uniform grids might avoid this limitation. Thuburn et al.

and Ringler et al. have developed a method for arbitrarily structured, orthogonal C grids called TRiSK, which

has many of the desirable properties of the C grid on latitude–longitude grids but which works on a variety of

quasi-uniform grids. Here, five quasi-uniform, orthogonal grids of the sphere are investigated using TRiSK to

solve the shallow-water equations.

Some of the advantages and disadvantages of the hexagonal and triangular icosahedra, a ‘‘Voronoi-ized’’

cubed sphere, a Voronoi-ized skipped latitude–longitude grid, and a grid of kites in comparison to a full

latitude–longitude grid are demonstrated. It is shown that the hexagonal icosahedron gives the most accurate

results (for least computational cost). All of the grids suffer from spurious computational modes; this is

especially true of the kite grid, despite it having exactly twice as many velocity degrees of freedom as height

degrees of freedom. However, the computational modes are easiest to control on the hexagonal icosahedron

since they consist of vorticity oscillations on the dual grid that can be controlled using a diffusive advection

scheme for potential vorticity.

1. Introduction

For modeling the global atmosphere, grids with inher-

ent resolution clustering, such as the latitude–longitude

grid (lat-lon) and (less severely) the conformal cubed

sphere (Rančić et al. 1996; Putman and Lin 2007), are

expected to be inefficient on massively parallel com-

puting architectures for which data communication will

be a performance bottleneck (e.g., Swinbank and Purser

2006) since resolution clustering leads to time-step re-

strictions that are circumvented by algorithms that use

a larger domain of dependence per time step. In recent

years this has reinvigorated research into the use of quasi-

uniform grids. However, all proposed quasi-uniform grids

have potential problems associated with their grid struc-

ture; most notably these include grid imprinting and

the existence of computational modes (see below). This

paper examines five candidate quasi-uniform spherical

grids (section 2) for solving the shallow-water equa-

tions (SWEs) and compares them with the lat-lon grid.

A common numerical framework is used throughout

(section 3) so that the comparison is as clean as possi-

ble. The test cases and diagnostics presented (section 4)

focus in particular on grid imprinting and computational

modes.

No grid of the sphere is perfectly uniform. All grids

have some nonuniformity (such as variations in cell size,

edge length, cell orientation, or cell shape) and all grids

have special points or lines where the structure is locally

different from elsewhere (such as the cube vertices and

edges on a cubed sphere grid). Numerical truncation er-

rors can be expected to reflect the underlying grid struc-

ture, leading to grid imprinting in the numerical solution.
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The worst cases of grid imprinting can be quite con-

spicuous (e.g., Tomita et al. 2001). However, the mani-

festation of grid imprinting may be rather subtle, for

example in the form of spurious triggering of physical

barotropic or baroclinic instability (e.g., St-Cyr et al.

2008) or a spurious distortion of the energy spectrum.

Some grids are heterogeneous at the grid scale; the basic

repeating unit is a cluster of cells and a cell’s imme-

diate neighbor may be quite different from the cell itself

(e.g., on a triangular grid an ‘‘up’’ triangle is adjacent to

a ‘‘down’’ triangle). Such grids may have grid-scale vari-

ation in numerical truncation error leading to noisy so-

lutions (e.g., Le Roux et al. 2005; Danilov 2010).

Staniforth and Thuburn (2012) describe computa-

tional modes as wave modes supported by the dis-

cretization that have no analog among those supported

by the continuous equations. They are usually at or near

the grid scale. A discretization may support isolated in-

dividual computational modes (which are often station-

ary) or one or more entire branches. Some well-known

examples of isolated stationary computational modes

are the checkerboard gravity modes on the Arakawa A

and B grids, the vertical grid-scale mode supported by

the Lorenz-staggered vertical grid, and the Coriolis mode

on the Arakawa C grid. Stationary computational modes

are associated with a nontrivial null space of one or more

discrete operators in the linearized governing equations

[this is how Le Roux et al. (2005) define a computational

mode]. A serious consequence of the A- and B-grid

computational modes is that waves with spatial scale

close to the grid scale have group velocity of the wrong

sign and so energy propagates in the wrong direction

(e.g., Durran 1999).

The C grid has more accurate gravity wave dispersion

than the A and B grids but if the Rossby radius is not well

resolved, inertia–gravity modes wrongly have decreasing

frequency as wavenumber increases (Randall 1994). How-

ever, the Rossby radius is well resolved for the deepest

modes in the atmosphere and so the C grid on a regular

latitude–longitude grid is a common choice among oper-

ational forecasting centers (e.g., Davies et al. 2005) and a

C grid is used for the results presented in this paper. There

is also a stationary, nondivergent Coriolis mode on the

C grid. This arises because only an averaged version of

the discrete vorticity is seen by the momentum equation.

Computational modes are usually excited if they exist

in models of the atmosphere since nonlinear dynamics

and forcing from physical parameterizations can project

onto them. If they grow then they can overwhelm the

well-resolved part of the solution and so must be removed

by some form of diffusion. It is therefore desirable to use

a numerical method with fewest possible or no compu-

tational modes.

Le Roux et al. (2005) and Staniforth and Thuburn

(2012) argue that a necessary (but not sufficient) condi-

tion for avoiding such spurious branches in 2D is that

there should be twice as many velocity degrees of free-

dom (DOFs) as height. Otherwise, in addition to iso-

lated stationary computational modes, entire branches

of computational modes can exist in the discrete dis-

persion relation. For example, the C-grid discretization

on Delaunay triangulations described by Bonaventura

and Ringler (2005) was subsequently found to support

four rather than two inertio-gravity modes for each hor-

izontal wavenumber (e.g., Danilov 2010). Each triangle

has 1 height DOF to just 1½ velocity DOFs. Hence

smaller length scale waves in height are represented

that cannot interact correctly with velocity because

velocity is at a coarser resolution. When the Rossby

radius is poorly resolved these computational modes

are retarded; the smallest-scale modes have very small

frequency and are then easily forced, which results in

grid-scale oscillations of height and divergence (e.g.,

Gassmann 2011) that are coupled with the physical waves

by the nonlinear terms.

The hexagonal C grid supports a branch of low-

frequency computational Rossby modes in addition to

the physical branch (Thuburn 2008). It is associated

with the fact that each grid cell has 3 velocity DOFs

per height DOF.

Most finite element pairs on triangles also have com-

putational modes, which again may be isolated modes

or entire branches (Le Roux et al. 2005). Some are due

to collocation of pressure and velocity while those with

more than twice as many velocity DOFs as pressure

DOFs may have spurious branches of inertial oscillations

(e.g., P1DG2P2; Cotter and Ham 2011).

A further issue with the hexagonal (and other polyg-

onal) C grid is the maintenance of geostrophic balance.

The hexagonal C grid was analyzed by Purser (1998),

Ničković et al. (2002), and Torsvik et al. (2005), who

found that it could not support geostrophic modes of

zero frequency. Subsequently, Thuburn (2008), Thuburn

et al. (2009), and Ringler et al. (2010) showed how the

Coriolis term could be discretized to ensure stationary

geostrophic modes. (In the rest of this paper their scheme

is referred to as TRiSK.) Prior to TRiSK, models using

hexagonal icosahedra have either used collocation of

pressure and velocity (e.g., Tomita and Satoh 2004;

Weller and Weller 2008); collocation of pressure, vortic-

ity, and divergence (a hexagonal Z grid; e.g., Heikes

and Randall 1995a); or collocation of both components

of velocity (the ZM grid; Ringler and Randall 2002).

