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[1] The time at which the signal of climate change emerges
from the noise of natural climate variability (Time of
Emergence, ToE) is a key variable for climate predictions
and risk assessments. Here we present a methodology for
estimating ToE for individual climate models, and use it to
make maps of ToE for surface air temperature (SAT) based
on the CMIP3 global climate models. Consistent with
previous studies we show that the median ToE occurs
several decades sooner in low latitudes, particularly in
boreal summer, than in mid-latitudes. We also show that
the median ToE in the Arctic occurs sooner in boreal
winter than in boreal summer. A key new aspect of our
study is that we quantify the uncertainty in ToE that arises
not only from inter-model differences in the magnitude of
the climate change signal, but also from large differences
in the simulation of natural climate variability. The
uncertainty in ToE is at least 30 years in the regions
examined, and as much as 60 years in some regions.
Alternative emissions scenarios lead to changes in both the
median ToE (by a decade or more) and its uncertainty. The
SRES B1 scenario is associated with a very large
uncertainty in ToE in some regions. Our findings have
important implications for climate modelling and climate
policy which we discuss. Citation: Hawkins, E., and R. Sutton
(2012), Time of emergence of climate signals, Geophys. Res. Lett.,
39, 1L01702, doi:10.1029/2011GL050087.

1. Introduction

[2] The signal of anthropogenic climate change is emerg-
ing against the background of natural climate variability.
Only when the signal of change is of sufficient magnitude
relative to this background variability can we be confident
that a significant change has been detected. Such detection is
a necessary step in the process of attributing a particular
change to a specific cause, such as the observed rise in
greenhouse gas concentrations [Hegerl et al., 2007]. A
headline conclusion from the [PCC AR4 was that “most of
the observed increase in global average temperatures since
the mid-20th century is very likely due to the observed
increase in anthropogenic greenhouse gas concentrations”.
Of greater importance for adaptation to climate change are
changes on the regional and local scales that affect people,
economies and ecosystems. However, on these smaller
scales natural variability is larger, making detection more
difficult. Some detection and attribution studies that have
addressed these scales have obtained positive results [Heger!
et al., 2007; Stott et al., 2010], but for many regions and
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variables the signal of anthropogenic change has yet to
clearly emerge from the ‘noise’ of natural climate variability.

[3] So when will the signal emerge? And where and how?
These are key questions for adaptation policy and planning
in particular. Much attention has focused on the absolute
magnitude of future climate change, and uncertainties in this
magnitude [e.g., Randall et al., 2007]. But in many situa-
tions it is not the absolute magnitude that matters so much as
the magnitude of change relative to the background levels of
variability. The reason is that many natural and human sys-
tems are inherently adapted to the local background level of
variability. It is when changes move outside this range that
major impacts are most likely to arise. For example, Lobell
and Burke [2008] demonstrate that uncertainty in future
crop yields is often dominated by uncertainty in projections
of temperature, rather than precipitation, because the chan-
ges in temperature are far further outside the range of natural
variability to which the crop is adapted.

[4] The question of when a significant climate change
signal will emerge in different regions was discussed and
presented in tabular form in the IPCC AR4 [Christensen
et al., 2007]. The general pattern of results is that the Time
of Emergence (ToE) is soonest (~10 years) for low latitude
regions, longest (20—40 years) for mid-latitude regions and of
intermediate duration (15-20 years) for polar regions. These
findings were recently confirmed by Mahlstein et al. [2011],
who additionally provided results at country scale, and dem-
onstrated that the earliest emergence of significant warming
occurs in the summer season in low latitude countries.

