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On the Equivalence between Radiance and Retrieval Assimilation

STEFANO MIGLIORINI

Department of Meteorology, University of Reading, Reading, United Kingdom

(Manuscript received 8 November 2010, in final form 24 June 2011)

ABSTRACT

The need for consistent assimilation of satellite measurements for numerical weather prediction led op-

erational meteorological centers to assimilate satellite radiances directly using variational data assimilation

systems. More recently there has been a renewed interest in assimilating satellite retrievals (e.g., to avoid the

use of relatively complicated radiative transfer models as observation operators for data assimilation). The

aim of this paper is to provide a rigorous and comprehensive discussion of the conditions for the equivalence

between radiance and retrieval assimilation. It is shown that two requirements need to be satisfied for the

equivalence: (i) the radiance observation operator needs to be approximately linear in a region of the state

space centered at the retrieval and with a radius of the order of the retrieval error; and (ii) any prior in-

formation used to constrain the retrieval should not underrepresent the variability of the state, so as to retain

the information content of the measurements. Both these requirements can be tested in practice. When these

requirements are met, retrievals can be transformed so as to represent only the portion of the state that is well

constrained by the original radiance measurements and can be assimilated in a consistent and optimal way, by

means of an appropriate observation operator and a unit matrix as error covariance. Finally, specific cases

when retrieval assimilation can be more advantageous (e.g., when the estimate sought by the operational

assimilation system depends on the first guess) are discussed.

1. Introduction

As discussed in Eyre (2007), the late 1970s saw the first

attempts to assimilate temperature retrievals from sat-

ellite sounders for numerical weather prediction (NWP).

These initial results had a modest impact on forecast skill,

with the best performance over the ocean where other

sources of data were sparse. However, the following de-

cade saw a reduction of the impact of satellite retrievals as

the improved accuracy of atmospheric models made them

more sensitive to the presence of biases in the assimi-

lated observations. These biases are due to biases in ob-

servation errors as well as to the dependence of retrieval

errors on the ‘‘background’’ field used to constrain the

satellite radiance measurements: when the background

field differs from the mean atmospheric forecast field over

atmospheric layers whose properties the measurements

are not able to sense, the atmospheric analysis becomes

biased (Migliorini et al. 2008, see their section 4b).

Since the early 1990s, the operational meteorological

community has found that a way to avoid introducing

these background-dependent biases is to assimilate sat-

ellite data in the form of radiances. This was made pos-

sible by the development of variational data assimilation

techniques for operational NWP, which allowed the as-

similation of large amounts of observational data as well

as the use of nonlinear observation operators. However,

the observation operator for radiance assimilation is con-

siderably more complex than that used for the assimilation

of retrievals (usually an interpolation operator) as it has

to represent a solution of the radiative transfer equation as

well as the characteristics of the measuring instrument

(Migliorini et al. 2008, see their section 4a). Also, in the

case of high-spectral-resolution sounders, the number of

radiances to be assimilated can be significantly larger

than the number of retrieved elements.

Over the last few years, a number of studies (e.g.,

Joiner and da Silva 1998; Rodgers 2000; Migliorini et al.

2008) have focused on ways to preserve the advantages of

assimilating quantities in retrieval space but without its

shortcomings. However, to the author’s knowledge, a rig-

orous discussion of the conditions for equivalence between

radiance and retrieval assimilation has been absent from
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the literature and it is the purpose of this paper to pro-

vide it. A set of linearized radiance measurements for

assimilation are defined in section 2. Section 3 discusses

the equivalence between radiance and retrieval assimi-

lation for the overdetermined inverse problem, while

section 4 focuses on the ill-posed (or underdetermined)

problem, by first discussing the case when the retrieval

and the assimilation scheme share the same background

information and then the more general case when they

differ. Conclusions are provided in section 5.

2. Characterization of radiance measurements
for assimilation

Let us denote with yo2Rm a vector whose components

are radiances measured by a satellite instrument over

different spectral channels and with xt 2 Rn the random

vector assumed to represent the true state of a system

(e.g., the atmosphere). The relationship between the ra-

diance measurement vector and the true state can be

expressed as

yo
rad 5 H(xt) 1 eo

rad, (1)

where H(xt) is the observation operator calculated in xt

and where eo
rad is the radiance measurement error—

which includes contributions due to imperfect knowledge

of the observation operator and to representativeness error

(e.g., Cohn 1997, see his section 2.2)—assumed Gaussian,

unbiased, with covariance R
rad
2 Rm3m and uncorrelated

with xt. The observation operator H(xt) is, in general,

a nonlinear function of xt and models the interaction be-

tween radiation and atmospheric constituents, the transfer

of radiation through the atmosphere, the emission (and

reflection) from the surface, as well as the characteristics

of the instrument (e.g., its spectral response and field of

view).

