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Flows of Mellin transforms with periodic integrator

Titus Hilberdink
Department of Mathematics, University of Reading, Whiteknights,

PO Box 220, Reading RG6 6AX, UK; t.w.hilberdink@reading.ac.uk

Abstract

We study Mellin transforms N̂(s) =
∫∞
1− x−sdN(x) for which N(x) − x is periodic with

period 1 in order to investigate ‘flows’ of such functions to Riemann’s ζ(s) and the possibility
of proving the Riemann Hypothesis with such an approach. We show that, excepting the
trivial case where N(x) = x, the supremum of the real parts of the zeros of any such function
is at least 1

2 .
We investigate a particular flow of such functions {N̂λ}λ≥1 which converges locally uni-

formly to ζ(s) as λ → 1, and show that they exhibit features similar to ζ(s). For example,
N̂λ(s) has roughly T

2π log T
2π − T

2π zeros in the critical strip up to height T and an infinite
number of negative zeros, roughly at the points λ− 1− 2n (n ∈ N).

2010 AMS Mathematics Subject Classification: 11M41, 30C15.
Keywords and phrases: Zeros of Mellin transforms, Lindelöf function.

Introduction
One idea of approaching the Riemann Hypothesis (RH) is to construct a sequence or a flow of
holomorphic functions converging to ζ(s), uniformly on compact subsets of C \ {1} in such a
way that all the functions in the sequence have no zeros in1 H 1

2
. Then by Hurwitz’s Theorem

on the zeros of the limit function, RH would follow. Less stringently, we would only require that
there are no zeros in half-planes converging to H 1

2
. To make it worthwhile, it should be easier

to locate the zeros of the sequence than of ζ(s) itself.
The problem with such an approach is of course how to choose your sequence or flow (if

indeed this is possible). We shall restrict ourselves to Mellin transforms; i.e.

N̂λ(s) =
∫ ∞

0
x−s dNλ(x),

where λ ranges over some interval, say λ ∈ [0, 1] with Nλ(x) → [x] as λ → 1. Thus N̂λ(s) → ζ(s).
For instance, one can imagine starting from very ‘smooth’ generalised primes and integers

and ‘flowing’ to the actual primes and integers as time progresses. For example, we could start
from N0(x) = x (x ≥ 1) and zero otherwise and ‘flow’ to the function N1(x) = [x]. Then
N̂0(s) = s

s−1 ‘flows’ to N̂1(s) = ζ(s).
There are many ‘natural’ properties that a typical integrator N(x) (or its Mellin transform)

in such a flow could be assumed to have, by analogy with [x] and its Mellin transform ζ(s).
One property we shall assume at the outset is that N(x) = 0 for x < 1 and N(1) = 1. Thus
N has a jump at 1 and so N̂(s) = 1 +

∫∞
1 x−sdN(x), ensuring that N̂(s) is bounded away

from zero in half-planes far enough to the right. In this paper we shall further assume that for
x ≥ 1, N(x)− x is periodic with period 1. (This is true for the cases N(x) = x and N(x) = [x]

1For θ ∈ R, we denote by Hθ the half plane {s ∈ C : <s > θ}.
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mentioned above). A further property that could be considered is that N(x) forms part of a
generalised prime system; i.e. N(x) = exp∗Π(x) for some increasing function Π(x), or in terms
of Mellin transforms; log N̂(s) = Π̂(s). However, we shall not assume this here.

On the above assumptions N̂(s) has an analytic continuation to H0 \ {1} with a simple
pole at s = 1. In fact, using the Fourier development of N(x) − x, we shall show (Theorem 1)
that there is an analytic continuation to the rest of the complex plane as well, and furthermore
N̂(s) satisfies a ‘functional relationship’ akin to the functional equation for ζ(s). As a corollary
(Corollary 2) it follows that the associated Lindelöf function (see below for the definition) is at
least 1

2 − σ for σ < 1
2 , except in the case when N(x) = x. Denoting by Θ the supremum of the

real parts of the zeros of N̂ , this further implies that Θ ≥ 1
2 .

In particular, this shows it is impossible to have a flow of such Mellin transforms from s
s−1

to ζ(s) in which the zeros gradually move to the right (unless RH is false).