TRiSK is a horizontal discretization scheme for the

SWEs on arbitrarily structured orthogonal C grids.

(‘‘Orthogonal’’ is defined to mean that the dual grid
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edges are at right angles to the primal grid edges. The

dual grid has vertices at the cell centers of the primal

grid and cell centers at the vertices of the primal grid.)

TRiSK can maintain discrete geostrophic balance and

has a number of other conservation and mimetic prop-

erties that will be described in section 3. Thus, these

properties, which can be obtained relatively straight-

forwardly on the lat-lon C grid, can now also be obtained

on a range of alternative grid structures. Note, however,

that TRiSK does not eliminate the branch of compu-

tational Rossby modes on the hexagonal C grid or the

branches of computational inertio-gravity modes on the

triangular C grid, since it does not alter the numbers of

DOF in the velocity and height fields. TRiSK does en-

sure that the frequency of both physical and computa-

tional Rossby modes goes to zero for constant f. Also,

TRiSK provides a discrete analog of the potential vor-

ticity (PV) equation with some flexibility in the choice of

PV flux; an upwind-biased interpolation of the PV par-

tially controls the computational Rossby modes (Weller

2012; see also section 4 herein).

2. Quasi-uniform orthogonal grids of the sphere

The construction of five quasi-uniform grids of the

sphere is described along with some statistics of the res-

olutions used in the results in section 4. Shallow-water

tests will, where possible, be done at very coarse reso-

lution so that the relationship between the errors and

the grid can be seen clearly at a global scale and so that

fundamental length scales such as the Rossby radius

can easily be underresolved, as sometimes happens in

3D models.

Some statistics of the grids, time steps used, and Rossby

radii of the test cases are shown in Table 1. For each test

case, grids of each type are generated with similar number

of DOFs.

a. Skipped latitude–longitude

The skipped lat-lon grid (Purser 1998; see our Figs. 1c,d)

has 2:1 coarsening in the longitude direction once the dis-

tance between cell centers reaches 2/5 of the equatorial

distance. To produce an orthogonal grid, the edges be-

tween fine and coarse cells are moved by first Delaunay

triangulating the cell centroids and then taking the Voronoi

dual to create a Voronoi grid. The result consists mostly of

squares, some pentagons (where the longitudinal resolu-

tion reduces toward the pole), and a polygon at each pole.

It is hoped that the skipped lat-lon grid will maintain

the accuracy of the lat-lon grid equatorward of the re-

ductions while achieving the properties of TRiSK (see

section 1) at the reductions and at the poles.

b. Hexagonal and triangular icosahedra

Hexagonal and triangular icosahedra (Figs. 1e,f) are

close to uniform and have the minimum ‘‘angular de-

ficiency’’ (Purser 1998). (The angular deficiency at the

vertex of a polyhedron is the difference between the sum

TABLE 1. Statistics of the grids of the sphere; l is the minimum Rossby radius of deformation of the test. The final column shows the

section in which results using this grid are presented.

Type No. of cells DOFs Dxeq (km) l (km) Dt (s) Section

Lat-lon 84 (6 3 14) 322 2859 2168 4d

1104 (24 3 48) 3264 834 960 900, 3600 4b, 4c

Skipped lat-lon 218 (12 3 24) 674 1668 2168 4d

866 (24 3 48) 2642 834 960 3600 4b, 4c

59 954 (192 3 384) 180 242 104 2525 100 4e

Hexagonal 162 (150 hexes) 642 1922 2168 4d

642 (630 hexes) 2562 961 960 3600 4b, 4c

40 962 163 842 120 1296 100 4a

40 962 163 842 120 2525 100 4e

163 782 655 122 60 2525 100 4e

Triangular 320 800 1110 2168 4d

1280 3200 555 960 3600 4b, 4c

81 920 204 800 70 2525 100 4e

Kites 258 (86 3 3) 774 1108, 1920 2168 4d

3840 (1280 3 3) 11 520 277 480 960 3600 4b, 4c

Voronoi-ized cube 150 (5 3 5 3 6) 593 2002 2168 4d

864 (12 3 12 3 6) 3450 834 960 3600 4b, 4c

2736 M O N T H L Y W E A T H E R R E V I E W VOLUME 140



of the face angles at that vertex and 2p.) Hence dis-

tortions near the edges of the base polyhedron will be

minimal. Icosahedral grids can also be constructed to be

orthogonal using Delaunay triangulation and Voronoi

tessellation.

Results will be presented on a centroidal Voronoi

hexagonal icosahedron (e.g., Ringler et al. 2008; see our

Fig. 1e) for direct comparison with Ringler et al. (2010);

and on the dual grid, the Delaunay triangulation. A cen-

troidal grid has Voronoi generating points collocated

with cell centroids, which improves accuracy of the esti-

mate of the cell average value by the cell-center value.

But the Voronoi–Delaunay grid crossover points do not

converge to the midpoints of the edges with increasing

resolution, which reduces the accuracy of the estimate

of the edge average value by the edge crossover point

value. Alternatively, the Heikes and Randall (1995b)

hexagonal icosahedron does not have Voronoi points

at the cell centroids but the crossover points do con-

verge to the midpoints of the edges. This version has

also been tested; for the results presented here, this makes

a little difference (not shown). Ringler (2003) found a

similar insensitivity to the grid details.

c. Voronoi-ized cubed sphere

To make a quasi-uniform cubed sphere grid orthog-

onal and thus suitable for use with TRiSK, it has been

‘‘Voronoi-ized’’ by taking the cell centroids of the

equal-angle cubed sphere, Delaunay triangulating them

and then taking the Voronoi dual (Fig. 1h). This Voronoi-

ized cubed sphere has lost some of the desirable properties

of a cubed sphere as the cells are no longer quadrilateral

(two short edges have been introduced into each cell) and

so there are more than twice as many velocity DOFs as

height. However, the cell to cell addressing is still very

straightforward, which may allow better code optimization.

The Delaunay triangulation is not always unique on

square grids of points; whether a quadrilateral is split into

an up-triangle and then a down-triangle or vice versa is

subject to rounding error. Therefore the Voronoi-ized

cubed sphere will lose the symmetry of the original

cubed sphere. (This loss of symmetry is visible in Fig. 7h.)

FIG. 1. A variety of quasi-uniform grids of the sphere.
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d. Kites

Grids of quadrilaterals will always have exactly twice

the number of velocity DOFs as height DOFs using

C-grid staggering, which is a necessary condition for

avoiding computational modes. A grid of quadrilaterals

can be created by dividing the triangles in any Delaunay

triangulation into three kite-shaped quadrilaterals (Figs.

2 and 1g). The decomposition is achieved by lines from

the triangle edge midpoints to the triangle circumcenters.

The result has an orthogonal dual if the midpoint between

the triangle circumcenter and the triangle corner is used

as the kite center since the dark-shaded triangle is similar

to the light-shaded right-angle triangle (which is a right

angle since the Delaunay triangulation is orthogonal).

Similar grids were used by Giraldo and Rosmond (2004).