In the vicinity of a linearization point xi, the observa-

tion operator (assumed differentiable over its domain)

can be approximated with its first-order Taylor expansion

around xi. In this case, Eq. (1) can be written as

yo
rad ’ H(xi) 1 H(i)(xt 2 xi) 1 eo

rad, (2)

where H(i) [ (›H/›x)x5xi
2 Rm3n is the Jacobian matrix

of H(x) calculated in x 5 xi. We can also define y
(i)
rad as

y
(i)
rad [ yo

rad 2 H(xi) 1 H(i)xi ’ H(i)xt 1 eo
rad. (3)

It is useful to apply a whitening filter to y
(i)
rad and consider

a new set of linearized measurements with independent

errors. To this end, let us replace R
rad

with its (possibly

truncated) eigenvector decomposition L
p
§2

pLT
p , where

L
p
2 Rm3p is a matrix whose columns are the eigenvectors

of R
rad

corresponding to the p # m nonzero (or nonsmall,

as compared to machine precision) eigenvalues of R
rad

lying on the diagonal of the diagonal matrix §2
p 2 Rp3p.

The number p defines the effective rank of Rrad. If we now

define y
(i)
rad

9 [ §21
p LT

p y
(i)
rad 2 R

p, from Eq. (3) we can write

y
(i)
rad

9 ’ H
(iÞ
rad

9 xt 1 e9rad, (4)

where H
(i)
rad

9 [ §21
p LT

p H(i) 2 Rp3n and where the covari-

ance of e9rad. [ §21
p LT

p eo
rad is the unit matrix Ip 2 R

p3p.

Similarly, it is possible to define yo
rad
9 2 Rp as yo

rad
9 [

§21
p LT

p yo
rad and H9(xt) 2 Rp as H9(xt) [ §21

p LT
p H(xt). It

follows that Eq. (1) can then be written as

yo
rad

9 5 H9(xt) 1 e9rad. (5)

3. The overdetermined least squares problem

In this section we discuss the equivalence of radiance

and retrieval assimilation in the case when the state of

the system is well observed. This is not the typical situ-

ation that is faced for meteorological applications, but it

still provides an important example that shows the

equivalence of the two approaches in a mathematically

consistent way.

a. Assimilation of radiances

The maximum likelihood estimate of xt when radiance

measurements are related to the true state as in Eq. (5) is

the state that minimizes the cost function Jo(x) defined

as (e.g., Lewis et al. 2006, their section 15.3)

Jo(x) 5
1

2
[yo

rad
9 2H9(x)]T[yo

rad
9 2 H9(x)]. (6)

When the number of components of the linearized mea-

surement y
(i)
rad9 is not less than the number of elements of

the state vector xt, that is when p $ n, and provided that

H
(i)
rad9 is full rank [i.e., the rank of H

(i)
rad9 is equal to n], the

problem of finding the minimum of Jo(x) defined in Eq.

(6) is overdetermined (e.g., Rodgers 2000, see his section

2.2). In this case, it is possible to find an estimate of xt by

means of Gauss–Newton iterations resulting from the

minimization of the quadratic cost function J(i)
o (x) (e.g.,

Lewis et al. 2006, see their section 7.1), defined as

J(i)
o (x) 5

1

2
[y

(i)
rad

9 2 H
(i)
rad

9 x]T[y
(i)
rad

9 2 H
(i)
rad

9 x]. (7)

The cost function J(i)
o (x) approximates Jo(x) around a

small neighborhood of xi. The state xi11 is found by set-

ting the gradient of J(i)
o (x) to zero and can be written as
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xi11 5 [H
(i)
rad

9 TH
(i)
rad

9 ]
21

H
(i)
rad

9 Ty
(i)
rad

9 . (8)

The iteration in Eq. (8) provides a new estimate xi11,

which can be used as a new linearization point for H(x)

and the process can be repeated until convergence

(defined by some stopping criterion) is reached. Note

that the progression of the Gauss–Newton iteration

to a (local) minimum is ensured by the fact that the

Hessian matrix [›2J(i)
o (x)/›x2]x5x

i
calculated in x 5 xi

is the positive definite matrix H
(i)
rad

9TH
(i)
rad

9 2 Rn3n (e.g.,

Nocedal and Wright 2006, see their section 2.1). At

convergence x
i11
’ x

i
[ x̂

ML
, H

(i11)
rad

9 ’ H
(i)
rad

9 [ Ĥ9
rad

,

y
(i11)
rad

9’ y
(i)
rad

9 [ ŷ9
rad

, and Eq. (8) becomes

x̂ML 5 (Ĥ9T
rad Ĥ9rad)21Ĥ9T

rad ŷ9rad, (9)

