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Highlights
► Global levels of ubiquitinated proteins increased in the hippocampus of Tg2576 mice. ► No
global changes in either SUMO-1 or SUMO-2/3 conjugation in any brain regions analysed. ►
SUMO conjugating and deconjugating enzymes, UBC9 and SENP-1, unaltered in Tg2576 mice.
► Total levels of AMPA and kainate receptors were also unaffected in Tg2576 mice. ►
Posttranslational modification by ubiquitin may play a role in Alzheimer's disease.

Abstract
Alzheimer's disease (AD) is a major cause of disability in the elderly. The formation of senile
plaques and neurofibrillary tangles are the main hallmarks of the disorder, whereas synaptic loss
best correlates to the progressive cognitive decline. Interestingly, some of the proteins involved in
these pathophysiological processes have been reported to be subject to posttranslational
modification by ubiquitin and/or the small ubiquitin-like modifier (SUMO). Here we investigated
global changes in protein SUMOylation and ubiquitination in vivo in a model of AD. We used
Tg2576 transgenic mice, which overexpress a mutated human amyloid precursor protein (APP)
gene implicated in familial AD. As expected, APP protein levels were dramatically increased in
the hippocampus, cortex and cerebellum of Tg2576 mice. A significant increase in the global level
of ubiquitinated proteins was observed in the hippocampus of Tg2576 mice. Significant or close to
significant changes in individual bands of SUMO-1 or SUMO-2/3 conjugation were apparent in
all brain regions investigated, although global levels were unaltered between wild-type and
transgenic mice. Levels of SUMO-specific conjugating and deconjugating enzymes, UBC9 and
SENP-1 were also unaltered in any of the brain regions analysed. Surprisingly, given the well-
documented loss of synaptic function, total levels of the excitatory AMPA and kainate receptors
were unaffected in the Tg2576 mice. These results suggest that alterations in SUMO substrate
conjugation may occur and that global posttranslational modifications by ubiquitin may play an
important role in the mechanisms underlying AD.
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Alzheimer's disease (AD) is the most common neurodegenerative disorder and cause of
dementia among the aging population (http://www.alz.co.uk/research/worldreport/). It has a
complex pathophysiology, which, although not completely understood, is characterised by
beta-amyloid (Aβ) senile plaques originating from cleavage of the amyloid precursor protein
(APP) and neurofibrillary tangles formed from hyperphosphorylated microtubule protein tau
[28]. Synaptic loss is another characteristic feature of the condition and probably the best
correlate of the cognitive decline that develops progressively in AD patients [27]. Several
lines of evidence indicate that excitatory synapses are lost due to a decrease in AMPA and
NMDA receptors at the cell surface caused by extracellular accumulation of Aβ [24].

Ubiquitination and SUMOylation are key protein modification pathways that involve a
sequence of analogous but distinct enzymatic steps to covalently conjugate either ubiquitin
or SUMO (small ubiquitin-like modifier) to substrate proteins. Generally, ubiquitinated
proteins are targeted to the proteasome for degradation (reviewed in [25]), whereas proteins
tagged by one of the validated SUMO paralogues (SUMO-1 to -3, the difference between
SUMO-2 and -3 being only three amino acids) can undergo changes in localisation, activity
and/or stability (reviewed in [29]). Both ubiquitin and SUMO conjugation pathways play
critical roles in diverse physiological and pathophysiological processes [22,30,32]. High
levels of ubiquitinated proteins have been observed in all major neurodegenerative disorders
including AD [18]. Recently, alterations in global levels of SUMOylated proteins have been
reported in a number of these diseases (for review see [4]) and several AD-associated
proteins, including APP and tau, have been shown to be SUMOylated [9,11,33].