[s] The results presented in AR4 and the work of
Mahlstein et al. [2011], whilst valuable, leave many open
questions about ToE. Basic but important questions concern
the choices involved in defining both signal and noise. In
some studies the definition of noise has been broadened to
include the uncertainty in the climate response to anthropo-
genic forcing and the uncertainty in future anthropogenic
emissions [Giorgi and Bi, 2009; Hawkins and Sutton, 2009,
2011]. In this study we focus on the natural internal vari-
ability of climate as the key source of noise relevant for ToE.
A major motivation for our study is to address the question,
what is the uncertainty in estimates of ToE? This is a key
question for adaptation policy, as it is fundamental to the risk
assessments on which such policy must rely. To address it
we develop a methodology for estimating ToE from indi-
vidual climate models, rather than relying on a multi-model
mean. Our approach recognises that current climate models
show substantial differences not only in their simulation of
the climate change signal (e.g., in their climate sensitivity),
but also in their simulation of the natural internal variability
of climate. We demonstrate that both these dimensions of
uncertainty directly influence the uncertainty in ToE. We
also consider the question how is ToE sensitive to alternative
scenarios for anthropogenic emissions? This question has
obvious relevance to mitigation policy.
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[6] In Section 2 we describe the methods and data used.
Section 3 explores the natural variability across the models
and observations, and in Section 4 we show our ToE esti-
mates and discuss the sensitivity to various choices in the
analysis. We summarise in Section 5.

2. Methods and Data

[7] Estimating the Time of Emergence (ToE) of any cli-
mate signal requires estimates for the climate change signal
(S) and for the variability (or ‘noise’ - N). We define the ToE
as the first year in which the signal-to-noise ratio, S/N,
crosses particular threshold values (such as 1 and 2), but for
certain impacts other values may be more appropriate.

[8] To estimate the signal for surface air temperature
(SAT) we use data from 1950-2099 from single ensemble
members from a set of 15 GCMs which have run all three
SRES scenarios (A2, A1B, Bl). We define S by first
regressing SAT from a single ensemble member for each
model in each grid box (7},ca) onto a smoothed version of

the global mean SAT projection (T'goba ), making the
assumption that the local changes scale with global temper-
ature. This assumption works well in the past [e.g., van
Oldenborgh et al., 2009], but may break down in the
future if the aerosol and greenhouse gas signals become
decoupled. We estimate the regression coefficients («, ()

between T},., and Tglobal, and define
S(t) = aTglobal(t) + ﬁ (1)

for each grid point. The smoothing for Tyjopa is a fourth
order polynomial, fitted over the period 1950-2099
[Hawkins and Sutton, 2009]. All estimates are made relative
to the reference period 19862005 - we choose the recent
past as being of greatest relevance for adaptation. We test
this method using an ensemble of 10 simulations with a
single model, producing an ensemble standard deviation in
ToE for each of the three regions considered later in Section
4 of less than 3 years (not shown).

[¢9] To estimate the noise in SAT we utilise each GCM’s
pre-industrial control simulations. We define N as the inter-
annual standard deviation of seasonal (or annual) means.
Note that our choice contrasts with previous studies, which
have used the variability of 20-year averages [Christensen et
al., 2007; Giorgi and Bi, 2009]. Because variance decreases
with averaging, our choice results in later estimates for ToE,
but we argue that it has greater relevance to adaptation pol-
icy. As noted in the Introduction our definition of ToE dif-
fers further from that of Giorgi and Bi [2009] in that their
definition of N combines an estimate of the intermodel var-
iance in the signal strength with an estimate of the internal
variability. Our view is that these two sources of variance are
very different in origin - in particular the latter is a funda-
mental property of the climate system, whilst the former is
not - and therefore it is helpful to keep them separate. Fur-
thermore, we suggest that ToE - as we define it - is also a
fundamental property of the climate system. The true values
of ToE are unknown, but we can use climate models to
estimate it.

[10] For observational comparisons of the variability we
use the HadCRUT3 data set [Brohan et al., 2006] from
1900-2010 and ERA-40 [Uppala et al., 2005] from 1958—
2001. For HadCRUT3, the interannual variability is derived

HAWKINS AND SUTTON: TIME OF EMERGENCE OF CLIMATE SIGNALS

L01702

by requiring all 12 months of data to be present in a year at
each grid point to create an annual average, and at least 80
years present since 1900 to estimate the interannual vari-
ability. The variability is the standard deviation of the
detrended annual means, where HadCRUT3 is detrended as
above by regressing out the signal due to increases in the
global mean temperature fitted with a 4th order polynomial.
We use a linear detrending at each grid point for ERA-40,
which is spatially and temporally complete. Note that these
estimates are likely to be slightly too large as there will be
residual variability due to non-linearities in the forced trend.
Cleanly separating the trend from the variability is non-
trivial, and we do not consider it further here.