where x̂ML is the maximum likelihood estimate of xt, also

known as the analysis. The state xt may represent a number

of model variables defined over a limited area or global

domain at a given time. However, when the radiance

measurement vector is only composed of radiances ac-

quired over a number of spectral channels at a given time

from the same field of view (e.g., from a nadir-viewing

instrument at a given location and time), the state xt and its

estimate is usually represented as a vertical profile of

a number of variables of interest. In this case, the estimate

of xt (e.g., x̂
ML

) is usually referred to as the retrieval.

Let us now assume that x̂
ML

represents a satellite re-

trieval. An approximate expression for the retrieval error

covariance P̂eML
can be found by replacing ŷ9

rad
in Eq. (9)

with the right-hand side of Eq. (4) calculated at con-

vergence. We can write

x̂ML ’ xt 1 (Ĥ9
T

radĤ9rad)21Ĥ9rad
T e9rad 5 xt 1 eML. (10)

It follows that the covariance of the retrieval error eML can

be written as P̂eML
5 (Ĥ9T

radĤ9
rad

)21
5 [›2Ĵ

o
(x)/›x2]21

x5x̂ML

,

where Ĵ
o
(x) represents J(i)

o (x) at convergence. Note that

the approximation made to derive the above expression

for the retrieval error covariance is justified when H(x) can

be replaced with its first-order Taylor expansion about x̂ML

over a region of the state space where it is likely to find xt,

given ŷ9rad. This region is a neighborhood around x̂ML of

radius comparable to the typical magnitude of the retrieval

error. For a given retrieval, the validity of this approxi-

mation can be checked (e.g., Rodgers 2000, see his section

5.1). Hereafter, we only consider retrievals for which this

approximation is satisfied.

Let us now express Ĥ9rad in terms of its singular vector

decomposition, as Ĥ9rad 5 U⁄VT, where U 2 Rp3p and

V 2 Rn3n are orthogonal matrices whose columns are the

left and right singular vectors of Ĥ9rad and where the only

nonzero elements of ⁄ 2 Rp3n have the same row and

column indexes and are equal to the n positive singular

values of Ĥ9rad. It follows that P̂eML
can be expressed

as P̂eML
5 V⁄22

n VT, where ⁄2
n 2 Rn3n is the diagonal

matrix whose diagonal elements are the (positive) ei-

genvalues of P̂21
eML

. If we multiply both sides of Eq. (10)

by ⁄nVT, Eq. (10) can be rewritten as

y9ret [ ⁄nVTx̂ML ’ H9retx
t 1 e9ML, (11)

where H9ret [ ⁄nVT and where the covariance of e9ML [

⁄nVTeML is the identity matrix. The components of y9ret

represent a new set of measurements (hence the choice of

the symbol that defines the vector) that are related to the

state xt as shown in Eq. (11).

b. Assimilation of maximum likelihood retrievals

In section 3a it was shown that when the observation

operator is a nonlinear function of xt it is possible to find

a maximum likelihood estimate x̂
ML

of xt by assimilating

a succession (with iteration counter i) of radiance mea-

surement vectors y
(i)
rad

9 2 Rp with a succession of rank-n

observation operators H
(i)
rad

9 2 Rp3n, until convergence.

Let us now suppose that we want instead to determine

the maximum likelihood estimate of xt by assimilating

observational information in the form of a linearized

retrieval y9
ret
2 Rn with its rank-n observation operator

H9
ret
2 Rn3n. The estimate can now be determined by

finding the minimum of the quadratic cost function

Jret
o (x) defined as

Jret
o (x) 5

1

2
(y9ret 2 H9retx)T(y9ret 2 H9retx), (12)

where, for simplicity, we have assumed that the repre-

sentation of the state x in the assimilation system is the

same as that used to determine x̂ML [see Eq. (9)]. A brief

discussion of the case when this assumption is not valid is

postponed to section 4. As the number of observations (i.e.,

components of y9
ret

), as well as the number of columns,

rows and the rank of H9
ret

are all equal to n, the mini-

mizer of Jret
o (x) is given by

x̂ret
ML 5 (H9ret)

21y9ret 5 (H9ret)
21⁄nVTx̂ML 5 x̂ML. (13)