Tg2576 transgenic mice, which overexpress a mutated APP gene containing the Swedish
familial AD mutation, are a widely recognised model of AD [14]. These mice exhibit
elevated Aβ that lead to plaque pathology and behavioral deficits analogous to that of AD
patients (for review see [14]). Previous in vivo and in vitro studies using Tg2576 mice have
shown impairment of the ubiquitin–proteasome system as well as reduction in the surface
expression of AMPA receptors [2,3,23]. Here we investigated potential changes in protein
SUMOylation and ubiquitination patterns, SUMO-specific conjugating (UBC9) and
deconjugating (SENP-1) enzymes, and levels of AMPA and kainate (KA) receptor subunits
in Tg2576 mice. As expected, our results show a dramatic increase of APP protein levels in
the hippocampus, cortex and cerebellum, though surprisingly, given the reported loss of
synaptic function, levels of the excitatory AMPA and KA receptors were unaffected. A
robust increase in total ubiquitinated proteins was seen in the hippocampus of Tg2576 mice,
but not in the cortex or cerebellum. A decrease in SUMO-2/3 conjugation of high molecular
weight proteins was evident in the cortex of transgenic mice, and although changes in the
modification of multiple SUMO-1 and SUMO-2/3 conjugates were apparent in all brain
regions, no other significant changes in conjugation or in levels of SUMO conjugation
machinery were observed between transgenic and control mice.

Animal care and experimental procedures were conducted in accordance with UK Home
Office legislation and experimental protocols approved by the British National Committee
for Ethics in Animal Research.

Hippocampal, cortical and cerebellar regions were prepared from 9-month male Tg2576
mice and wild-type age-matched controls processed in parallel. Brains were immediately
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removed following cervical dislocation and dissected in ice cold Hank's balanced salt
solution (HBSS, pH 7.2) containing (in mM): 1.26 CaCl2, 5.36 KCl, 136.89 NaCl, 36.08
glucose, 0.44 KH2PO4, 0.34 Na2HPO4, 0.49 MgCl2, 0.44 MgSO4, 25 HEPES and 4
NaHCO3. For each of the regions, both hemispheres were pooled together in ice-cold lysis
buffer containing: 50 mM Tris–HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 1%
Triton X-100, 1% mammalian protease inhibitor (Roche) and 20 mM NEM (Sigma–
Aldrich). For the tissue homogenisation protocol, equivalent amounts of tissue were lysed in
equivalent buffer volumes, samples were sonicated for 10 s at 4 °C and total protein
concentrations were determined as previously reported [8].

An appropriate volume of loading buffer consisting of 125 mM Tris–HCl (pH 6.8), 20%
glycerol, 4% SDS, 0.01% bromophenol blue and 5% β-mercaptoethanol was added to the
samples, which were then boiled for 5 min at 95 °C. Equal amounts of protein loaded at 10–
50 μg protein/lane were resolved by SDS-PAGE (8–15%) and immunoblotting was
performed as formerly described [8]. The primary antibodies used were: rabbit polyclonal
anti-APP (Sigma; 1:4000), mouse monoclonal anti-ubiquitin (Santa Cruz; 1:500), rabbit
polyclonal anti-SUMO-1 (1:4000) kindly provided by Dr. M. Dasso, rabbit polyclonal anti-
SUMO-2/3 (Zymed; 1:250), rabbit polyclonal anti-SENP-1 (Imgenex; 1:1000), rabbit
polyclonal anti-UBC9 (Santa Cruz; 1:250), mouse monoclonal anti-GluA1 (Millipore;
1:2000), rabbit monoclonal anti-GluK2/3 (Upstate; 1:1000) and mouse monoclonal anti-β-
actin (Sigma; 1:10,000). For each region (hippocampus, cortex and cerebellum), samples
from at least six Tg2576 mice were compared to an equal number of wild-type age-matched
controls on the same Western blot to avoid differences in signal intensity. The same blots
were then re-probed with anti-β-actin antibody as an internal control to ensure equal protein
loading in all lanes. Densitometry was performed on blots for each brain region and
analysed using Image J (NIH). For SUMO and ubiquitin conjugate multiple bands the entire
lane with a maximum range of 15–250 kDa as well as individual prominent bands were
analysed. Band intensity values for the investigated proteins were normalised against the
internal loading control values and the mean normalised value obtained for the wild-type
group was designated as 100%.