However, the kites lack a number of other desirable

grid properties: they are not Voronoi since the kites

edges are not midway between the kite centers; they

are not centroidal since the center used to make them

orthogonal is not the center of mass, so the value at the

center is not a second-order accurate approximation of

the area average; they are heterogeneous at the grid scale

(adjacent kites have different orientations) and they

are anisotropic (there are widely varying edge lengths

within each cell and widely varying cell center to cell

center distances). We will show in this paper that these

disadvantages outweigh the advantages of having the

correct ratio of DOFs.

e. Cubed sphere

Various versions of cubed sphere grids have been pro-

posed for atmospheric modeling, and have some ad-

vantages. For example, they retain a logically rectangular

quadrilateral structure, so the full C-grid accuracy of the

inertio-gravity wave dispersion may be possible with-

out computational modes. Accurate tracer transport al-

gorithms have been developed for the cubed sphere

(e.g., Lauritzen et al. 2010). The SWEs have been solved

accurately by Fournier et al. (2004) on the cubed sphere

by employing high-order accurate collocated spectral

elements, and this model has been extended to three

dimensions and coupled with physics parameterizations

to produce realistic rainfall simulations (Mishra et al.

2011). Given the popularity of the cubed sphere grids,

it would be desirable to include them in the present com-

parison. Unfortunately, TRiSK, as currently formu-

lated, requires an orthogonal grid. (An extension to

nonorthogonal grids is an active area of research.) The

conformal cubed sphere (Rančić et al. 1996) is orthog-

onal but suffers from resolution clustering around the

cube corners and so is not quasi-uniform. Various quasi-

uniform versions of the cubed sphere have been devel-

oped, including the equal-angle cubed sphere (e.g.,

Rančić et al. 1996), the equal distance cubed sphere,

a version modified by spring dynamics, and a version

modified based on a variational principle (Putman and

Lin 2007). However, these are all nonorthogonal and so

unsuitable for TRiSK. None of the proposed schemes

for nonorthogonal cubed sphere grids has all of the de-

sirable properties of TRiSK (section 3). We therefore

restrict attention in this paper to grids that are suitable

for TRiSK in order to maintain a clean comparison.

3. TRiSK

TRiSK is exactly defined by Thuburn et al. (2009) and

Ringler et al. (2010) and here we summarize TRiSK

FIG. 2. Two Delaunay triangles subdivided into orthogonal kites by lines from the triangle edge

midpoints to the triangle circumcenters.
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(section 3a) and define some minor alterations relevant

for non-Voronoi, orthogonal 2D grids on the sphere

(section 3b). (Voronoi implies that the edges between

cells are exactly midway between the cell centers.)

TRiSK has the following desirable properties:

1) Exact, local conservation of mass.

2) Exact, local conservation of potential vorticity. This

relies on, among other things, obeying a discrete

analog of $ 3 $F [ 0 for any scalar field, F.

3) The evolution of PV is consistent in the sense that

constant initial PV remains constant for all time.

4) The discrete PV is compatible with the momentum

equation (i.e., the same result is obtained whether

the PV is diagnosed at a particular time step from the

prognostic variables of velocity and height or whether

it is evolved using its own transport equation and the

fluxes from the velocity and height).

5) Conservation of total energy to within time-truncation

error (i.e., neither the Coriolis force nor the pressure

gradient force generate energy and the sources and

sinks of kinetic and potential energy are exactly equal

and opposite).

6) Ability to maintain discrete geostrophic balance for

the linearized equations in the limit of constant f.

a. Concise statement of TRiSK (Thuburn et al. 2009;
Ringler et al. 2010)

TRiSK is a mixed finite-volume–finite difference so-

lution method of the nonlinear, rotating SWEs with the

continuity equation in flux form and the momentum

equation in vector-invariant form:

›h

›t
1 $ � (hu) 5 0, (1)

›u

›t
1 qhu? 5 2g$(h 1 b) 2 $K, (2)

where h is the fluid depth, u is the horizontal wind, b is

the height of the bottom boundary, g is the accelera-

tion due to gravity, q 5 (k � $ 3 u 1 f )/h is the potential

vorticity, u?5 k 3 u, f is the Coriolis parameter, k is the

local outward pointing unit normal to the sphere, and

K 5 (1/2)juj2 is the kinetic energy.

The prognostic variables are the height hi in each cell i

and the normal component of the velocity ue at each

edge e between cells. The PV qy is diagnosed at each

vertex y (or equivalently, in each dual cell). The length

of cell edges is ‘e, the distance between cell centers is de

and the area of each cell is Ai (Fig. 3). Calculation of the

lengths and areas for spherical geometry are stated in

section 3b. The cell centers are at locations xi, the

vertices at xy, and the crossover points between edges

and the lines between cell centers (the edge points) at xe.

1) DISCRETIZATION OF DIVERGENCE

The divergence of mass flux in the continuity equation

(1) and, by analogy, other divergences are discretized

using Gauss’s divergence theorem:

$ � (hu)i 5
1

Ai

�
e2i

ĥeue‘e, (3)

where e 2 i means all the edges e around cell i and ĥ
e

is

the height at the edge mapped from the height in the cells

either side i and j and the sign of ue is switched if nec-

essary so that positive is outwards. In Ringler et al. (2010)

midpoint interpolation is used: ĥe 5 (1/2)(hi 1 hj). On

Voronoi grids, this is a second-order approximation of

the value at the edge crossover point but only a first-

order approximation of the edge-average value since the

crossover point is not at the edge center. An alternative

interpolation for ĥ
e

for non-Voronoi grids will be defined

in section 3b below.

2) DISCRETIZATION OF GRADIENT NORMAL

TO CELL EDGES

The gradient at the cell edge is needed in the direction

normal to the cell edge:

$e(h) � n̂e 5
hj 2 hi

de

, (4)

where i and j are the cells either side of edge e. This simple

two-point formula on an orthogonal grid guarantees that

gradients are curl free around vertices. If the grid were

nonorthogonal, this formula would still give curl free

gradients but the formula would not be consistent (i.e.,

the truncation error would not go to zero as the grid is

refined). This discrete gradient is the dual of the discrete

divergence, which is required for energy conservation.

FIG. 3. Cell centers xi and xj; edge cross-over points xe; edge

lengths ‘e; distance between cell centers de; prognostic variables hi,

hj, and ue; and diagnostic variable qy.
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3) DISCRETIZATION OF CURL

The vorticity and, by analogy, other curls are discretized

using Stoke’s theorem around the dual cells circulating

each vertex:

k � ($ 3 u)
y

5
1

A
y

�
e2y

uede, (5)

where Ay is the area of the dual cell surrounding vertex y

and the sign of ue is switched if necessary so that positive

implies anticlockwise circulation.

4) RECONSTRUCTION OF TANGENTIAL

VELOCITIES

The tangential velocities do not always need to be

calculated in TRiSK as the entire PV flux term qhu? is

discretized together as described in section 6 below. The

method of reconstructing tangential vector components

is reproduced here as it will be needed in subsection 5

below.

Vector quantities along edges are reconstructed from

normal components at the edges of the cells either side

of the edge in question using weights that guarantee that

the divergence of the vector field on the dual grid is

a convex combination of the divergence on the primal

grid:

deu?e 5 �
e92i, j

wee9
‘e9

ue9
, (6)

where the edges e9 are the edges of the cells i and j that

are either side of edge e. In Thuburn et al. (2009), the

weights wee9 were derived to be

wee9
5 6

1

2
2 �

y

Aiy

Ai

� �
, (7)

where the ys are the vertices in a walk between edges e

and e9 and Aiy is the overlapping area between the dual

cell around vertex y with cell i (see Fig. 4). If this walk

starts in the positive u?e direction, then the sign is posi-

tive if positive ue9 is outwards.