Therefore, the assimilation of a succession of linearized

radiances y
(i)
rad

9 and the assimilation of the linearized re-

trieval y9
ret

with their respective observation operators

and unit matrix error covariances produces the same re-

sult. This proves the equivalence between radiance and

retrieval assimilation to solve the overdetermined least

squares problem, under the assumption of moderate non-

linearity of the observation operator in the vicinity of x̂ML.
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4. The ill-posed or underdetermined problem

Typically, remote sounding measurements of atmo-

spheric temperature, for example, do not provide enough

information to constrain all n components of the state

vector, due to the finite width of the weighting functions

characterizing the spectral channels of a given remote

sensing instrument. In this case, it is possible to find an

estimate of xt by combining the information from the

measurements with the prior or background information

about the state that may be available.

a. Assimilation of radiances

The maximum a posteriori estimate of xt when radi-

ance measurements are related to the true state as in Eq.

(5) is defined as the state that minimizes the cost function

J(x) defined as (e.g., Rodgers 2000, see his section 5.2)

J(x) 5
1

2
(x 2 xb)TB21(x 2 xb)

1
1

2
[yo

rad
9 2 H9(x)]T[yo

rad
9 2 H9(x)]. (14)

As explained in section 3a, it is possible to provide an

estimate of the state by minimizing instead the quadratic

cost function J(i)(x) defined as

J(i)(x) 5
1

2
(x 2 xb)TB21(x 2 xb)

1
1

2
[y

(i)
rad

9 2 H
(i)
rad

9 x]T[y
(i)
rad

9 2 H
(i)
rad

9 x], (15)

where xb 2 Rn and B 2 Rn3n are the mean and the

positive-definite (i.e., nonsingular) covariance, respec-

tively, of the prior probability density function. The cost

function J(i)(x) approximates the cost function J(x)

in a small neighborhood of xi. Note that the Hessian

matrix [›2J(i)(x)/›x2]x5xi
is equal to the positive definite

matrix B21 1 H
(i)
rad

9TH
(i)
rad

9. The minimum of J(i)(x) can be

found by setting its gradient to zero. This procedure is re-

peated iteratively until convergence to the (local) mini-

mum of J(x) is reached. Eventually, the maximum

a posteriori estimate x̂MAP 2 R
n can be written as (e.g.,

Rodgers 2000, see his section 5.5)

x̂MAP 5 xb 1 K(ŷ9rad 2 Ĥ9radxb), (16)

with

K [ BĤ9T
rad(Ĥ9radBĤ9rad

T 1 Ip)21

5 (B211 Ĥ9T
radĤ9rad)21Ĥ9T

rad, (17)

where K 2 Rn3p is often called the Kalman gain and

where we assume here to consider the case when p , n.

This condition ensures that the inverse problem under

consideration is underdetermined (e.g., Rodgers 2000,

see his section 2.2). Let us now define S 2 Rp3n as the

signal-to-noise matrix, of rank r # min(p, n) 5 p, given

by S [ Ĥ9radB1/2, which can be expressed in terms of its

singular vector decomposition, as S 5 Ur⁄rV
T
r , where

⁄r 2 R
r3r is a diagonal matrix that contains the r positive

nondimensional singular values (in this case, signal-to-

noise values) li of S on its diagonal and where U
r
2 Rp3r

and V 2 Rn3r are matrices whose columns are the left and

right singular vectors of S corresponding to the positive

singular values of S. It is possible to show (see the ap-

pendix) that K has also rank r and that can be expressed

as

K 5 B1/2Vr⁄r(⁄2
r 1 Ir)

21UT
r . (18)

When H(x) can be replaced with its first-order Taylor

expansion about x̂
MAP

over a region of the state space

where the posterior probability is significant, ŷ9
rad

can be

approximated with the right-hand side of Eq. (4) calculated

at convergence. In this case, from Eq. (16) we can write

x̂MAP ’ xb 1 KĤ9rad(xt 2 xb) 1 Ke9rad, (19)

eMAP [ x̂MAP 2 xt ’ (I 2 KĤ9rad)eb 1 Ke9rad,

where eb [ xb 2 xt is Gaussian, unbiased, with covariance

given by B and where KĤ9
rad

is known as the averaging

kernel matrix. From Eq. (19) it is possible to determine an

approximate expression for the covariance P̂eMAP
of the

maximum a posteriori retrieval error eMAP, given by

P̂e
MAP
’ (I 2 KĤ9rad)B(I 2 KĤ9rad)T

1 KKT

5 (B21 1 Ĥ9
T

radĤ9rad)21, (20)

where we have assumed that eb and e9
rad

are mutually

uncorrelated and where the rightmost expression in Eq.

(20) follows from the definition of K given in Eq. (17).