In the final section, we discuss the zeros of a particular flow of such Mellin transforms
{N̂λ}λ≥1 whose integrator Nλ has Fourier coefficients proportional to n−λ.

1. Some preliminaries and notation
Let S denote the space of functions f : R→ C which are zero on (−∞, 1), right-continuous, and
of local bounded variation. (See e.g. [2], pp.50-70.) For α ∈ R, let Sα = {f ∈ S : f(1) = α}.

Let f ∈ S. If f(x) = O(xA) for some A, then we define the Mellin transform by

f̂(s) =
∫ ∞

1−
x−s df(x).

This is well-defined for σ = <s > α, where α is the infimum of A for which f(x) = O(xA).
Indeed, in this half-plane, f̂ is holomorphic. Integrating by parts gives

f̂(s) = s

∫ ∞

1

f(x)
xs+1

dx.

A function F holomorphic in a vertical strip (except possibly at a finite number of isolated
singularities) is said to be of finite order if

F (σ + it) = O(|t|A) (|t| ≥ t0, some t0),

for each σ in the interval of the strip. As such, we may define the Lindelöf function µ(σ) to be
the infimum of those A for which the above holds. It is well-known that µ is a convex function.
In our case (with F = N̂ and N ∈ S1), µ will be decreasing and eventually zero since

|N̂(s)− 1| ≤
∫ ∞

1
x−σ d|N |(x) → 0

as σ →∞.
Knowledge of the positivity of µ can be used for locating zeros because of the following

result: if f is of finite order in Hβ and has at most finitely many zeros here and µ(σ) = 0
for σ sufficiently large, then µ(σ) = 0 for σ > β. (This was shown to hold for Beurling zeta
functions in [4], but actually the proof readily extends to general functions.) Thus, for example,
if µ(σ) > 0 for σ < 1

2 , then f(s) has infinitely many zeros in each half-plane H 1
2
−δ for every δ > 0.

2. Main results and proofs
Suppose N ∈ S1 and N(x) = x−R(x) where R(x) has period 1. Extend R to the whole real line
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by periodicity. Thus R is right continuous, locally of bounded variation, and R(1) = 0. Since R
is of bounded variation, it possesses a Fourier series

a0 +
∞∑

n=1

bn cos 2πnx +
∞∑

n=1

cn sin 2πnx

which converges to 1
2(R(x + 0) + R(x − 0)), and the series is boundedly convergent (see [5],

p.408). Also bn, cn = O( 1
n).

Theorem 1
Suppose that N(x) = x − R(x) ∈ S1 where R is periodic with period 1. Then N̂(s) has an
analytic continuation to C \ {1} with a simple pole at s = 1 with residue 1. Furthermore N̂(s)
is of finite order and for σ < 0 satisfies the relation

N̂(s) =
s

s− 1
+

∫ 1

0
x−s dR(x) + (2π)sΓ(1− s)

(
cos

πs

2

∞∑

n=1

bnns − sin
πs

2

∞∑

n=1

cnns

)
. (2.1)

The proof of Theorem 1 shows that the Lindelöf function of N̂ satisfies µ(σ) ≤ 1
2 − σ for

σ ≤ 0, while of course µ(σ) = 0 for σ ≥ 1. By convexity one obtains upper bounds for all σ.
We can get equality if we know that bn and cn are not identically zero. (Equivalently, since R
is right-continuous, if R is not constant; i.e. non-zero.)

Corollary 2
Under the assumptions of Theorem 1, if R 6≡ 0 then µ(σ) = 1

2 − σ for σ ≤ 0 and µ(σ) ≥ µ0(σ)
for all σ, where

µ0(σ) =
{

0 if σ ≥ 1
2

1
2 − σ if σ < 1

2

.

It follows that N̂ has infinitely many zeros in H 1
2
−δ for any δ > 0.

In particular, if we let Θ denote the supremum of the real parts of the zeros of N̂ , then Θ ≥ 1
2 .

Proof of Theorem 1. We have for σ > 1,

N̂(s) = 1 + s

∫ ∞

1

N(x)
xs+1

dx =
s

s− 1
− s

∫ ∞

1

R(x)
xs+1

dx.