3. Surface Air Temperature Variability

[11] Different GCMs show a very wide range of inter-
annnual variability [e.g., Randall et al., 2007]. These dif-
ferences in variability characteristics across GCMs raises a
key issue: what estimate for the variability should be used to
estimate ToE? One option is to use the historical observa-
tions, but this is complicated by the trends in temperature,
and short time-series for many regions. We later test the
sensitivity to other options which include using each GCM’s
own estimate of internal variability, or using a multi-model
median estimate.

3.1. Sensitivity to Spatial Grid Used

[12] Before considering the differences in variability,
another question arises concerning the spatial grid for anal-
ysis. On a regular latitude-longitude grid, the grid cells in the
polar regions have a far smaller spatial area than in the tro-
pics. This could distort the analysis as smaller areas are
likely to have larger variability solely due to their size and
would artificially inflate ToE at the poles, relative to tropical
regions for instance.

[13] To examine this sensitivity we compare the interan-
nual variability for the high northern latitudes using the
native GCM data remapped on two different grids before
analysis (Figure 1). The median standard deviation of annual
mean temperature on an icosahedral grid, with roughly equal
areas in each grid cell (top left), and a regular latitude-lon-
gitude 5° x 5° grid (bottom left) show very similar patterns,
but there are two key points to note. First, there is a local
minimum in SAT variability in the vicinity of the North
pole, which is perhaps not widely appreciated [e.g.,
Christensen et al., 2007; Mahlstein et al., 2011]. Secondly,
there are small differences between the results for the dif-
ferent grids, with the icosahedral grid showing generally
smaller variability in some high latitude regions as would be
expected if the grid size is having an effect. However, the
differences are small and for the ToE analysis we focus on
the regular latitude-longitude 5° x 5° grid. Figure S2 in Text
S1 in the auxiliary material shows maps of ToE on the ico-
sahedral grid for comparison.

3.2. Comparing Models and Observations

[14] Our observational estimates of the interannual vari-
ability of annual mean SAT are shown in Figure 1. When
comparing the observations to the median model estimate, it

'Auxiliary materials are available in the HTML. doi:10.1029/
2011GL050087.
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INTER-ANNUAL TEMPERATURE VARIABILITY
MEDIAN MODEL OBSERVATIONS

ICOSAHEDRAL GRID

LAT-LONG 5°x 5° GRID

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Figure 1. (left) The median model interannual variability (defined by the standard of deviation) using annual means on dif-
ferent spatial grids: (top) an icosahedral grid with roughly equal areas and (bottom) a regular 5° x 5° grid. (middle) The
observations for ERA-40 (Figure 1, top) and HadCRUT3 (Figure 1, bottom, with missing values in white). These four plots
have units of [K]. (right) The ratio of the median model to the observations shows the GCMs tend to overestimate the var-
iability in the northern extra-tropical regions, with units of [K/K]. The two observational estimates also agree well where data
exists for HadCRUT3.

MODEL NOISE

SIGNAL 2040

Figure 2. (top) Inter-annual variability and (bottom) signal in 2040 using annual means from the GCMs. The estimates
include the (left) 10th, (middle) 50th and (right) 90th percentiles for each grid point. Note the non-linear colour scale at high
values.
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Figure 3. Median Time of Emergence for surface air temperatures for (top) October-March and (bottom) April-September.
First year when temperature has expected (left) S/N > 1 and (right) S/N > 2. The regions indicated by the white boxes are

used in Figures 4, 5.

is seen that the GCMs tend to have too much variability in
the northern extra-tropical region, by up to 20% [also see
Mahlistein et al., 2011]. Considering that the observations
are likely to be an over-estimate of the true internal vari-
ability (see Section 2), this finding would appear to be
robust. This bias will affect estimates of the ToE by making
it later than it would be if an observational estimate was
used. In other regions it appears the GCMs have too little
variability, although this may be an artefact of imperfectly
detrending the observations. In all examples, the variability
in SAT is generally greater at higher latitudes (excepting the
local minimum over the pole), and over land (Figure 2).
Exceptions are the ENSO region, and the region of the
Barents Sea, both of which show unusually high variability.