Note that it can be shown (e.g., Cohn 1997, see his sec-

tion 5.1) that P̂eMAP
’ [›2Ĵo(x)/›x2]

21

x5x̂MAP
, where Ĵo(x)

represents J(i)
o (x) at convergence.

b. Assimilation of maximum a posteriori retrievals

We now want to find the analysis defined as the maxi-

mum a posteriori estimate of xt over a limited area or

a global domain, by assimilating a retrieval determined as

shown in section 4a from radiance measurements at

a given location and time and some prior information. To

this end, we assume that the observation operator for the

retrieval is approximately linear around a neighborhood

of x̂MAP of radius comparable to the estimation error. If

we define yret 2 R
n as
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yret [ x̂MAP 2 xb 1 KĤ9radxb, (21)

from Eqs. (18) and (19) we can write

yret ’ KĤ9radxt 1 eret

5 KSB21/2xt 1 eret

5 B1/2Vr⁄
2
r (⁄2

r 1 Ir)21VT
r B21/2xt 1 eret, (22)

where eret 5 Ke9rad with covariance equal to KKT 5

B1/2V
r
⁄2

r (⁄2
r 1 I

r
)22VT

r B1/2. It is now possible to consider

only the components of B21/2y
ret

along the r right singular

vectors of S (columns of V
r
2 Rn3r) with positive singular

values. In particular, if we define y9
ret
2 Rr as

y9ret [ ⁄21
r (⁄2

r 1 Ir)VT
r B21/2yret (23)

it follows that Eq. (22) can be written as

y9ret ’ ⁄rV
T
r B21/2xt 1 e9ret [ H9retx

t 1 e9ret, (24)

where H9
ret

[ ⁄
r
VT

r B21/2 2 Rr3n and where the covari-

ance of e9
ret

[ ⁄21
r (⁄2

r 1 I
r
)VT

r B21/2e
ret

is equal to the

identity matrix l
r
2 Rr3r.

Note that from Eqs. (16), (18), and (21) we can write

yret 5 Kŷ9rad 5 B1/2Vr⁄r(⁄2
r 1 Ir)

21UT
r ŷ9rad, (25)

so that from Eqs. (23) and (25) we can write

y9ret 5 UT
r ŷ9rad. (26)

Also, from the definitions of H9ret and S we can write

H9ret 5 UT
r SB21/2 5 UT

r Ĥ9rad. (27)

This shows that y9
ret

can be calculated either as

a scaled projection of the nondimensional vector

B21/2(x̂
MAP

2 xb 1 KĤ9
rad

xb) in the direction of the col-

umns of Vr [see Eqs. (21) and (23)], or as the projection

of the nondimensional vector ŷ9rad, in the direction of the

columns of Ur [see Eq. (26)]. Similarly, H9ret can be cal-

culated according to either Eq. (24) or Eq. (27). As the

covariance of xt is given by B, from Eq. (24) it follows

that the covariance of y9
ret

results equal to ⁄2
r 1 I

r
. If we

now denote with li the ith diagonal element of ⁄
r
, it is

possible to show (Rodgers 2000, see his section 2.5) that

(1/2) ln(1 1 l2
i ) is the contribution of the ith component of

y9ret to the total information content of the measurements.

This means that the components of y9ret that provide most

information are those that are characterized by having

signal-to-noise values li greater than about 1.

The transformed retrieval y9
ret

can be assimilated by

means of its observation operator H9
ret

. In particular, it is

possible to find the analysis by minimizing the cost func-

tion Jret(x) defined by replacing yrad
(i)9 with y9ret and H

(i)
rad

9 with

H9ret in Eq. (15). For this to be meaningful, it is necessary

that the representation of the state x considered in order to

perform the minimization of Jret(x) is the same as that used

to minimize J(x). If this is not the case (e.g., when the re-

trieval is produced outside the data assimilation system),

each variable in x that contributes to the signal needs to be

interpolated onto the grid that allows the state to be con-

sistently multiplied (on the left) by H9ret, in a way to min-

imize information loss (Migliorini et al. 2008, see their

section 7). Hereafter, it is understood that H9ret may include

a suitable interpolation operator that makes H9retx mean-

ingful. Two different cases are discussed.