The integral on the right converges for σ > 0, and so N̂(s) has an analytic continuation to H0

except for a simple pole at s = 1 with residue 1. We can extend further to the left by noting
that a0 =

∫ 1
0 R(x)dx so that

∫ X
0 (R(x)− a0)dx = O(1). Hence for σ > 0,

N̂(s) =
s

s− 1
− s

∫ ∞

1

a0

xs+1
dx− s

∫ ∞

1

R(x)− a0

xs+1
dx =

s

s− 1
− a0 − s

∫ ∞

1

R(x)− a0

xs+1
dx.

The final integral converges and is holomorphic for σ > −1 and so this extends N̂(s) holomor-
phically to H−1. Thus N̂(0) = −a0. Note that N̂(s) has finite order for σ > −1 since in this
range, writing V (x) =

∫ x
1 (R(y)− a0)dy = O(1), we have

s

∫ ∞

1

R(x)− a0

xs+1
dx = s(s + 1)

∫ ∞

1

V (x)
xs+2

dx = O(|t|2).

3



Also s
∫ 1
0

R(x)−a0

xs+1 dx converges for σ < 0 and equals s
∫ 1
0

R(x)
xs+1 dx+a0 =

∫ 1
0 x−s dR(x)+a0. Thus,

N̂(s) =
s

s− 1
+

∫ 1

0
x−s dR(x)− s

∫ ∞

0

R(x)− a0

xs+1
dx for −1 < σ < 0. (2.2)

Now we insert the Fourier series for R(x)− a0. If we ignore all problems of convergence for the
moment, the final integral of (2.2) becomes

s

∫ ∞

0

R(x)− a0

xs+1
dx = s

∫ ∞

0

1
xs+1

( ∞∑

n=1

bn cos 2πnx +
∞∑

n=1

cn sin 2πnx

)
dx

= s
∞∑

n=1

(
bn

∫ ∞

0

cos 2πnx

xs+1
dx + cn

∫ ∞

0

sin 2πnx

xs+1

)
dx

= s
∞∑

n=1

(2πn)s

(
bnΓ(−s) cos

πs

2
− cnΓ(−s) sin

πs

2

)

= −Γ(1− s)(2π)s

(
cos

πs

2

∞∑

n=1

bnns − sin
πs

2

∞∑

n=1

cnns

)
, (2.3)

and the result follows formally. However, the term-by-term integration is permissible since the
Fourier series is boundedly convergent and bn and cn are both O(1/n) (the argument is identical
to the special case cn = 1

n as in [6], p.15).
Thus (2.3) holds for −1 < σ < 0. But the RHS of (2.3) is holomorphic for σ < 0. Hence this

provides the analytic continuation of N̂(s) to C \ {1} and (2.3) holds for σ ≤ −1 also.
That N̂(s) is of finite order follows directly from (2.3). For |Γ(1−s)(2π)s cos πs

2 | = O(|t|1/2−σ)
and similarly for the term involving sin, while |∑ bnns| ≤ ∑ |bn|nσ = O(1) for σ < 0 and also
for

∑
cnns. Since | ∫ 1

0 x−sdR(x)| ≤ ∫ 1
0 1d|R|(x) = O(1), (2.3) gives, for σ < 0,

|N̂(σ + it)| = O(1) + O(|t|1/2−σ).

¤

Proof of Corollary 2. Consider the final term in (2.1) which can be written

Γ(1− s)(2π)s cos
πs

2

∞∑

n=1

ns

(
bn − cn tan

πs

2

)
(2.4)

and use the asymptotic bounds

|Γ(1− s)| = |Γ(1− σ − it)| ∼
√

2π|t|1/2−σe−
π
2
|t|,

∣∣∣cos
πs

2

∣∣∣ ∼ 1
2
e

π
2
|t|, and tan

πs

2
= tan

(πσ

2
+ i

πt

2

)
= sgn(t)i + O(e−π|t|).

Thus the term in (2.4) is, in modulus, asymptotic to

√
π

2
|t|1/2−σ

(∣∣∣∣
∞∑

n=1

(bn ± icn)ns

∣∣∣∣ + O(e−π|t|)
)

.
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Since the coefficients bn and cn are not identically zero and, furthermore, are real, there is a
least integer n0 for which bn0 ± icn0 6= 0. It follows that for σ sufficiently large and negative,

∣∣∣∣
∞∑

n=1

(bn ± icn)ns

∣∣∣∣ ≥
1
2
nσ

0 |bn0 + icn0 |.