5) INTERPOLATION OF PV FROM VERTICES

TO EDGES

In TRiSK it is necessary to map the PV from the

vertices to the edges in the calculation of the accelera-

tion. Ringler et al. (2010) report two possible methods:

the arithmetic mean of the vertices at either end of the

edge (i.e., midpoint interpolation) or, to enable the re-

moval of potential enstrophy (but not energy) at the

smallest scales, the anticipated potential vorticity method

(APVM) of Sadourny and Basdevant (1985), which cal-

culates PV at a point upstream of the edge:

midpoint: ~qe 5
1

2
(q

y1 1 q
y2), (8)

APVM: ~qe 5
1

2
(q

y1 1 q
y2) 2

1

2
ue � [$q]edt, (9)

where [$q]e is the gradient of q and dt is the time step.

In this new implementation, the vector [$q]e is re-

constructed from the normal gradients of q on the dual

grid using the weights described in subsection 4 above.

6) DISCRETIZATION OF THE PV FLUX

The PV flux qhu? of (2) is averaged between target

and surrounding edges to guarantee that the Coriolis

force conserves energy:

(qhu?)e 5
1

de

�
e92i, j

wee9
‘e9

ĥe9
ue9

~qe 1 ~qe9

2
. (10)

7) CALCULATION OF KINETIC ENERGY

The cell kinetic energy is defined only in terms of the

normal velocities:

Ki 5
1

Ai

�
e2i

Ae

2
, (11)

where Ae 5 (1/2)‘ede. This new implementation will use

a modified version for non-Voronoi grids, which will be

described in section 3b below.

FIG. 4. Adapted from Fig. 4 of Thuburn et al. (2009). The

overlapping area Aiy between cell i and dual cell around vertex y

and the area Aie of cell i associated with edge e.
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8) DISCRETIZATION OF ›/›t

The momentum and continuity equations are advanced

using the explicit fourth-order Runge–Kutta scheme

for exact comparison with Ringler et al. (2010, 2008) in

test cases in sections 4a and 4e. Semi-implicit Crank–

Nicolson time stepping (with no off-centering, nonlinear

and Coriolis terms treated explicitly, and two outer iter-

ations per time step) is used in sections 4b and 4c to

allow longer time steps to facilitate the use of the full

lat-lon grid. However, TRiSK is a definition of the spatial

discretization rather than temporal and many other tem-

poral schemes could be used instead.

This concludes the discretization of the SWEs (1) and

(2) as defined by Thuburn et al. (2009) and Ringler et al.

(2010). Next some modifications for non-Voronoi grids

and spherical geometry will be defined.

b. Modifications of TRiSK

1) SPHERICAL GEOMETRY

When using the vector-invariant form of the equations

on a C grid, spherical polar coordinates are not needed.

Instead all areas and distances need to be defined on the

sphere. The areas Ai, Aiy, and Aie (Fig. 4) are defined by

decomposing each cell into spherical triangles, with each

triangle having a parent cell center xi a parent vertex xy

and a parent edge crossing point xe as its corners and

great circle lines between the points. The areas Ai, Aiy,

and Aie can all be decomposed if the grid is Pitteway

(i.e., if the line between the cell centers crosses the edge

between the cells rather than being off the end). The

area of each spherical triangle is

A 5 jxij
24 tan21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����tan
s

2
tan

s 2 a

2
tan

s 2 b

2
tan

s 2 c

2

����
s

,

(12)

where a, b, and c are the angles between points xi, xy, and

xe on the sphere and s 5 (1/2)(a 1 b 1 c). This is the

formulation that is less sensitive to rounding error in the

limit of small triangles (Williams 2011). The angle a be-

tween points xi and xy is

a 5 2 sin21jx̂i 2 x̂
y
j

2
. (13)

The edge lengths ‘e (Fig. 3) are great circle distances:

‘
e
5 2jx

e
j2 sin21(jx̂

y1
2 x̂

y2
j/2). The distances between

cells, de, are set by de 5 2Ae/‘e so as not to violate con-

servation of energy.

2) NON-VORONOI ORTHOGONAL GRIDS

Ringler et al. (2010) use midpoint interpolation from

cell centers to edges: ĥ
e
5 (1/2)(h

i
1 h

j
), which gives

conservation of energy if the kinetic energy is calculated

using (11). Midpoint interpolation is second-order ac-

curate on Voronoi grids as the edges are midway be-

tween the cell centers and it produces a conservative

mapping between the cells and the edge areas. Instead

we use a conservative mapping between cell centers and

edges for Voronoi and non-Voronoi grids:

ĥe 5
Aiehi 1 Ajehj

Ae

, (14)

where i and j are the cells either side of edge e, Aie is

the area of the triangle between edge e and cell center i

(Fig. 4), and Ae 5 Aie 1 Aje. With this modification,

a conservative transfer of energy between potential and

kinetic can only be maintained if the kinetic energy is

defined as

Ki 5
1

Ai

�
e2i

Aieu2
e (15)

instead of (11). This scheme reduces to that of Ringler

et al. (2010) on Voronoi grids but is expected to be more

accurate on non-Voronoi grids.

c. Implementation in OpenFOAM

The additional TRiSK operators and Runge–Kutta

time discretization have been implemented in the

OpenFOAM CFD software library (The OpenCFD

Foundation 2011) in order to make use of some existing

OpenFOAM operators, grid handling, and linear equa-

tion solvers. The divergence and normal gradient of

TRiSK are the same as those already in OpenFOAM.

The reconstruction of tangential velocities, the curl, the

PV flux, the calculation of the kinetic energy, and the

APVM interpolation have been newly implemented in

OpenFOAM.

4. Results

Selected results are presented that demonstrate

strengths and weaknesses of the different grids and that

illuminate grid-imprinting and some computational

modes. These will start with a direct comparison with

Ringler et al. (2010) showing results of the Williamson

et al. (1992) test case 5, the flow over a midlatitude

mountain (section 4a). Then steady-state, geostrophically

balanced solid body rotation of the linearized and non-

linear SWEs (Williamson et al. 1992; test case 2) will

be presented (sections 4b and 4c). The normal mode

frequencies and some normal modes are presented in

section 4d; these help to explain the SWE results. Finally,

results of the barotropically unstable jet of Galewsky
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et al. (2004) will be presented with a subset of the grids

described (section 4e).

a. Flow over a mountain (Williamson et al. 1992;
test case 5)

TRiSK has been implemented exactly as in Ringler

et al. (2010) and so extensive comparisons have been

made with the results in that paper in order to validate

the implementation, including extensive diagnostics for

the Williamson et al. (1992) test case 2 (not shown).

Comparisons are presented here for the vorticity of the

flow over a midlatitude mountain after 50 days (Fig. 5)

using a hexagonal icosahedral grid of 40 962 cells (see

Table 1), giving a cell center to cell center distance of

around 120 km, a time step of 100 s, and APVM to re-

move small-scale potential enstrophy.

For Fig. 5, the vorticity was diagnosed at 50 days in

two different ways. First, the vorticity on hexagons was

calculated using Stoke’s theorem to circulate around

each hexagon and u?e given by (6) (middle row of Fig. 5).

FIG. 5. Relative vorticity (s21) after 50 days for shallow water flow over a midlatitude mountain.

(top) Figure 11a of Ringler et al. (2010) (using APVM). (middle) OpenFOAM implementation with

vorticity on hexagons. (bottom) OpenFOAM implementation with vorticity on triangles.
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This compares well with Ringler et al. (2010) (top left),

confirming the correct implementation. However, when

the vorticity is calculated on the vertices from the nor-

mal velocities using Stoke’s theorem (as is done during

the simulation) and plotted on the dual grid of triangles

(bottom left), then grid scale oscillations are visible de-

spite the Rossby radius (2525 km) being well resolved

and despite the APVM implicit diffusion of vorticity.