1) ASSIMILATION OF RADIANCES AND

RETRIEVALS WITH THE SAME PRIOR

INFORMATION

Let us consider first the case when the prior infor-

mation used for data assimilation is the same as that used

to determine the retrieval, for the common components

of the state. In this case, the analysis x̂ret
MAP can be found by

minimizing the cost function Jret(x) defined as

Jret(x) 5
1

2
(x 2 xb)TB21(x 2 xb)

1
1

2
(y9ret2 H9retx)T(y9ret 2 H9retx) (28)

and x̂ret
MAP can be expressed as

x̂ret
MAP 5 xb 1 Kret(y9ret 2 H9retx

b), (29)

where K
ret

[ BH9T
ret(H9

ret
BH9

ret
T

1 I
r
)21 can be written as

[see Eqs. (17), (18) and (27)]

Kret 5 BĤ9rad
T Ur(U

T
r Ĥ9radBĤ9T

rad Ur 1 Ir)21

5 B1/2STUr(UT
r SSTUr 1 Ir)

21

5 B1/2Vr⁄r(⁄2
r 1 Ir)

21

5 KUr. (30)

From Eqs. (16), (23), (27), (29), and (30) it follows that

the analysis x̂ret
MAP can be written as

x̂ret
MAP 5 xb 1 KUr(UT

r ŷ9rad 2 UT
r Ĥ9radxb)

5 xb 1 KUrU
T
r (ŷ9rad 2 Ĥ9radxb)

5 xb 1 K(ŷ9rad 2 Ĥ9radxb)

5 x̂MAP, (31)
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where we have used the equivalence K 5 KU
r
UT

r that fol-

lows from Eq. (18). This proves the equivalence between

assimilating radiances and retrievals in the case when

the prior information used first to determine and then to

assimilate the retrieval are the same.

2) ASSIMILATION OF RADIANCES AND

RETRIEVALS WITH DIFFERENT PRIOR

INFORMATION

Let us now assume that we want to assimilate a suc-

cession of radiance measurements y
(i)
rad

9 and estimate the

analysis by finding the minimum of a succession of cost

functions similar to that in Eq. (15), but using a prior

density function with different mean xb* 2 Rn and co-

variance B* 2 Rn3n. This case is of practical importance,

as the retrieval to be assimilated may have been esti-

mated by an external data provider, who may have used

prior constraints that differ from those used for assimi-

lation. In this case, the resulting analysis x̂MAP
* can be

written from Eq. (16) as

x̂MAP
* 5 xb* 1 K*(ŷrad

*9 2 Ĥrad
*9 xb*), (32)

where ŷ
rad
*9 and Ĥ

rad
*9 differ from ŷ9

rad
and Ĥ9

rad
, respec-

tively, for the different value of the retrieval used as

linearization point of H(x). Note that, in general, the

rank of Ĥrad
*9 is s 6¼ r. From Eq. (4) we can write

x̂MAP
* ’ xb* 1 K*Ĥrad

*9 (xt 2 xb*) 1 K*e9rad

5 xb* 1 K*S*B*21/2(xt 2 xb*) 1 K*e9rad,

(33)

with S* [ Ĥrad
*9 B*1/2 5 Us

*⁄s
*V*T

s , where from Eqs. (17),

(A2), (A3), and (A5) we can write

K* [ B*Ĥrad*9 T(Ĥrad
*9 B*Ĥrad

*9 T 1 Ip)21

5 B*1/2S*
T(S*S*

T
1 Ip)21

5 B*1/2Vs
*⁄s

*(⁄*2
s 1 Is)

21U*T
s

5 B*1/2S*TUs
*(U*T

s
S*S*TU*s 1 Is)

21U*T
s

, (34)

where ⁄s
* 2 Rs3s is a diagonal matrix that contains the s

positive nondimensional singular values of S* on its di-

agonal and U
s
* 2 Rp3s and V

s
* 2 Rn3s are the matrices

whose columns are the left and right singular vectors of

S* corresponding to the positive singular values of S*.

Consider now the retrieval y9
ret

defined in Eq. (23)

and estimated by using prior information xb and B. We

want to assimilate y9ret with its observation operator H9ret

by finding the state x̂
ret*
MAP that minimizes Jret(x) [see

Eq. (28)], in the case when the prior information used to

constrain y9
ret

is xb* and B*. To prove the equivalence

between radiance and retrieval assimilation in the case

when the prior information used first to determine and

then to assimilate the retrieval are different, we need to

show that x̂
ret*
MAP ’ x̂MAP

* . From Eq. (29) it follows that

x̂
ret*
MAP can be written as

x̂
ret*
MAP 5 xb* 1 K ret

* (y9ret 2 H9retx
b*), (35)

where, from Eqs. (17) and (27), Kw
ret 2 Rn3r can be ex-

pressed as

Kw
ret [ B*H9ret

T(H9retB*H9ret
T 1 Ir)21

5 B*Ĥ9rad
T Ur(UT

r Ĥ9radB*Ĥ9rad
T Ur 1 Ir)21

5 B*1/2SwTUr(U
T
r SwSwTUr 1 Ir)

21, (36)

with Sw
[ Ĥ9

rad
B*1/2 2 Rp3n

. In analogy with Eq. (30),

let us now find the conditions when it is possible to write

Kw
ret 5 K*Us

*. A comparison between Eqs. (34) and (36)

shows that Kw
ret 5 K*Us

* when s 5 r and UT
r Sw

5 U*T
r S*.

Therefore, by assuming Ur
TSw

5 U*T
r S*, from Eqs. (4),

(26), (27), (35), and (36) we can write

x̂
ret*
MAP 5 xb* 1 K*Ur

*UT
r (ŷ9rad 2 Ĥ9radxb*)