This implies that µ(σ) = 1
2 −σ for σ sufficiently large and negative. By convexity, µ(σ) ≥ µ0(σ)

for all σ. But for σ ≤ 0, we already know that µ(σ) ≤ 1
2 − σ, so we have equality here.

¤

Remarks

(a) Theorem 1 and Corollary 2 extend immediately to the case where N(x) − cx is periodic
for some constant c.

(b) Similar results can be obtained more generally if R(x) = N(x)−x is almost-periodic under
some extra assumptions. For example, suppose that

R(x) = a0 +
∞∑

n=1

bn cos 2πλnx +
∞∑

n=1

cn sin 2πλnx,

and that the series is boundedly convergent with bn and cn both O(1/n). Here suppose
λn > 0 increases strictly and without bound. If we assume that

∑ λσ
n
n converges for every

σ < 0, then the same method as in Theorem 1 shows that N̂ has an analytic continuation
to C \ {1}, is of finite order and satisfies

N̂(s) =
s

s− 1
+

∫ 1

0
x−s dR(x) + (2π)sΓ(1− s)

(
cos

πs

2

∞∑

n=1

bnλs
n − sin

πs

2

∞∑

n=1

cnλs
n

)
,

for σ < 0. Corollary 2 also holds in this case if the bn and cn are not identically zero (i.e.
R(x) not constant).

(c) The inequality µ ≥ µ0 seems quite robust. It holds for the Beurling zeta function associated
to discrete g-prime systems (see [3]) but also for those Mellin transforms contained in (a)
and (b) above. What is a natural setting for which this inequality is true?

3. A particular flow of Mellin transforms to ζ(s)
As Corollary 2 shows, it is impossible to construct a flow of Mellin transforms with ‘periodic’
integrator converging to ζ(s) such that the supremum of the real parts of the zeros converges to
1
2 from below. Nevertheless, it might still be of interest to investigate a particular flow of such
systems with N(x)− x periodic.

Here we consider a particular flow of Mellin transforms {N̂λ(s)}λ≥1 converging uniformly to
ζ(s) as λ → 1, and for which Nλ(x) − x has period 1 with Fourier coefficients proportional to
1

nλ . We shall see that for λ > 1, N̂λ(s) shares a number of characteristics of N̂1(s) = ζ(s). Thus
N̂λ(s) has roughly T

2π log T
2π − T

2π zeros in H0 up to height T and an infinite number of negative
zeros, roughly at the points λ− 1− 2n (n ∈ N).

The Hurwitz zeta function ζ(s, a), defined for <s > 1 and 0 < a ≤ 1 by the series
∑∞

n=0(n+
a)−s has (as a function of s) an analytic continuation to C \ {1} and a simple pole at s = 1

5



with residue 1 (see for example [1], Chapter 12). Its analytic continuation is given by ζ(s, a) =
Γ(1− s)I(s, a), where I(s, a) is the entire function

I(s, a) =
1

2πi

∫

C

zs−1eaz

1− ez
dz,

where C is the contour which starts at −∞, goes along the negative real axis (on the lower
side) to −c where 0 < c < 2π, encircles the origin back to −c and returns to −∞ on the up-
per side of the negative real axis. Note that ζ(s, 1) = ζ(s). The definition actually makes sense
whenever <a > 0 (any s). As a function of a (for any given s), I(s, a) is holomorphic for <a > 0.

Definition: Let Nλ(x) = x − Rλ(x) for x ≥ 1 and zero otherwise and λ ≥ 1, where Rλ(x) is
periodic with period 1 and be defined for 0 ≤ x < 1 by

Rλ(x) = ρλ(ζ(1− λ, 1− x)− ζ(1− λ)) =
ρλΓ(λ)

2πi

∫

C

z−λ(e−xz − 1)
e−z − 1

dz. (3.1)

Here ρλ is a continuous function of λ (to be determined) and we set ρ1 = 1 so that R1(x) = {x}.

Some properties

(a) For λ = m ∈ N, Rm is a polynomial in [0, 1) since ζ(−n, a) = −Bn+1(a)
n+1 where Bn(·) is the

nth Bernoulli polynomial; i.e.