Calculating the vorticity on the primal (hexagonal) grid

rather than the dual (triangular) grid smooths the vor-

ticity, thus hiding the grid-scale velocity oscillations. The

vorticity oscillations on triangles are the manifestation

of the computational Rossby modes of the hexagonal C

grid (Thuburn 2008) caused by the excessive number of

velocity DOFs in comparison to height DOFs. Using

a smoothed version of the vorticity during the simulation

would not help. In fact it would make the mode more

difficult to control. The mode occurs because a smoothed

version of the vorticity is already used in the momentum

equation (the vorticity must be averaged from vertices to

edges). The momentum equation can only act to reduce

grid-scale oscillations if it can see them.

This level of grid-scale noise is considered small for

a 50-day run and may not be detrimental in 3D sim-

ulations with parameterized forcing and dissipation

(T. Ringler 2011, personal communication). However,

it may be possible to do better than this with an advec-

tion scheme more accurate than APVM for the potential

vorticity (e.g., Wel1er 2012).

b. Solid body rotation of the linearized SWEs

The linearized, rotating SWEs are

›h

›t
1 H$ � u 5 0,

›u

›t
1 f u? 5 2g$h, (16)

where H is the mean fluid depth and h represents the

depth perturbations about H. These simplified equa-

tions are solved as well as the full nonlinear SWEs since

they support the same waves as the full SWEs, the com-

putational modes are the solutions of the linearized

equations, and the solution errors of solving the linear-

ized equations help in understanding the errors in solving

the full SWEs.

A steady-state analytic solution for solid-body rota-

tion on the sphere is available:

u 5 u0 cosf, y 5 0, gh 5 2aVu0 sin2f, (17)

where f is latitude and f 5 2V sinf. We use H 5 2000 m

and other parameters from test case 2 of Williamson et al.

(1992): a 5 6.371 22 3 106 m, V 5 7.292 3 1025 s21, g 5

9.806 16 m s22, and u0 5 2pa/(12 day). These parameters

give a gravity wave speed of
ffiffiffiffiffiffiffi
gH
p

5 140 m s21 and the

minimum Rossby radius is 960 km (at the poles).

The model is initialized by sampling u, y, and h at the

centroids of the edges and cells rather than at the com-

putational points since these values give a second-order

approximation to the fluxes. When initializing from a

divergence-free velocity field this means that the dis-

crete velocity is discretely divergence-free up to sec-

ond order in space. This initialization has been found

to be closer to discrete geostrophic balance than sam-

pling at the computational points, especially for the

noncentroidal grids.

The velocity and height differences from the initial

conditions after 5 days for all the grids are shown in

Fig. 6. These solutions use midpoint interpolation of

f from vertices to edges for calculating the PV flux from

(10). All the grids use Crank–Nicolson time-stepping with

a time step of 3600 s, apart from the full rotated lat-lon

grid, which uses 900 s in order to achieve a similar Cou-

rant number near the pole of the grid. The maximum and

minimum height errors and the ‘2 height error norm are

shown in the figure captions of Fig. 6. The ‘2 error norm

is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ

A (h 2 h0)2 dA/
Ð

A h2
0 dA

r
, where h0 is the

initial condition equal to the sampled analytic solution

for this steady-state case. Since TRiSK can maintain

geostrophic balance (it has steady geostrophic modes)

and conserves energy in the limit of small Dt, the errors

in Fig. 6 are due to the difference between the initial

conditions and a discretely balanced state. The sampled

initial conditions do not contain grid-scale oscillations

and so oscillations generated are due to model errors.

The grid that gives the lowest height errors is the

hexagonal icosahedron (Fig. 6e) and the errors have

large-scale structure with reduced height at the equator

and increased height at high latitudes. There is some

large-scale grid imprinting based on the fivefold sym-

metry of the grid, but no grid-scale oscillations in height.

The computational mode on hexagons consists of ve-

locity circulating in alternating directions around each

vertex (Thuburn 2008) that is present in Fig. 6e.

The unrotated and 458 rotated full lat-lon grids (Figs.

6a,b) also have low height errors, without grid-scale

oscillations, although larger height errors are localized

near the pole of the 458 rotated lat-lon grid. In an Eu-

lerian operational lat-lon model, these oscillations would

be removed by polar filtering. The unrotated skipped

lat-lon grid has additional errors at the grid reductions

(Fig. 6c), which become grid-scale oscillations when the

skipped grid is rotated (Fig. 6d). These oscillations are

related to computational modes with grid-scale oscilla-

tions on the dual, which will be discussed later.

The sampled initial conditions have triggered large

grid-scale oscillations in height on the triangular grid
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(Fig. 6f), similar in appearance to the spurious inertio-

gravity modes on the triangular C grid described by

Danilov (2010). The velocity errors on triangles in

Fig. 6f are mostly in the tangential component, with

velocity circulating in alternating directions around

each triangle. This pattern is present in the initial

conditions due to the initial TRiSK reconstruction of

velocity.

The height and velocity errors on the kite grid are

larger than on any other grid (Fig. 6g). In common with

other grids, there are negative height errors at the equator

but elsewhere the error is dominated by grid-scale oscil-

lations. These are likely to be due to the larger truncation

errors of using kites, resulting from the grid inhomo-

geneities and anisotropies described in section 2d.

The large height errors on the Voronoi-ized cube

(Fig. 6h) are mostly large scale rather than grid scale with

some large-scale grid imprinting with fourfold sym-

metry and velocity aligning with the grid rather than

along lines of latitude.

FIG. 6. Height and velocity errors after 5 days for the linearized shallow water equations simulating a linearized

version of Williamson et al. (1992), test case 2. Maximum and minimum height errors (in m) and maximum velocity

error (in m s21) given in each subcaption.
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More insight can be gained into the errors on different

grids by inspecting the relative vorticity after 5 days de-

fined on the dual grid (Fig. 7) (i.e., defined on the

vertices of the primary grid). The ‘2 error norms of PV

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ

A (q 2 q0)2 dA/
Ð

A q2
0 dA

r
) are shown in the captions

where q0 is the initial value of q calculated from the

sampled analytic values of u and h.

The unrotated full lat-lon grid has the smallest ‘2

error norm and so the relative vorticity in Fig. 7a can be

regarded as nearly exact. As for the height, the rotated

full lat-lon grid has errors around the pole of the grid

(Fig. 7b) where small-scale features are localized in

the fine resolution. Once grid reductions are included

(Fig. 7c) grid-scale oscillations are introduced with high

vorticity on the triangles of the dual. This corresponds

to cyclonic vorticity on the triangular dual cells that

occur at the grid reduction. This is due to the growth of

computational Rossby modes resulting from the exces-

sive number of velocity to height at the grid reductions.

(The vorticity oscillations must be computational modes

FIG. 7. Relative vorticity on the dual grid after 5 days for the linearized shallow water equations simulating

a linearized version of Williamson et al. (1992), test case 2.
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since they are stationary and real Rossby modes at this

scale would propagate.) These grid-scale oscillations be-

come much worse when the grid is rotated (Fig. 7d) since

the mode is now forced by the flow across the grid

reductions. The alternating cyclonic and anticyclonic

flow forces the grid-scale oscillations in height as seen

in Fig. 6d.