’ xb* 1 K*Ur
*UT

r SwB*
21/2(xt 2 xb*)

1 K*Ur
*UT

r e9rad

5 xb* 1 K*S*B*
21/2(xt 2 xb*) 1 K*Ur

*UT
r e9rad,

(37)

where K*U
r
*U*T

r
5 K*. From Eqs. (33) and (37) it follows

that the condition UT
r Sw

5 U*T
r

S* implies that x̂ret*
MAP ’

x̂MAP
* within retrieval noise (note that the covariance of

K*e9rad and K*Ur
*UT

r e9rad are both equal to K*K*T
). Now,

by noting that Sw can in general also be written as

Sw
5 SB21/2B*1/2, it follows that x̂ret*

MAP ’ x̂MAP
* holds

when U*T
r S*B*21/2 5 UT

r SB21/2, that is, when H9ret [

⁄
r
VT

r B21/2 5 ⁄
r
*V*T

r B*21/2. This means that x̂ret
MAP

* ’
x̂

MAP
* holds when H9

ret
BH9T

ret (the covariance of H9
ret

xt in

the case when the covariance of xt is B) is equal to

H9retB*H9T
ret (the covariance of H9retx

t in the case when

the covariance of xt is B*; i.e., when ⁄r
* 5 ⁄r). In other

words, the equivalence is satisfied when the difference

between x̂MAP
* and x̂MAP—arising from the use of a differ-

ent prior constraint—preserves the information content of

the measurements, defined in terms of the diagonal ele-

ments of ⁄
r

as shown in section 4b. In this respect, note that

⁄r
* 5 ⁄r does not necessarily implies that B* 5 B—in

which case the equivalence between x̂
ret*
MAP and x̂MAP

* would
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be trivially ensured by Eq. (31)—because the covariance

of the components of the state xt, which lie in the null

space of H9
ret

in the case when the covariance of xt is B*,

do not alter the information content that the same mea-

surements have in the case when the covariance of xt is B.

The above discussion proves the equivalence between

assimilating radiances and retrievals in the case when

the prior information used first to determine and then to

assimilate the retrieval differ, provided that (i) the ob-

servation operator is approximately linear over a region

of the state space centered in x̂
MAP

where it is likely to

find xt given ŷ9rad and that (ii) both the prior constraint

used to determine the retrieval and that used for radi-

ance assimilation are chosen in a way not to lose the

information content of the measurements.

5. Conclusions

In this paper a rigorous proof of the equivalence be-

tween assimilating radiance measurements and assimilat-

ing appropriately transformed retrievals are determined

offline (i.e., outside a given data assimilation system) from

the same set of radiance measurements. The only re-

quirements for the equivalence are the following: (i) the

radiance observation operator needs to be approximately

linear in a region of the state space centered at the re-

trieval and with a radius of the order of the retrieval error

and (ii) any prior information used to constrain the re-

trieval should not underrepresent the variability of the

state, so as to retain the information content of the mea-

surements. Requirement (i) can be tested once the retrieval

has been determined, while it is possible to compare an

ensemble of measurements linearized about the retrieval

(and adjusted to account for observation error) with the

chosen prior information in observation space to ensure

the validity of requirement (ii). If the requirements are

met, it is possible to improve the efficiency of the assimi-

lation of remote sounding measurements by performing

the nonlinear (due to the nonlinear radiance observation

operator) least squares estimation before assimilation.

Estimated retrievals can then be transformed so as to

represent only the portion of the state that is well con-

strained by the original radiance measurements and as-

similated in a consistent and optimal way, by means of an

appropriate observation operator and a unit matrix as er-

ror covariance. Note that the number of elements needed

to fully describe a remote sensing measurement is now

r 1 r 3 n, where r is the rank of the signal-to-noise

matrix S (as well as of Ĥ
rad

) and n is the dimension of the

state vector used to perform the retrieval, usually rep-

resenting vertical profiles and surface values of a set of

geophysical fields. Note that r # min(m, n), where m is the

dimension of the measurement vector (i.e., the number of

spectral channels in a remote sounding instrument). It is

also important to note that the observation operator used

for assimilation of transformed retrievals (as well as that

used for radiance assimilation) must include all compo-

nents of the state that are relevant for the purpose of

representing such measurements.