Results are expressed as mean ± SEM of the indicated number of animals. Student's t-test
was applied to the means to determine differences between experimental groups. p
Values < 0.05 were considered statistically significant.

Tg2576 mice show increased APP protein levels in all brain regions analysed: To confirm
that Tg2576 mice, which overexpress the Swedish double mutation (K670N, M671L) of the
human APP gene, produce increased levels of APP protein compared to their age-matched
controls, we performed Western blots in samples from brain regions of transgenic and wild-
type mice. As expected, the transgenic mice express increased APP protein levels by at least
3-fold in the hippocampus (Fig. 1A), cortex (Fig. 1B) and cerebellum (Fig. 1C). The
increase in APP protein levels in the transgenic mice provides increased substrate for β-
secretase, an enzyme that proteolytically cleaves APP to produce Aβ, increased levels of
which, in turn, lead to amyloid plaque accumulation in this mouse model (for reviews see
[12]).

Levels of protein SUMOylation and ubiquitination in Tg2576 mice: To determine if Tg2576
mice show modified SUMOylation and/or ubiquitination of substrate proteins,
immunodetection using antibodies against SUMO-1, SUMO-2/3 and ubiquitin was
performed in blots containing samples from Tg2576 and age-matched wild-type mice. The
global levels and individual bands of posttranslationally modified proteins were analysed for
hippocampus (Fig. 2A), cortex (Fig. 2B) and cerebellum (Fig. 2C).
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Since global levels of SUMOylated proteins have been reported to be increased in a number
of neurodegenerative diseases (for review see [4]) and key proteins in AD have been
implicated as SUMO substrates or SUMO-interacting proteins [9,10,20,33], we
hypothesised that altered levels of SUMO-conjugated substrates might be evident in Tg2576
mice. Conjugation by both SUMO-1 and SUMO-2/3 displayed similar global levels in both
transgenic and age-matched wild-type mice in all of the brain regions analysed (Fig. 2A–C,
left and centre panels). Similarly, the, global levels of ubiquitin conjugates in the cortex and
cerebellar regions were analogous between transgenic and age-matched wild-type mice (Fig.
2B and C, right panels). In contrast, however, global levels of ubiquitin-conjugated proteins
in the hippocampus of Tg2576 mice were significantly increased compared to age-matched
wild-type mice (Fig. 2A, right panel).

Analysis of a selection of prominent bands revealed significant or very close to significant
changes in SUMO-1, SUMO-2/3 and ubiquitin conjugation levels of individual proteins
(Table 1). In the hippocampus of Tg2576 mice, although increases in individual bands for
SUMO-1 and SUMO-2/3 were apparent, these changes did not reach significance.
Individual bands for SUMO-1 and SUMO-2/3 in the cortex show apparent decreases: most
strikingly, two high molecular weight SUMO-2/3 conjugates at ∼130 and ∼150 kDa showed
a significant decrease (Supplementary Fig. 1A). In the cerebellum, distinct bands in the
SUMO-1 blot showed increases which were close to significance at ∼100 kDa and ∼60 kDa,
whereas no other bands showed apparent alterations. In conjunction with the global changes
in ubiquitin conjugation, several individual ubiquitin bands were significantly increased in
the hippocampus of Tg2576 mice (Supplementary Fig. 1B). In contrast, no significant
changes in ubiquitination were evident in the cortex and cerebellum.

SUMO-specific conjugating and deconjugating enzymes protein levels in Tg2576 mice: To
further investigate alterations in protein SUMOylation in this model, we analysed the protein
levels of the SUMO conjugating enzyme, UBC9, and the SUMO-specific isopeptidase,
SENP-1. Neither enzyme was significantly altered between the Tg2576 and age-matched
wild-type mice (Fig. 3A–C).

