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Abstract 

There is much evidence in the literature that the volatilities of equity returns show evidence of asymmetric 

responses to good and bad news. At the same time, there is evidence that the unconditional distribution of 

stock returns is asymmetric as well. This paper examines the effects of asymmetries of various forms on the 

accuracy of value at risk models. We compare the value at risk estimates derived from models which assume 

both a symmetric unconditional distribution of returns and a symmetric response of volatility to good and 

bad news, with models which explicitly allow for each class of asymmetries. We find that, between the two 

types of asymmetry considered, the asymmetry in the unconditional distribution is the more important 

feature. Use of the semi-variance, which allows for this feature, is shown to provide more stable and more 

reliable value at risk estimates than simple and more complex models that do not. 
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1.  Introduction 

There is widespread agreement in the relevant literature that equity return volatility rises more 

following negative than positive shocks. Pagan and Schwert (1990), Nelson (1991), Campbell and 

Hentschel (1992), Engle and Ng (1993), Glosten, Jagannathan and Runkle (1993), and Henry (1998), 

for example, all demonstrate the existence of asymmetric effects in stock index returns. There are 

broadly two potential explanations for such asymmetry in variance that have been suggested in this 

literature. The first is the “leverage effect”, usually associated with Black (1976) and Christie (1982), 

which posits that if equity values fall, the firm’s debt-to-equity ratio will rise, thus inducing equity 

holders to perceive the stream of future income accruing to their positions as being relatively more 

risky than previously. A second possible explanation for observed asymmetries is termed the 

“volatility feedback hypothesis”. Assuming constant cashflows, if expected returns increase when 

stock price volatility increases, then stock prices should fall when volatility rises.  

 

An entirely separate line of academic enquiry has centred around the determination of what is termed 

an institution’s “value at risk (VaR)”. VaR is a calculation of the likely losses that might occur from 

changes in the market prices of a particular securities or portfolio position. The minimum capital risk 

requirement (MCRR) or position risk requirement (PRR) is then defined as the minimum amount of 

capital required to absorb all but a pre-specified proportion of expected future losses. Dimson and 

Marsh (1995 and 1997) argue that portfolio-based approaches to determining PRRs are more efficient 

than alternative approaches, since the former allow fully and directly for the risk-reduction benefits 

from having a diversified book.  

 

The number of studies in existence that seek to determine appropriate methods for calculating and 

evaluating value at risk methodologies has increased substantially in the past 5 years. Jackson et al. 

(1998) assess the empirical performance of various models for value at risk using historical returns 

from the actual portfolio of a large investment bank. Alexander and Leigh (1997) offer an analysis of 

the relative performance of equally weighted, exponentially weighted moving average (EWMA), and 
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GARCH model forecasts of volatility, evaluated using traditional statistical and operational adequacy 

criteria. The GARCH model is found to be preferable to EWMA in terms of minimising the number of 

exceedences in a backtest, although the simple unweighted average is superior to both. The issue of 

sample length is discussed in Hoppe (1998), who argues that, for all asset classes and holding periods 

tested, the use of (unweighted) shorter samples of data yields more accurate VaRs than longer runs. 

Kupiec (1995), on the other hand, argues that long samples are always required in order to evaluate 

the effectiveness of those estimates using exception tests. Berkowitz (2002) also examines the 

frequency and the magnitude of “exceptions” (days when the VaR is insufficient to cover actual 

trading losses), although it is in the spirit of VaR modelling as per the Basle recommendations that 

only the number of exceptions is considered and not their sizes. Other recent studies that compare 

different models for computing VaR include those of Vlaar (2000), Longin (2000), Brooks et al. 

(2000), Lopez and Walter (2001) and Brooks and Persand (2000a, 2000b). Much research has relied 

upon an assumption of normally distributed returns, while in practice almost all asset return 

distributions are fat tailed. Two studies that have proposed methods to deal with leptokurtosis are 

Huisman et al. (1998) and Hull and White (1998). 

 

This paper extends recent research and considers the effect of any asymmetries that may be present in 

the data on the evaluation and accuracy of value at risk estimates. A number of recent studies have 

examined the use of extreme value distributions for computing value at risk estimates. Such models 

can explicitly allow for leptokurtic return distributions, but can also account for asymmetries in the 

unconditional distributions by fitting separate models for the upper and lower tails. McNeil and Frey 

(2000), for example, propose a new method for estimating VaR based on a combination of GARCH 

modelling with extreme value distributions. Other papers employing EVT have included Longin 

(2000), Neftci (2000), and Brooks et al. (2002). However, since the extreme value theory (EVT) 

approach to computing position risk requirements has been considered elsewhere, we do not discuss it 

further here. Instead, we examine a number of alternative models that may be used to capture 

asymmetries in asset return distributions. Our analysis is conducted in the context of the stock markets 
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of five Southeast Asian economies, and the S&P 500 index, which is employed as a benchmark. We 

compare the performance of various models, some of which do, and some of which do not, allow for 

asymmetries. The models are evaluated in the context of the Basle Committee rules, and their 

proposed method for determining whether models for the calculation of VaR are adequate using a 

hold-out sample. To anticipate our main finding, we conclude that allowing for asymmetries can lead 

to improved VaR estimates, and that a simple asymmetric risk measure proves to be the most stable 

and reliable method for calculating VaR. 

 

The remainder of this paper is organised into six sections. Section 2 presents and describes the data 

employed, while the various symmetric and asymmetric volatility models utilised are displayed in 

section 3. Section 4 describes the methodology employed for the calculation of value at risk, while the 

value at risk estimates from the various models are presented and evaluated in section 5. Finally, 

section 6 offers some concluding remarks. 