Grid-scale oscillations consisting of just two values

can occur on grids of squares (checkerboard patterns)

and also on triangles but two values cannot create grid-

scale oscillations on hexagons on which two adjacent

hexagons never share the same value. This implies that

2D grid-scale computational modes cannot be present

when values are represented on hexagons. But for the

hexagonal C grid, the vorticity lives on the vertices (or

dual triangles). Therefore computational modes are

present in the vorticity on triangles (Fig. 7e). These do

not directly reduce the accuracy of the height field

(Fig. 6) since the vorticity is averaged in the Coriolis

terms, so the noise is smoothed in its effect on the dy-

namics. The variable that lives on hexagons cannot have

grid-scale oscillations and so the vorticity on the hexag-

onal dual of the triangular grid (Fig. 7f) is free of grid-

scale oscillations. It also has a low ‘2 error.

The worst grid-scale vorticity oscillations occur for

the kite grid (Fig. 7g) whose dual consists of a variety of

shapes, with different vorticities on each shape. These

grid-scale oscillations are stationary and are therefore

computational modes.

The results on the Voronoi-ized cube (Fig. 7h) have

similarities with those on the hexagonal grid (Fig. 7e).

Both grids are Voronoi with triangular duals and there

are grid-scale oscillations on the vorticity on the triangles.

These are worse on the Voronoi-ized cube since the grid

is less isotropic, with a local mixture of long and short

edges. The oscillations change phase around the cube as

the grid bends north and south. The dual of the Voronoi-

ized cube does not completely retain the symmetry of the

cube since, due to the nonuniqueness of the Delaunay

triangulation and rounding error, each face of the cube

is triangulated differently.

c. Solid body rotation of the nonlinear SWEs

The nonlinear SWEs are solved for Williamson et al.

(1992) test case 2 on the same grids and input parame-

ters as section 4b above. The height and velocity errors

after 5 days are shown in Fig. 8. These simulations have

midpoint interpolation of PV from vertices to edge

points (8).

When solving the linearized SWEs, all the grids ten-

ded to give negative height errors around the equator

and positive toward the poles (Fig. 6). This tendency

does not occur for the nonlinear equations (Fig. 8). This

could be due to truncation errors of the opposite sign

introduced with approximating the nonlinear terms

[nonlinear PV flux and kinetic energy gradient in (2)].

Therefore, there could be a cancellation of errors, and

the height errors are reduced on the full and skipped

unrotated lat-lon grids when solving the nonlinear equa-

tions (Figs. 8a and 8c vs Figs. 6a and 6c). However, all the

other grids give larger errors. When solving the non-

linear equations, velocity errors that are generated at

a grid inhomogeneity are advected away, increasing the

errors downstream. In particular, the hexagonal grid

shows more large-scale grid imprinting and large errors

are generated away from the grid reductions of the

rotated skipped grid. The grid-scale errors on the tri-

angular and kite grids retain the same structure but

deepen and the errors on the Voronoi-ized cube deepen

and display more large-scale grid imprinting.

The vorticity errors that result from solving the non-

linear equations are similar to those that result from

solving the linear equations but they grow more quickly

due to nonlinear feedbacks onto the computational

modes. They are not presented since they do not give

further insight.

d. Normal modes

Normal modes and their frequencies are calculated in

order to answer the following questions:

d Do all the grids have stationary geostrophic modes?
d Are these stationary modes physical (in which case

they will have zonal symmetry) or computational

(consisting of grid-scale oscillations)?
d Do grids with the correct ratio DOFs of suffer less

from computational modes?
d How do the computational modes relate to the errors

when simulating steady, geostrophically balanced

flow?
d How does the grid-scale heterogeneity influence the

wave modes?

The normal modes of the linearized SWEs and fre-

quencies can be found for any grid with any numerical

algorithm by calculating the eigenvectors and eigen-

values of the matrix M which represents the linearized

action of the model on any set of initial conditions. The

initial conditions are represented as a vector, (h, un)T,

where h is the vector of the h values in every cell and un is

the vector of the un values normal to every edge. The

model matrix M is found by running the model for one

short time step for each of the set of initial conditions

(1, 0, . . . 0)T, (0, 1, 0 . . . 0)T, . . . (0, 0, . . . , 0, 1)T and the

solutions form the columns of M. The short time step

is to ensure that nonlinear effects are minimal. The ei-

genvectors v and the eigenvalues l of M are computed
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and then the vs are the normal modes with frequencies v

calculated from the eigenvalues, l 5 aeivdt. The normal

modes are calculated using the parameters given by

Thuburn et al. (2009): Earth’s radius, a 5 6 371 220 m,

constant Coriolis, f 5 1.4584 3 1024 s21, gH 5

105 m2 s22, and using a time step of 10 s. Coarser ver-

sions of the grids shown in Fig. 1 are used due to the

computational expense of the eigendecomposition. Grid

specifications are given in Table 1. The Rossby radius

is 2168 km, which is marginally resolved. The zero fre-

quency modes of the rotating sphere are presented first

and then we will look at the remaining modes and com-

pare with the analytic frequencies.

1) STATIONARY MODES OF THE ROTATING

SPHERE

The stationary modes are particularly important since

they are either the physical, geostrophically balanced

states (which are zonally symmetric on the rotating

sphere) or they are stationary grid-scale computational

modes, which are damaging to the solution. These are

the modes associated with nontrivial null spaces in one

FIG. 8. Height and velocity errors after 5 days for Williamson et al. (1992), test case 2. Maximum and minimum height

errors (in m) and maximum velocity error (in m s21) given in each subcaption.

AUGUST 2012 W E L L E R E T A L . 2747



FIG. 9. A selection of normal modes of height (colors) and velocity (vectors) on the rotating sphere, with frequencies (s21)

given for each. The scales of height and velocity are arbitrary.
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or more operators of the governing equations. For each

of the grids, one of the stationary modes is shown in the

first column of Fig. 9 (if it exists) and a stationary or very

slow mode is shown in the second column. The second

mode is chosen to contrast in structure with the first.

Only the lat-lon grid has stationary geostrophic modes

in perfect zonal symmetry as only this grid can repre-

sent perfect zonal symmetry (top left of Fig. 9). The

other zero-frequency mode shown for the lat-lon grid is

a combination of zonally symmetric geostrophic bal-

ance and the Coriolis mode (with spurious stationary

vortices around each vertex, zero Coriolis force, and

zero divergence).

The skipped lat-lon and hexagonal grids have very

low-frequency modes in near-zonal symmetry (second

column of Fig. 9). The exact zero-frequency modes are

contaminated by computational modes: the Coriolis mode

on the skipped lat-lon grid and a spurious Rossby mode

on the hexagonal grid.

An exact zero-frequency mode with some zonal sym-

metry has been found for the triangular grid (second

column of Fig. 9) but, contrary to the theory of the

triangular C grid on a beta plane, there is also a spuri-

ous stationary Rossby mode on triangles (first column).

However, in spherical geometry with spherically vary-

ing Coriolis, different spurious solutions are possible

and it has been possible to find a velocity field satisfying

$ � u 5 0 on the cells and $ � fu 5 0 on the vertices.

It was hoped that the kite grid, with the correct ratio of

velocity to height DOFs, would not suffer from the

spurious Rossby mode branches of the hexagonal grid.

However, the kite grid has spurious stationary rotational

modes (first column of Fig. 9) as well as spurious very

low-frequency rotational modes (second column) and

none of the slow modes is zonally symmetric.

The Voronoi-ized cube does not have any exact zero-

frequency modes or slow modes in near-zonal symmetry,

just the spurious slow Rossby modes of the hexagonal

C grid.