AMPA receptor subunit, GluA1, and KA receptor subunits, GluK2/3, protein levels in
Tg2576 mice: Since synaptic dysfunction and/or loss is highly implicated as an early event
in the pathophysiology of AD [24], we investigated total levels of the AMPA and KA
receptor subunits, GluA1 and GluK2/3, respectively, in the Tg2576 mice using the same
tissue samples monitored for ubiquitination and SUMOylation. The total levels of GluA1
and GluK2/3 were not altered in any of the brain regions analysed in Tg2576 compared to
age-matched wild-type mice (Fig. 4A–C).

Our results confirm that APP protein levels are dramatically increased in the hippocampus,
cortex and cerebellum of Tg2576 mice. Moreover, a significant increase in the global levels
of ubiquitinated proteins, as well as several distinct molecular weight conjugates, was
observed in the hippocampus of Tg2576 mice. Interestingly, significant decreases in distinct
high molecular weight SUMO-2/3 conjugates were seen in the cortex of Tg2576 mice.
Although multiple SUMO-1 and SUMO-2/3 bands appear to be altered in brain regions
investigated, no other significant changes were detected. Levels of the SUMOylating,
UBC9, and deSUMOylating, SENP-1, enzymes were also unaltered in any of the Tg2576
mice brain regions analysed. Surprisingly, given the reported loss of synaptic function
[13,17], total levels of the excitatory AMPA and kainate neurotransmitter receptors were
unaffected in the Tg2576 mice at the age we investigated.

Under pathological conditions, including AD, ubiquitin immunoreactive inclusion bodies
accumulate, proteasomal activity is decreased and deubiquitinating enzymes that promote
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the degradation of accumulated proteins are downregulated [7,19]. In the brains of Tg2576
mice, it has been reported that the ubiquitin–proteasome activity decreases with age while
the Aβ levels increase [23]. In agreement with that previous study, we observed a significant
increase in the global levels of ubiquitinated proteins in the hippocampus of Tg2576 mice,
but not in the cortex or cerebellum. The proteins that are increasingly conjugated to
ubiquitin in the hippocampus of Tg2576 mice remain unknown and to identify these was
beyond the scope of our study.

Several AD-associated proteins, including APP and tau, have been reported as SUMO
substrates [9,11,33]. APP can be covalently modified by SUMO-1 and SUMO-2, with these
modifications resulting in decreased production of Aβ [33]. In addition, SUMO-2/3 has been
variously reported to either increase [10] or decrease [20] Aβ production. Further, it has
been reported that tau can be both SUMOylated and ubiquitinated, and that proteasome
inhibition increased tau ubiquitination and decreased tau SUMOylation [9]. Intriguingly, a
polymorphism in the non-coding region of UBC9 has been reported to predominate in AD
patients, although the functional relevance of this observation was not investigated [1].
Furthermore, overexpression of UBC9 led to decreases in Aβ aggregation levels, and a
localisation of UBC9 in the endoplasmic reticulum where cleavage of APP by β-secretase is
thought to occur, suggesting a role of the SUMO machinery in the regulation of
amyloidogenic processing of APP [33].

Changes in global levels of protein SUMOylation in the Tg2576 AD model have not been
investigated previously. However, recent reports have suggested differentiated patterns of
SUMO conjugation in acute cell stress, such as brain ischemia [8,31], and in diseases
characterised by the aggregation of misfolded aberrant protein or polyglutamine-related
pathologies (reviewed in [4,10,22]). We, and others, have previously demonstrated that
SUMOylation is rapidly, dramatically and long-lastingly increased in diverse acute
neurodegenerative models of cerebral ischemia [8,31]. Based on these published results, we
anticipated that we would detect altered SUMOylation levels in Tg2576 mice, together with,
or independent from, changes in SUMOylation-specific enzymatic machinery.

Levels of ubiquitination were robustly increased in the hippocampus with significant
increases in global levels as well as for individual bands. Thus, protein ubiquitination in the
vulnerable hippocampus is altered in the transgenic mice, which may reflect a dysfunction
of the ubiquitin–proteasomal degradation system. In the cortex, significantly decreased
levels of SUMO-2/3 conjugation were observed for distinct high molecular weight bands at
∼150 kDa and ∼130 kDa. This suggests that the SUMOylation level of these proteins may
be affected and an important task will be to identify these SUMO substrates to define their
relevance to AD. The significant differences seen in ubiquitin and SUMO-2/3 conjugation in
the hippocampal and cortical regions are intriguing, as these regions are particularly
vulnerable in the pathophysiology of AD and merit further investigation.