Assimilation of transformed retrievals may be par-

ticularly advantageous for remote sounding instruments

with a very high number of channels or when efficient

radiative transfer models used for operational assimi-

lation of radiance measurements are not able to model

the spectral regions (e.g., visible or ultraviolet) observed

by the instrument. An estimation of the retrieval before

assimilation would also be beneficial when the non-

linearity of the observation operator is such that J(x)

admits multiple minima (i.e., when the posterior prob-

ability density function is multimodal) over its domain,

in the assumption that the retrieval could be estimated

by using more sophisticated techniques than those cur-

rently used for operational assimilation of radiances. In

this case, for example, the usual (e.g., quasi-Newton)

minimization algorithm normally used to determine the

retrieval could be applied successively to explore each

local minimum of J(x) and estimate the retrieval, which

attains the global minimum of J(x). When the number of

local minima is large, the global minimum of J(x) could

instead be found by using a Monte Carlo method (e.g.,

Tarantola 2005, see his section 2.4). In the case when

H(x) was approximately linear about the retrieval,

which results in the global minimum of J(x), it would be

possible to assimilate the linearized and transformed

retrieval in the operational data assimilation system in

the place of a succession of linearized radiances. In this

way, the accuracy of the analysis would improve with

respect to the case when radiance data are assimilated

directly with a first guess (e.g., the background) leading

to a local but not global minimum of J(x).
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APPENDIX

Signal-to-Noise Representation of the Kalman Gain

As shown in Eq. (17), the Kalman gain K 2 Rn3p is

defined as

K 5 BĤ9rad
T (Ĥ9radBĤ9rad

T 1 Ip)21, (A1)

where B 2 Rn3n is a symmetric positive definite (i.e.,

nonsingular) matrix with rank (B) 5 n and where
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Ĥ9
rad
2 Rp3n and I

p
2 Rp3p is the identity matrix with

rank (I
p
) 5 p. Let us now express the signal-to-noise

matrix S as S [ Ĥ9
rad

B1/2 2 Rp3n—where B1/2 is the

symmetric square root of B, with rank(B1/2) 5 n—in

terms of its singular vector decomposition, as S 5 U⁄VT,

where U 2 Rp3p and V 2 Rn3n are orthogonal matrices

whose columns are the left and right singular vectors of S

and where the only nonzero elements of ⁄ 2 Rp3n have

the same row and column indexes and are equal to the

r # min(n, p) positive nondimensional singular values li

of S. It follows that Eq. (A1) can be written as

K 5 B1/2ST(SST 1 Ip)21

5 B1/2V⁄TUT(U⁄⁄TUT 1 Ip)21

5 B1/2V⁄T(⁄⁄T 1 Ip)21UT, (A2)

where we have used the property of the inverse of the

product between square nonsingular matrices and that

U21 5 UT. If we now define ⁄r 2 R
r3r as the diagonal

matrix that contains the r positive nondimensional sin-

gular values (in this case, signal-to-noise values) li of S

on its diagonal and Ur 2 R
p3r and Vr 2 R

n3r as the ma-

trices whose columns are the left and right singular

vectors of S corresponding to the positive singular

values of S, from Eq. (A2) the Kalman gain can also be

written as

K 5 B1/2Vr⁄r(⁄2
r 1 Ir)21UT

r [ B1/2C, (A3)

where C [ Vr⁄r(⁄2
r 1 Ir)

21UT
r . Let us now recall that the

rank of a matrix C 2 Rn3p is the dimension of the range

of C defined as the subspace of Rp generated by the col-

umns of C (e.g., Meyer 2000, see his section 4.2). Given

that the r left singular vectors corresponding to the r

positive singular values of C define a basis for the range

of C (e.g., Golub and van Loan 1996, see their section

2.5.3), it follows that rank (C) 5 r. It is also possible to

prove that the rank is invariant under multiplication by

a nonsingular matrix (e.g., Meyer 2000, see his section

4.5). We can then write

rank(K) 5 rank(B1/2C) 5 rank(C) 5 r # min(n, p).

(A4)

Note that this also implies that the Kalman gain has the

same rank as the signal-to-noise matrix S and as the

observation operator Ĥ9rad. Finally, if we express S as

S 5 Ur⁄rV
T
r , from Eq. (A3) we can also write

K 5 B1/2STUr(U
T
r SSTUr 1 Ir)21UT

r . (A5)
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