2) NONSTATIONARY MODES OF THE f SPHERE

AND ROTATING SPHERE

Normal modes are calculated on the f sphere as well as

the rotating sphere. The f sphere is a purely mathematical

concept—a sphere with globally uniform Coriolis. This is

used because there is an analytic dispersion relation

for the frequency v for each spherical harmonic with

wavenumber n:

v[v2 2 f 2 2 n(n 1 1)gH/a2] 5 0. (18)

The rotating sphere has the usual sinusoidal variation of

f with latitude.

The f sphere model’s frequencies are compared with

the analytic frequencies from (18) and are shown in

Fig. 10. Since the frequencies occur in complex conjugate

pairs, only half of them are shown. Ideally the frequencies

would be plotted against wavenumber as a dispersion re-

lation. However, grid inhomogeneity causes many mode

structures to become localized, making it impossible to

define a meaningful wavenumber. Instead, for the f-sphere

results, the frequencies are simply sorted into zero values

and nonzero values in order to distinguish geostrophic

modes from inertio-gravity modes, and the nonzero values

are sorted into ascending order. Unfortunately physical

modes cannot be distinguished from computational modes

on the basis of frequency alone because their frequency

spectra overlap.

For the rotating sphere (red frequencies in Fig. 10) the

Rossby modes (low frequencies) are separated from

the inertio-gravity modes (high frequencies) purely by

ordering the frequencies and by assuming that the

rotating sphere has the same number of Rossby and

geostrophic modes as the f sphere has zero-frequency

geostrophic modes. This separation is arbitrary and

some modes may appear in the wrong branch. The ro-

tating sphere has less quantization of mode frequencies

because of the spatial variation of f.

For the f sphere, the hexagonal grid (Fig. 10c) and

Voronoi-ized cube sphere (Fig. 10f) have nearly the same

number of zero modes (geostrophic modes) and nonzero

modes (the inertio-gravity modes) since, as explained by

Thuburn et al. (2009), the number of geostrophic modes is

given by the number of vorticity degrees of freedom (the

number of vertices minus one) and the number of inertio-

gravity modes is the number of mass plus divergence de-

grees of freedom (twice the number of cells minus one).

These Voronoi grids have three cells meeting at one vertex

and most cells are hexagonal so the number of each type of

mode is about equal. The wave frequencies are similar for

these two grids except that there is less quantization of

frequencies for the Voronoi-ized cube sphere f sphere than

for the hexagonal icosahedron due to the variations in cell

sizes and edge lengths for the Voronoi-ized cube sphere.

The spurious Rossby modes on the hexagonal f sphere are

zero frequency and so are on the x axis.

For each of the grids, the spatial structure of two more

of the nonstationary eigenmodes of the rotating, linear-

ized SWEs is plotted in Fig. 9. One of the Rossby modes

with large spatial scale and frequency around 1025 s21

is plotted for each grid in the third column. The mode

with the highest frequency is in the final column.

All of the grids have a similar-looking wavenumber 1

Rossby mode that is symmetric about the equator (third

column of Fig. 9). This mode is presented as a sanity

check that the analysis reproduces the large-scale wave
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modes that we expect on the rotating sphere. All grids

capture the mode with comparable frequency, except

the coarser lat-lon grid.

The final column of Fig. 9 shows the highest-frequency

mode which, for most grids is associated with the smallest

cells. All of the grids have some variation in cell size and

consequently have higher-frequency modes localized in

the highest resolution regions. For some grids (lat-lon and

kites), the variation in cell size is so extreme that there is an

upturn at the end of the frequency graphs (Figs. 10a,b,e)

due to gravity waves localized near inhomogeneities of the

grid. For the triangular grid, the highest-frequency mode is

one of the spurious inertio-gravity modes of the triangular

C grid, with largest amplitude at the pole where the Rossby

radius is smallest.

For the triangular grid (Fig. 10d) and the kites (Fig.

10e) there is a jump in the frequency part way along the

inertio-gravity modes. This change in slope was also

recognized for triangles by Thuburn et al. (2009), who

attributed this to a switch to a spurious branch of inertio-

gravity modes. However, the nature of the jump in fre-

quency for the kite grid is different; beyond this jump, all

of the modes are regionally confined (not shown). Be-

cause of the inhomogeneous and anisotropic nature of

the kite grid, modes become localized in many locations

of the grid rather than just close to the two poles of the

lat-lon grids. This would be a problem for an operational

model: if convection occurred in one of the fine-resolution

regions of the kite grid, the resulting gravity waves could

not propagate cleanly away.

FIG. 10. Normal mode frequencies (31024 s21) on the f sphere (in blue) and the rotating sphere (in red)

for various grids in comparison to the analytic solution for the f sphere (horizontal lines).
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The Voronoi-ized cube has frequencies that increase

approximately linearly (Fig. 10f) for the highest fre-

quencies whereas we would expect the frequencies to

flatten out for a uniform, structured C grid with linear

differencing (e.g., Randall 1994). So it is likely that this

apparently realistic increase in frequency is in fact a

computational artifact. This is confirmed by inspecting

the highest-frequency mode on this grid in Fig. 9, which

has grid-scale oscillations in a limited region of the grid.

These high-frequency waves will propagate around the

high-resolution regions of the grid rather than propa-

gating out of them.

3) SUMMARY

We can now answer the questions posed at the be-

ginning of this subsection concerning wave modes on the

rotation sphere:

d All of the grids have stationary geostrophic modes on

the rotating sphere, apart from the Voronoi-ized cube.
d All of the exactly stationary geostrophic modes on the

rotating sphere are spurious computational modes,

apart from on the full lat-lon grid, where perfect zonal

symmetry is possible.
d The triangular, kite, and Voronoi-ized cube grids

do not have any near-stationary modes in zonal sym-

metry. However, the hexagonal grid has a very low-

frequency mode in near-zonal symmetry.
d The kite grid, with the correct ratio of DOFs, suffers

from many computational modes. Merely having the

correct ratio of DOFs does not eliminate these.
d The grid-scale vorticity errors on hexagons are caused

by the stationary computational Rossby mode (first

column of Fig. 9).
d Heterogeneity and anisotropy at the grid scale leads to

wave modes localized near the finest parts of the grids,

for all grids. The kite grid has a large proportion of the

wave modes localized in different parts of the grid.

e. Barotropically unstable jet (Galewsky et al. 2004)

The simulation of a barotropically unstable jet with an

initial perturbation (Galewsky et al. 2004) is a tough test

for a low-order model on a non-lat-lon grid since the jet

is fast and narrow and numerical truncation errors lead

to perturbations that release the instability in a similar

manner to the initial perturbation. This test case there-

fore needs higher resolution than solid-body rotation in

order to achieve results qualitatively similar to the high-

resolution solution. A high-resolution solution for the

relative vorticity after 6 days is shown at the top of

Fig. 11 (using a hexagonal icosahedron of 163 782 cells,

dx ’ 60 km, as given in Table 1) and is compared with

the results from other the grids at lower resolutions;

70 to 140 km (also in Table 1). Only the icosahedra and

skipped lat-lon grids were used since from sections 4b, 4c,

and 4d we can see no advantages of the kite and Voronoi-

ized cube over the icosahedral grids. The overlaid dual

grids are a factor of 8 coarser in both directions for

clarity.1

This test case has a Rossby radius of 2525 km based on

the midjet values, which is well resolved. The time step is

100 s, which implies that the flow Courant numbers based

on all the primal and dual grids are well below one but the

Courant number based on the gravity wave speed is close

to one. APVM (9) is used for suppressing grid-scale vor-

ticity oscillations and dissipating potential enstrophy.