Rm(x) =
ρm

m
(Bm(1)−Bm(1− x)) =

(−1)m−1ρm

m
(Bm(x)−Bm(0)). (0 ≤ x < 1)

(b) For λ > 1 Rλ is continuous, while R1 is right continuous but has jump continuities at the
integers. On the interval [0, 1), Rλ is holomorphic since the function

R∗
λ(z) = ρλ(ζ(1− λ, 1− z)− ζ(1− λ)),

which agrees with Rλ on [0,1), is holomorphic for <z < 1. Hence we have an expansion

Rλ(x) =
∞∑

n=1

an(λ)xn (0 ≤ x < 1)

for some coefficients an(λ). Expanding the integrand in (3.1) gives a formula for the
coefficients.

Rλ(x) =
ρλΓ(λ)

2πi

∫

C

z−λ

e−z − 1

∞∑

n=1

(−1)n xnzn

n!
dz =

∞∑

n=1

(−1)n

n!

(
ρλΓ(λ)

2πi

∫

C

zn−λ

e−z − 1
dz

)
xn

=
∞∑

n=1

(−1)n

n!
ρλΓ(λ)ζ(n− λ + 1)

Γ(λ− n)
xn.

Hence

an(λ) = (−1)nρλ

(
λ− 1

n

)
ζ(n + 1− λ). (3.2)

For λ > 1 the expansion is also valid for x = 1, since an(λ) = O(n−λ). For λ = m ∈ N
and n = m, (3.2) should be interpreted as limλ→m am(λ) = (−1)m−1ρm/m. Of course in
this case the expansion is finite and is a polynomial of degree m.
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(c) Fourier expansion: We have

Rλ(x) = −2ρλΓ(λ)
(2π)λ

(
cos

πλ

2

∞∑

n=1

1− cos 2πnx

nλ
+ sin

πλ

2

∞∑

n=1

sin 2πnx

nλ

)

which holds for all x ∈ R if λ > 1 and for x ∈ R \ Z if λ = 1 ([1], p.257).

By Theorem 1, N̂λ extends analytically to the complex plane except for a simple pole at 1 and
(after some calculation)

N̂λ(s) =
s

s− 1
+

∫ 1

0
x−s dRλ(x) + 2ρλ(2π)s−λΓ(λ)Γ(1− s) cos

π(s− λ)
2

ζ(λ− s). (3.3)

Using the functional equation for ζ(λ− s) this becomes

N̂λ(s) =
s

s− 1
+

∫ 1

0
x−s dRλ(x) + ρλ

Γ(λ)Γ(1− s)
Γ(λ− s)

ζ(s− λ + 1). (3.4)

For λ > 1 we have for σ < 1,

∫ 1

0
x−s dRλ(x) =

∫ 1

0
x−sR′

λ(x) dx =
∫ 1

0

∞∑

n=1

nan(λ)xn−s−1 dx =
∞∑

n=1

nan(λ)
n− s

. (3.5)

This series converges for all s 6∈ N and provides the meromorphic continuation of the LHS to C
with (at most) simple poles at the positive integers. Thus (3.3)-(3.5) hold for all s.

Theorem 3
With Nλ as defined above, we have N̂λ(s) → ζ(s) as λ → 1 uniformly on compact subsets of
C \ {1}.

Proof. This basically follows from the fact that Rλ → R1 uniformly on [0, a] for every a < 1,
but we need to be a little careful near 1 since R1 is not continuous here. First consider σ > 0.
Let K be a compact subset of H0 \ {1}. We have for s ∈ K

|N̂λ(s)− N̂1(s)| =
∣∣∣∣s

∫ ∞

1

Rλ(x)−R1(x)
xs+1

dx

∣∣∣∣ ≤ A

∫ ∞

1

|Rλ(x)−R1(x)|
xσ0+1

dx

for some constants A, σ0 > 0. Let η > 0. Then for all ε > 0, there exists λ0 such that for
1 < λ < λ0, |R1(x)−Rλ(x)| < ε for n ≤ x ≤ n + 1− η (any n ∈ Z). Hence

|N̂λ(s)− N̂1(s)| ≤ Aε

∫ ∞

1

1
xσ0+1

dx + A
∞∑

n=1

∫ n+1

n+1−η

C

xσ0+1
dx ≤ A1ε + ACη

∞∑

n=1

1
nσ0+1

,

which can be made as small as we please. Hence N̂λ(s) → N̂1(s) uniformly on compact subsets
of H0 \ {1}.