4. The Time of Emergence for Regional
Temperatures

[15] The signal of SAT change in 2040 shows a wide
range across the GCMs (Figure 2), with a range (10-90%
quantiles) of up to 4°C at high latitudes and typically 1°C at
lower latitudes. In addition, the range (10-90% quantiles) of
the GCM estimates of the interannual variability can be up to
a factor of 3 in standard deviation. Much previous work has
focussed on the large range of climate sensitivity, but the
ranges in variability are arguably as important across the
GCMs considered, contributing to uncertainty in S/N.

[16] As noted in Section 2, we define the Time of Emer-
gence (ToE) as the first year when the S/N is larger than a
particular threshold. ToE is estimated for each model sepa-
rately, and maps of the median ToE for SAT under SRES
A1B, for two half-years, are shown in Figure 3, using two
different S/N thresholds. Figure S1 in Text S1 shows maps
of ToE for individual GCMs.

[17] For many tropical regions, the median ToE for
S/N > 1 is within the next decade, and before 2030 for
S/N > 2. The early emergence in these regions, and the

tendency for earlier emergence in boreal spring/summer
(April-September) than in boreal autumn/winter (October-
March), is consistent with the results of Mahlstein et al.
[2011]. For extra-tropical regions the ToE times are delayed
by several decades, with ToE for S/N > 2 later than 2060 for
many locations. In the northern extratropics, ToE is again
generally later for autumn/winter than spring/summer. How-
ever, an interesting contrast to this seasonal variation is seen
over the central Arctic, where the median ToE occurs 5—
10 years earlier in autumn/winter than in spring/summer
(Figure S2 in Text S1), primarily because the signal is
stronger.

[18] Histograms of ToE for S/N > 2 for three equal area
land regions (as indicated in Figure 3) are shown in Figure 4,
for half-years, using the SRES A1B scenario. Note that
because the noise variance decreases with averaging, the
ToE for an area mean is not the same, and will generally be
earlier, than the mean ToE for that area. The blue bars show
the ToE using each GCM’s own estimate of the variability,
and the green bars show the ToE using the median estimate
of the variability as N. The red bars show the projected ToE
using the median signal and median noise. Figure S3 in Text
S1 shows the histograms using the median signal and each
GCM'’s variability.

[19] The blue bars demonstrate the large uncertainty in
estimates of ToE from different climate models. This
uncertainty is at least 30 years in all three regions, and as
much 60 years in some regions. Also evident in Figure 4 is
the seasonal variation, with all three regions showing a shift
to earlier ToE in boreal spring/summer (even though region
3 is in the Southern hemisphere). The distributions of ToE
show a clear central peak for some regions and seasons (e.g.,
region 1 for boreal autumn/winter), but in other cases are
rather flat or even bimodal (e.g., region 3 in boreal autumn/
winter and region 1 in boreal spring/summer).

[20] The differences between the blue and green bars
indicate the change in uncertainty in ToE when using a
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Time of Emergence — number of models per decade
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Figure 4. Time of emergence for surface air temperatures for three equal area regions as indicated in Figure 3 for (top)
October-March and (bottom) April-September. Histograms representing the number of models which cross the S/N > 2 tem-
perature threshold in each decade, using each GCM’s own variability (blue) and median variability (green). The red bars
indicate the decade of ToE when using both the median signal and median noise.

single (median) estimate for the noise, N. Whilst the dis-
tributions change there is no consistent reduction, or
increase, in spread. The same is true when using the median
signal together with estimates of the noise from individual
models (see Figure S3 in Text S1). These results demon-
strate that the intermodel spread in both signal and noise
contribute significantly to the spread in ToE.