Total levels of the SUMO-specific conjugating enzyme, UBC9, and the dual-acting
deconjugating and SUMO-maturating enzyme, SENP-1, are not altered between Tg2576 and
age-matched wild-type mice. However, it is important to stress that these observations do
not rule out changes in subcellular distribution or activity of these enzymes. Levels of
additional components of the SUMO pathway were not explored, such as E3 ligases, which
assist in substrate specificity and conjugation, and other SENP isoforms, with distinct
cellular roles emerging [30].

The development of senile plaques in the brains of Tg2576 mice starts after 10 months of
age, whereas the synaptic activity is reduced from 8 months [13]. So at the age we
investigated (9 months) synaptic transmission is impaired but plaques are not yet evident.
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The mechanisms underlying synaptic function deficits in AD have yet to be fully explained
but there is evidence to suggest that soluble oligomeric Aβ rather than plaques cause
impaired synaptic function [5]. Surface expression of AMPA receptors, in particular the
GluA1 subunit, is reduced in some transgenic APP overexpression models [3,6], which may
result from changes to AMPA receptor trafficking pathways [16]. To our knowledge, levels
of KA receptors have not been assessed in AD models, although the activity of these
receptors is affected by Aβ in vivo [26]. Moreover, we reported that multiple SUMOylation
targets are present at synapses and that SUMOylation can regulate the function of KA
receptors [21]. The fact that we did not observe loss of either AMPA or KA receptors might
be due to small changes beyond detection using immunoblotting and/or by the possibility
that loss of function of these receptors results from reduced surface expression due to
internalisation rather than degradation. An alternative possibility is that the deficit in
synaptic transmission arises from reduced presynaptic release rather than changes in
postsynaptic AMPA and/or KA receptors.

Our results suggest that global posttranslational modification of hippocampal proteins by
ubiquitin and altered SUMO-2/3 conjugation in the cortex may play an important role in the
mechanisms underlying AD. Identification of these ubiquitin and SUMO substrates and
elucidation of their functional roles and regulation by ubiquitination and SUMOylation will
undoubtedly lead to new and important insights into the pathophysiology of AD.
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Fig. 1.
APP protein levels are increased in Tg2576 transgenic mice in all brain regions analysed.
Nine-month Tg2576 transgenic and age-matched wild-type mice were decapitated, their
brains removed and dissected into hippocampus, cortex and cerebellum. Regions from both
hemispheres were pooled together and tissue lysates prepared for Western blotting.
Representative immunoblots showing APP immunoreactivity and the respective β-actin
loading controls in the hippocampal (A), cortical (B) and cerebellar (C) regions of wild-type
and Tg2576 mice. The quantified APP data shown for each region was obtained from at
least six animals of each group. The results are presented as percentage of wild-type ± SEM.
*Significant difference compared to wild-type, p < 0.05.
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Fig. 2.
Pattern of global protein SUMOylation and ubiquitination in Tg2576 transgenic and age-
matched wild-type mice. Representative immunoblots of global SUMO-1 (left panel),
SUMO-2/3 (center panel) and ubiquitin (right panel) conjugated proteins and their
respective β-actin loading controls in the hippocampus (A), cortex (B) and cerebellum (C) of
wild-type and Tg2576 mice. The experimental protocol was as described in Fig. 1.
Cumulative global levels of SUMO-1-, SUMO-2/3- and ubiquitin-conjugates for each region
showing quantified data from at least six animals of each group are presented as percentage
of wild-type ± SEM. In addition, the arrows indicate prominent bands that were individually
quantified and the presence of an * denotes a significant difference compared to wild-type,
p < 0.05. The data from individual bands are presented in Table 1 and Supplementary Fig.
S1.
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Fig. 3.
SENP-1 and UBC9 protein levels in Tg2576 transgenic and age-matched wild-type mice.
Representative SENP-1 (left panels) and UBC9 (right panels) immunoreactivities and their
respectives β-actin loading controls in hippocampus (A), cortex (B) and cerebellum (C) of
wild-type and Tg2576 mice. The experimental protocol was as described in Fig. 1.
Cumulative SENP-1 and UBC9 results for each region showing quantified data from at least
six animals of each group are presented as percentage of wild-type ± SEM. No significant
difference compared to wild-type, p > 0.05.
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Fig. 4.
GluA1 and GluK2/3 total protein levels in Tg2576 transgenic and age-matched wild-type
mice. Representative GluA1 (left panels) and GluK2/3 (right panels) immunoreactivities and
their respectives β-actin loading controls in hippocampus (A), cortex (B) and cerebellum (C)
of wild-type and Tg2576 mice. The experimental protocol was as described in Fig. 1.
Cumulative GluA1 and GluK2/3 results for each region showing quantified data from at
least six animals of each group are presented as percentage of wild-type ± SEM. No
significant difference compared to wild-type, p > 0.05.
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Table 1