In fact the same argument works for compact subsets of H−1 \ {1} if we use the expression

N̂λ(s) =
s

s− 1
− a0 + s(s + 1)

∫ ∞

1

Vλ(x)
xs+2

dx,

where Vλ(x) =
∫ x
1 (Rλ(·)− a0), and noting that Vλ → V1 uniformly.

7



For σ < 0 we can use (3.4). The final term tends locally uniformly to ζ(s), while
∫ 1

0
x−s dRλ(x) = s

∫ 1

0

Rλ(x)
xs+1

dx → s

∫ 1

0

R1(x)
xs+1

dx = − s

s− 1
,

the convergence again being uniform. The result now follows.
¤

Zeros
Since N̂λ(s) → ζ(s) locally uniformly, the Riemann Hypothesis will follow if we can show that
for all λ close to 1 (with some particular choice of ρλ), N̂λ(s) has no zeros with σ > 1

2 . Slightly
less restrictively, RH is true if the following conjecture is true:

Conjecture: Given θ > 1
2 , there exists λθ > 1 such that for 1 < λ < λθ and some suitable

choice of ρλ, N̂λ has no zeros in Hθ.

It may even be the case that this conjecture is equivalent to RH. The hope is of course that
it is easier to show that for λ > 1, N̂λ has no zeros in Hθ than it is for λ = 1.

Now we show that for λ > 3
2 , N̂λ has only finitely many zeros in H 1

2
+δ (any δ > 0). As λ gets

closer to 1 however, we can only be certain of having finitely many zeros in half-planes further
to the right, since we do not have the strong bounds on ζ in vertical strips. If we assume the
Lindelöf Hypothesis (LH), then N̂λ has only finitely many zeros in H 1

2
+δ for every λ > 1.

Theorem 4
(i) Let λ ≥ 3

2 . Then for every δ > 0, N̂λ(s) has at most finitely many zeros in H 1
2
+δ and in

every strip where σ ∈ [−A, 1
2 − δ] (any A).

(ii) Let 1 < λ < 3
2 . Then for every δ > 0, N̂λ(s) has at most finitely many zeros in H2−λ+δ

(H 1
2
+δ on LH) and in every strip where σ ∈ [−A, λ− 1− δ] (σ ∈ [−A, 1

2 − δ] on RH).

Proof. For λ > 1,
∫ 1
0 x−sdRλ(x) =

∑∞
n=1

nan(λ)
n−s → 0 as |t| → ∞ for every σ. Hence from (3.4),

N̂λ(σ + it) = 1 + o(1) + ρλ
Γ(λ)Γ(1− σ − it)

Γ(λ− σ − it)
ζ(σ − λ + 1 + it).

The term on the right is, in modulus, asymptotic to

|ρλ|Γ(λ)
|ζ(σ − λ + 1 + it)|

|t|λ−1
= O(|t|µ(σ−λ+1)−λ+1+ε), (3.6)

for every ε > 0, where µ(·) is the Lindelöf function for ζ. Note that the implied constant is
independent of σ for a ≤ σ ≤ b, any a, b.

Let λ > 3
2 . Consider σ ≤ λ− 1 and σ > λ− 1 separately. If σ ≤ λ− 1, then µ(σ − λ + 1) =

λ−σ− 1
2 , and the exponent of |t| in (3.6) is 1

2−σ+ε. This is negative (for sufficiently small ε) if
σ > 1

2 . If σ > λ−1, µ(σ−λ+1) < 1
2 , so the exponent is also negative for ε small enough. Since

the bound is uniform in σ, and there are no zeros in HA for A sufficiently large, this implies
that for λ ≥ 3

2 , N̂λ has only finitely many zeros in H 1
2
+δ for each δ > 0.

If σ < 1
2 , then σ < λ− 1 and the expression in (3.6) is at least2

c|t| 12−σ,

2Assuming ρλ 6= 0. If ρλ = 0, the result is trivially true.
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for some c > 0, depending continuously on λ and σ. Hence for −A ≤ σ ≤ 1
2 − δ, this is at least

c1|t|δ (some constant c1 > 0) which tends to infinity. Thus there are no zeros with |t| sufficiently
large in such a strip, proving assertion (i).