[21] The final sensitivity on ToE we consider is the
dependence on emissions scenario (Figure 5). Overall, SRES
A1B shows a slightly earlier ToE for the various regions,
because it is actually the warmest scenario in the near-term
[e.g., Meehl et al., 2007], whereas A2 is warmer at the end of
the 21st century. The B1 scenario shows a shift towards later
ToE; more striking, however, is a large increase in the

Time of Emergence — number of models per decade

Region 1 Region 2 Region 3
10 a2z | 10 10
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Figure 5. Time of emergence for surface air temperatures

0
2020 2040 2060 2080 2100

0
2020 2040 2060 2080 2100

for three equal area regions as indicated in Figure 3 for

(top) October-March and (bottom) April-September. Histograms representing the number of models which cross the
S/N > 2 temperature threshold in each decade, using each GCM’s own variability and different scenarios (blue -

B1, green - AlB, red - A2).
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uncertainty in ToE under this scenario. This is because the
lower levels of emissions result in a more gradual rise in
temperatures, producing a wider range of threshold crossing
times [also see Joshi et al., 2011].

[22] Lastly we consider the ‘Global Temperature for
Regional Emergence’ (GTRE), where the emergence is
expressed as the change in global mean temperature (from
1986-2005) required to produce a regional threshold cross-
ing in S/N (in a similar way to the work of Mahlstein et al.
[2011]). Figure S4 in Text S1 demonstrates that this metric,
which may be more useful for mitigation decisions, effec-
tively reduces the emissions uncertainty, but still produces
wide ranges in GTRE for different models and regions.

5. Discussion and Conclusions

[23] We have developed a new methodology for estimat-
ing Time of Emergence (ToE) for individual climate models,
which has enabled us to estimate the uncertainty in ToE that
arises from intermodel differences in their simulations of
natural variability (noise) as well as differences in their
simulations of the signal of climate change. We applied our
methods to simulations of surface air temperature in the
CMIP3 ensemble of climate models. Our major findings are:

[24] 1. Consistent with many other studies there is a large
spread in the magnitude of the climate change signal simu-
lated by the models when forced by the same forcing sce-
nario. In some higher latitude regions the magnitude of the
signal in 2040 differs by more than 3°C.

[25] 2. Less widely recognised, there is also a very large
spread in the amplitude of natural variability simulated by
the models. In some regions the amplitude of variability
differs by a factor of 3 or 1.5°C.

[26] 3. The median ToE occurs several decades sooner
in low latitudes, particularly in boreal spring/summer, than
in mid-latitudes. The median ToE in the Arctic occurs 5—
10 years sooner in boreal autumn/winter than in boreal
spring/summer.

[27] 4. There is a very large uncertainty in ToE arising
from the inter-model differences in simulating both signal
and noise. This uncertainty is at least 30 years in all three
regions shown and as much 60 years in some regions.

[28] 5. Alternative emissions scenarios lead to changes in
the both the median ToE (by a decade or more) and its
uncertainty. The SRES B scenario is associated with a very
large uncertainty in ToE in some regions.

[29] Our findings, especially the large uncertainty in ToE,
have important implications for climate policy. We have
argued that in many cases major impacts (e.g., widespread
crop failure) are likely to be associated with crossing
thresholds in signal-to-noise. To develop robust adaptation
strategies, policy makers and planners must take into
account the large uncertainty in when these events may take
place [also see Joshi et al., 2011].

[30] A limitation of our study is that it is based on the
analysis of a particular climate model ensemble of opportu-
nity: CMIP3. This ensemble is unlikely to span the full range
of uncertainty in ToE, particularly in light of recent studies
which demonstrate that different climate models are not
independent [e.g., Knutti et al., 2010; Pennell and Reichler,
2010]. These points highlight the importance of improving

HAWKINS AND SUTTON: TIME OF EMERGENCE OF CLIMATE SIGNALS

L01702

model simulations of natural climate variability, and of
exploring the potential for identifying observational con-
straints on ToE. There is also need to estimate ToE for a
wider range of climate and climate-related variables. In view
of the importance of ToE for climate adaptation and miti-
gation policy, we suggest that this research, and the related
development work to improve climate models, should be
accorded high priority.

[31] Acknowledgments. E.H. and R.S. are supported by NCAS-
Climate. We thank Hilary Weller for technical help with the icosahedral
grid and Jonathan Gregory for useful suggestions. We also acknowledge
Irina Mahlstein and an anonymous reviewer for their constructive com-
ments which helped improve the paper.
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