Comparison of individual SUMOylated or ubiquitinated protein bands in Tg2576 transgenic and age-matched
wild-type mice. Discrete prominent bands were identified on the blots used for the cumulative data presented
in Fig. 2 and individually compared. Arrows in the representative blots in Fig. 2 indicate the quantified band
and the approximate MW values are given in the table. Data quantified from at least six animals of each group
are presented as percentage of wild-type. p-Value indicates significance, and * on the respective blots in Fig. 2
denotes a significant difference compared to wild-type, p < 0.05.

SUMO-1 SUMO-2/3 Ubiquitin

MW (kDa) Tg (mean wt%) p Value MW (kDa) Tg (mean wt%) p Value MW (kDa) Tg (mean wt%) p Value

Hippocampus

Full lane 119 0.18 Full lane 137 0.18 Full lane 191 <0.01

∼130 130 0.45 ∼150 94 0.86 ∼100 251 <0.01

∼98 127 0.41 ∼130 90 0.74 ∼90 184 <0.01

∼70 115 0.58 ∼85 165 0.15 ∼75 176 <0.01

∼37 109 0.66 ∼80 114 0.66 ∼65 133 0.34

∼25 87 0.65 ∼75 130 0.37 ∼45 149 0.14

∼62 156 0.16 ∼40 169 0.01

∼55 157 0.09

∼49 122 0.30

∼15 77 0.44

Cortex

Full lane 83 0.08 Full lane 89 0.48 Full lane 105 0.82

∼100 86 0.63 ∼150 60 <0.05 ∼130 153 0.16

∼75 62 0.35 ∼130 62 <0.05 ∼100 104 0.84

∼60 107 0.84 ∼100 96 0.84 ∼75 115 0.53

∼40 80 0.36 ∼70 94 0.68 ∼35 153 0.28

∼35 124 0.40 ∼49 91 0.27 ∼25 100 1.00

∼30 63 0.25 ∼37 76 0.07

∼27 85 0.59 ∼25 81 0.26

∼15 130 0.28

Cerebellum

Full lane 103 0.95 Full lane 93 0.95 Full lane 94 0.74

∼100 218 0.08 ∼70 112 0.72 ∼130 104 0.74

∼75 126 0.69 ∼69 112 0.65 ∼100 86 0.52

∼60 208 0.18 ∼50 111 0.72 ∼85 83 0.53

∼50 105 0.92 ∼40 88 0.79 ∼80 89 0.66

∼30 111 0.72 ∼35 129 0.70 ∼70 90 0.61

∼60 83 0.38
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SUMO-1 SUMO-2/3 Ubiquitin

MW (kDa) Tg (mean wt%) p Value MW (kDa) Tg (mean wt%) p Value MW (kDa) Tg (mean wt%) p Value

∼35 79 0.45

∼30 84 0.61
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