Now consider 1 < λ < 3
2 . If σ ≥ λ, then µ(σ − λ + 1) = 0 and the exponent in (3.6) is

negative. For λ − 1 ≤ σ < λ, µ(σ − λ + 1) ≤ λ−σ
2 (using µ(α) ≤ 1−α

2 for 0 ≤ α ≤ 1) and the
exponent in (3.6) is 1− λ+σ

2 + ε. This is negative for σ > 2− λ, and the result follows.
If L.H. holds, then µ(σ−λ+1) = 0 for σ > λ− 1

2 and µ(σ−λ+1) = λ−σ− 1
2 for σ ≤ λ− 1

2 .
Hence the exponent in (3.6) is now

1− λ + ε if σ > λ− 1
2

1
2 − σ + ε if σ ≤ λ− 1

2

.

Both are negative if σ > 1
2 for sufficiently small ε.

As in part(i), if σ < λ − 1, then σ − λ + 1 < 0 and the expression in (3.6) is at least
c|t| 12−σ → ∞. For σ ≥ λ − 1 we cannot deduce anything about (3.6) for large |t| unless we
know that ζ has no zeros in certain strips inside the critical strip. On R.H., the above argument
applies for σ − λ + 1 < 1

2 , and (ii) follows.
¤

Remark. For λ > 3
2 , the zeros in any right half-plane (apart from at most a finite number of

exceptions) actually lie in a region
{

σ + it : − A

log |t| ≤ σ − 1
2
≤ B

log |t| , |t| ≥ 2
}

,

for some constants A,B. For N̂λ(s) = 0 if and only if

s

s− 1
+

∫ 1

0
x−s dRλ(x) = −2ρλ(2π)s−λΓ(λ)Γ(1− s) cos

π(s− λ)
2

ζ(λ− s). (3.7)

Take σ such that |σ − 1
2 | ≤ λ− 3

2 − δ for some δ > 0, and |t| ≥ 2. The LHS of (3.7) is 1 + o(1),
while the RHS is, in modulus,

∼ |ρλ|Γ(λ)

(2π)λ−σ− 1
2

|t| 12−σ|ζ(λ− σ − it)|.

Since λ − σ ≥ 1 + δ, this is ³ |t| 12−σ, uniformly in σ. In particular, for 1
2 − σ > A/ log |t| and

A sufficiently large, the LHS of (3.7) is less than the RHS in modulus, and hence there are no
zeros for |t| sufficiently large in this range. Similarly, for σ − 1

2 > B/ log |t| and B sufficiently
large, the LHS is greater than the RHS in modulus.

We can be more precise. Let σ = 1
2 + θt

log |t| where θt = O(1). Then for a zero σ + it with
large |t|, we need

|ρλ|Γ(λ)
(2π)λ−1

e−θt |ζ(λ− σ − it)| ∼ 1.

Since |ζ(λ− σ − it)| ∼ |ζ(λ− 1
2 − it)|, this requires

θt = log
( |ρλ|Γ(λ)

(2π)λ−1

∣∣∣ζ
(
λ− 1

2
− it

)∣∣∣
)

+ o(1).

9



As such and taking t ≥ 2, the RHS of (3.7) is, using Stirling’s formula, asymptotically

− ρλΓ(λ)
(2π)λ−1

eθt+
iπ
2

(λ− 1
2
)e−i(t log t−t−t log 2π)ζ

(
λ−1

2
−it

)
= − ρλζ(λ− 1

2 − it)
|ρλζ(λ− 1

2 − it)|e
−i(t log t−t−t log 2π−π

2
(λ− 1

2
)).

At a zero, we want this to be asymptotic to the LHS of (3.7); i.e. to 1. Thus we want t log t−
t− t log 2π = 2πk + O(1) for k ∈ Z; i.e.

f(t) :=
t

2π
log

t

2π
− t

2π
= k + O(1).

Since f(t) is continuous we should expect a zero σk + itk for each k sufficiently large. The
number of such zeros with tk ≤ T is therefore roughly f(T ); i.e. we should expect, for λ > 3

2 ,

T

2π
log

T

2π
− T

2π
+ O(1)

zeros up to height T .