An attempt is made to find initial conditions in dis-

crete balance so that initial grid-scale divergence and

geostrophic imbalance are not larger than the initial

perturbations. The initial velocity is found as in Ringler

et al. (2011) by sampling c at the vertices from (17) then

setting ue 5 k 3 $c. This ensures that the initial velocity

is divergence free and therefore initially ›h/›t 5 0. If

additionally it is possible to find h such that fu?5 2g$h

then there should be no drift from the initial conditions.

This h is sought by solving the Poisson equation: 2g=2h 5

$ � fu? using the TRiSK operators. The Poisson equation

can be solved to arbitrary tolerance but this does not

guarantee that discrete balance holds, just the diver-

gence of the discrete balance equation; it is only pos-

sible to find h satisfying the discretized fu? 5 2g$h if

the discretized $ � fu 5 0 at the vertices. This is because

taking the curl of fu? 5 2g$h implies that $ 3 fu? 5

$ � fu 5 $ 3 $h 5 0. However, the initial conditions

found are closer to discrete balance than sampled ini-

tial conditions.

The unrotated, skipped lat-lon grid (Fig. 11b) gives

results closest to the high-resolution solution because the

flow is aligned with the grid and the jet does not cross the

first grid reduction (at 668N) until day 5 and so the ad-

ditional truncation errors caused by the grid reduction

have not had sufficient time to amplify and contaminate

the solution. Spikes in the vorticity can be seen where the

jet crosses the first grid reduction in the zoomed region.

When the skipped lat-lon grid is rotated by 908 (Fig.

11c), the poles are now along the equator and the grid

reductions are near the equator so the narrow mid-

latitude jet does not reach the first grid reduction until

day 5. Therefore, the grid reduction does not have a big

1 The hexagonal icosahedral grid at this resolution should have

163 842 cells rather than 163 782. However, during the iterations to

make the grid centroidal while retaining uniform resolution, 60 of

the cells have vanished. This is unlikely to have a big impact on the

solution accuracy.
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impact on the solution at day 6; the reduced accuracy,

phase error of the largest wave, and enhanced spurious

release of barotropic instability for the 908 rotated grid

are due to the misalignment of the jet with the grid and

the change in angle between the grid and the jet around

the sphere. It is only reasonable to compare non-lat-lon

grids with rotated lat-lon grids since real jets are not

aligned with the grid and so the optimal accuracy of the

FIG. 11. Relative vorticity after 6 days of the barotropically unstable jet (Galewsky et al. 2004). The zoomed region

shows the relative vorticity on the dual grids around 508N, 1408W.
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aligned lat-lon grid will never be achieved. So if the

quasi-uniform grids can perform as well as the 908 rotated

lat-lon grid then they may be sufficiently accurate for

operational forecasting. When the skipped grid is rotated

by 458 (Fig. 11d) more damage to the solution is done

when the jet passes through the grid reductions. APVM

imposes an additional time-step restriction and so this

case has not been simulated using a full lat-lon grid.

At 120-km resolution, the hexagonal grid does suffer

from some spurious release of instability after 6 days

(Fig. 11e), similar to the 908 rotated skipped lat-lon grid,

but it does not suffer from serious phase error. For

TRiSK, which uses the cheapest possible two-point dif-

ferencing, this is an impressive result that compares well

with a collocated model on the same grid which uses

much more expensive quadratic differencing (e.g., Fig. 7

of Weller et al. 2009). The spurious checkerboard pattern

in vorticity on the dual grid appears for this test case us-

ing the hexagonal grid (see zoomed region in Fig. 11e)

although APVM has damped this computational mode.

This numerical artifact is not visible when viewing the

vorticity on the primal grid of hexagons (not shown).

At 70-km resolution, the triangular grid results (Fig.

11f) are worse than the hexagonal grid results at 120 km;

larger waves have grown all around the hemisphere and

the position of the largest wave has a larger phase error

(clear from zoomed region). This is not due to the com-

putational mode of triangles or the grid-scale heteroge-

neity since there is no grid-scale noise in the height on

triangles (not shown). The computational modes on tri-

angles do not appear. Based on numerous other simula-

tions on triangles, this seems to be because these modes

are not strongly forced when using balanced initiali-

zation. The reduced accuracy of triangles relative to

hexagons in this case is therefore a consequence of the

lower-order accuracy two-point interpolation on triangles

since they are not Voronoi.

For this test case, the hexagonal grid and the lat-lon

grid are giving the most accurate results (so long as the

jet does not interact with the lat-lon grid reductions).

This crucial result implies that the hexagonal grid is as

good as the full latitude–longitude grid (since if the jet

does not interact with the lat-lon reductions then the

results will be as good as the full lat-lon grid). However

the hexagonal grid is quasi-uniform and therefore will

not have the same parallel scaling problems as the full

lat-lon grid. The skipped lat-lon grid leads to large errors

when the jet passes through the grid reductions.

5. Conclusions

TRiSK on all five quasi-uniform grids suffers from

computational modes that are usually associated with

triangles in the primal or dual grid. The skipped lat-lon

grids have triangles in their dual which develop spikes in

the vorticity. The dual of the hexagonal icosahedron

is triangular and so computational modes consisting of

grid-scale vorticity oscillations on the triangles exist [the

computational Rossby modes of Thuburn (2008)]. The

triangular grid has the computational mode in height

on the primal grid. The dual of the Voronoi-ized cube

consists of anisotropic triangles and so vorticity oscilla-

tions grow on the triangles. The kite grid, despite having

the correct ratio of DOFs, suffers from more grid-scale

oscillations than any of the other grids. The resolutions

of velocity and mass are anisotropic on the kites and so

grid-scale noise and high-frequency waves are localized

in clusters of cells.

Using TRiSK, computational modes involving vor-

ticity oscillations can be damped using a diffusive ad-

vection scheme for PV such as APVM, which leads to a

dissipation of potential enstrophy. This does not remove

energy or violate any of the other desirable properties

of TRiSK, unlike divergence damping, which would be

needed to control spurious inertio-gravity modes on tri-

angles. Therefore, computational modes consisting of

vorticity oscillations on triangles appear to be easier to

deal with. Given this, the hexagonal icosahedron gives

the best results on all of the test cases.

The skipped lat-lon grid performs almost perfectly when

the flow is aligned with the grid and well when the grid is

rotated. However, when the flow interacts with the changes

of resolution of the skipped lat-lon grid, much larger errors

are generated, which are then advected globally.

The cubed sphere was made perfectly orthogonal while

retaining quasi-uniformity by making it into a Voronoi

tessellation. Hence the cells are composed of polygons

rather than squares. However, this implies that the dual

now consists of triangles and so computational Rossby

modes exist on the triangles. The triangular dual is less

isotropic than the dual of the hexagonal grid and so the

errors are larger.

All of these conclusions are relevant to the arbitrarily

structured, orthogonal C grid (TRiSK), which is a low-

order method with stationary geostrophic modes and con-

servation of mass, energy, and PV and which is consistent

and compatible. No consistent numerical C-grid method

currently exists with these properties on nonorthogonal

grids. These properties should enable accuracy close to

that of the lat-lon C grid. However, the conclusions will

be relevant to other methods on these grids. In particular,

the computational modes that can be supported when

the velocity and mass do not have the same resolution

will be problematic for all C-grid numerical methods.

The final conclusion is that TRiSK was developed for

hexagonal icosahedra and other Voronoi tessellations
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that are close to centroidal (Ringler et al. 2011), and

indeed TRiSK works best on the hexagonal icosahedra

and works very well in comparison to other, more ex-

pensive methods. It therefore appears to be a good choice

for a quasi-uniform operational weather and climate fore-

casting model.
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