Theorem 5
Let λ > 1. Then N̂λ has

T

2π
log

T

2π
− T

2π
+ O(log T )

zeros in the rectangular strip {σ + it : 0 ≤ σ ≤ 1, 0 ≤ t ≤ T}.

Proof. Choose σ0 sufficiently large so that |<N̂λ(σ0 + it)| ≥ c > 0 for all t.
Denote by n(T ) the number of zeros in the rectangular strip

{σ + it : 0 ≤ σ ≤ σ0, 1 ≤ t ≤ T}.

This differs from the required number by O(1). Let γ denote the (anti-clockwise) boundary
path of this strip. We may assume without loss of generality that there are no zeros of N̂λ on
γ. Then

n(T ) =
1
2π

∆γ argN̂λ,

where ∆γargN̂λ is the continuous variation of the argument of N̂λ around γ.
On the right-hand vertical, N̂λ(σ0 + it) → 1 as t →∞. Hence the variation of the argument

along this vertical line segment is O(1). For the top horizontal, we use Lemma 9.4 of [6] (with
‘2’ replaced by ‘σ0’). Since N̂λ has finite order, this Lemma implies that the variation along
here is at most O(log T ). The variation along the bottom horizontal is trivially O(1). Finally
on the left vertical, we have

N̂λ(it) = 2ρλΓ(λ)(2π)it−λΓ(1− it) cos
π(it− λ)

2
ζ(λ− it) + 1 + o(1)

∼ ρλΓ(λ)

(2π)λ− 1
2

t
1
2 e−i(t log t−t−t log 2π)e

iπ
2

(λ− 1
2
)ζ(λ− it).

Since ζ(λ−it) is bounded and bounded away from zero, arg N̂λ(it) = −(t log t−t−t log 2π)+O(1),
and the variation of the argument along the (downward) left hand vertical is T log T − T −
T log 2π + O(1).
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¤

Remark. It seems plausible that the O(log T )-term can be replaced by O((log T )κ), with κ
decreasing steadily from 1 to 0 as λ varies from 1 to 3

2 .

Zeros on the negative real axis: For λ = 1, N̂λ(s) = ζ(s) has zeros on the negative real axis at
−2k for each positive integer k — the so-called trivial zeros. Very similar behaviour occurs for
λ > 1.

We require the following elementary result.

Lemma 6
Suppose f is holomorphic and real valued on [0,∞). Suppose further that, as x →∞,

f(x) = cos
πx

2
+ o(1) and f ′(x) = −π

2
sin

πx

2
+ o(1).

Then for every sufficiently large integer n, the interval (2n, 2n + 2) contains exactly one zero,
say xn, and xn = 2n + 1 + o(1).

Proof. For n ∈ N, f(2n) − (−1)n → 0, so for n sufficiently large, the sign of f(2n) is (−1)n.
Hence there is at least one zero in each interval (2n, 2n + 2) (for n large). In fact the zero(s)
must be close to 2n + 1 since for |h| ≤ 1,

f(2n + h)− (−1)n cos
πh

2
→ 0,

uniformly in h, and cos πh
2 is bounded away from zero if |h| < 1.

Now for x = 2n+ y, f ′(x) = (−1)n−1 π
2 sin πy

2 + o(1), so for x ∈ [2n+h, 2n+2−h] (any fixed
h > 0), (−1)n−1f ′(x) > 0 for n large enough; i.e. f is monotonic in this interval. Thus can be
at most one zero, say xn. This must satisfy xn = 2n + 1 + o(1).

¤

Theorem 7
For every sufficiently large positive integer n, N̂λ(λ−x) has exactly one zero xn in each interval
(2n, 2n + 2) (n ∈ N). Furthermore xn = 2n + 1 + o(1) as n →∞.

Proof. Apply Lemma 6 with

f(x) =
(2π)xN̂λ(λ− x)

2ρλΓ(λ)Γ(x + 1− λ)
= ζ(x) cos

πx

2
+

(2π)x

2ρλΓ(λ)Γ(x + 1− λ)

( x

x + 1
+

∞∑

m=1

maλ(m)
m + x

)

(using (3.5)). The final term and its derivarive tend to 0 with x, while ζ(x) → 1, ζ ′(x) → 0, so
f satisfies the conditions of Lemma 6 and the result follows.

¤
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