 

2. Data 

The analysis undertaken in this paper is based on daily closing prices of five Southeast Asian stock 

market indices: the Hang Seng Price Index, Nikkei 225 Stock Average Price Index, Singapore Straits 

Times Price Index, South Korea SE Composite Price Index and Bangkok Book Club Price Index. We 

also employ the US S&P 500 composite index returns as a benchmark for comparison. The data, 

obtained from Primark Datastream, run from 1 January 1985 to 29 April 1999, giving a total of 3737 

observations. All subsequent analysis is performed on the daily log returns, with the summary 

statistics being given in Table 1. All six returns series exhibit the standard property of asset return 

data that they have ‘fat-tailed’ distributions as indicated by the significant coefficient of excess 

kurtosis. These characteristics are also shown by the highly significant Jarque-Bera normality test 

statistics. All series are also are either significantly skewed to the left (US, Hong Kong, and 

Singapore) or to the right (Japan, South Korea and Thailand). Unconditional skewness is an arguably 

important but neglected feature of many asset return series (see, for example, Harvey and Siddique, 
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1999), which if ignored could lead to mis-specified risk management models. An illustration of where 

skewness may arise is given by the view that equity price movements “go up the stairs and down in 

the elevator”, implying that upward movements are smaller but more frequent than downward 

movements, ceteris paribus. This being the case, a symmetrical measure such as variance will no 

longer be an appropriate measure of the total risk of an asset. 

 

We also form, and perform subsequent analysis on, an equally weighted portfolio consisting of the 

five Southeast Asian market indices listed above. The advantage of diversification is clearly 

recognised in this case: the variance of the portfolio is only around one half of the variance of even 

the least volatile of the individual component series - see the penultimate column of Table 1. On the 

other hand, the distribution of portfolio returns is still skewed (to the left) and is leptokurtic. The 

skewness in all five series of returns data, and in the portfolio returns (albeit in different directions), is 

one manifestation of an asymmetry - in other words, this is prima facie evidence that the 

unconditional distribution of returns is not symmetric. We shall return to this feature of the data in the 

following section in the context of value at risk estimation. 

 

3. Symmetric and Asymmetric Volatility Models 

There exist a number of different methods for determining an institution’s value at risk. The most 

popular methods can be usefully classified as being either parametric or non-parametric. In the former 

category comes the “volatilities and correlations approach” popularised by J.P.Morgan (1996); this 

method involves the estimation of a volatility parameter, and conditional upon an assumption of 

normality, the volatility estimate is multiplied by the appropriate critical value from the normal 

distribution and by the value of the asset or portfolio, to obtain an estimate of the VaR in money 

terms. There are broadly two ways that VaR could be calculated under the parametric umbrella. First, 

one could estimate a model for return volatility, and, conditioned upon this, employ the appropriate 

critical value from a relevant distribution. Second, one could, rather than estimating a conditional 

parametric model, employ the unconditional distribution of returns, fitting one of many other available 
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parametric distributions. Press (1967) and Kon (1984), for example, both suggest the use of a mixture 

of normal distributions to explain the observed kurtosis and skewness in the distribution of stock 

returns. Madan and Seneta (1990), on the other hand, propose an entirely new class of models, known 

as variance-gamma processes, as a model for stock prices.  

 

Non-parametric approaches to the calculation of value at risk can take many forms, but the simplest is 

derived from an estimate of the unconditional density of the sample of returns. So, for example, the 

VaR expressed as a proportion of the initial value of the asset or portfolio, which is required to cover 

99% of expected losses, would simply be given by the absolute value of the first percentile of the 

return distribution. Jorion (1995) shows that the parametric approach to VaR can be preferable, even 

in situations where the returns are not normally distributed. In any case, non-parametric approaches 

are beyond the scope of this paper and are thus not considered further (but see, for example, Jorion, 

1996, or Dowd, 1998, for extended descriptions of the various methods available under the non-

parametric umbrella). Under the parametric approach, the normal distribution is employed almost 

universally, and the VaR (in money terms) for model i is given by  

 VARi = (N5%) i V         (1) 

where (N5%) is the relevant value from the standard normal tables, i is the volatility estimate, and V 

is the value of the portfolio. VaR is also commonly expressed as a proportion of the asset or portfolio 

value, and this convention will also be adopted in this study. Once a view is taken that a parametric 

approach will be employed for the calculation of VaR, the issue simply boils down to estimation of 

the volatility parameter that describes the asset or portfolio
2
; we now present a variety of models 

which can be used for estimating and modelling i. 

 

 

 

                                                           
2
 The models employed here are widely used and hence only brief model descriptions are given, although see 

Brailsford and Faff (1996) or Brooks (1998) for thorough discussions of alternative models for prediction of 

volatility and their relative forecasting performances under standard statistical evaluation metrics. 
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1. The Unconditional Variance 

An estimate of the unconditional variance provides the simplest method for forecasting future 

volatility,  also known as an equally weighted moving average model, as forecasts are constructed by 

simply calculating the standard deviation from the most recent 3 years of historical data. This 

estimated historical standard deviation is then the prediction of the standard deviation over the 

evaluation period. The sample period is then rolled forward by 60 observations (one trading quarter), 

i re-estimated, and so on. To ensure consistency and a fair comparison, we also use the same 

framework (a 3-year rolling sample updated every 60 observations) to the estimation of the parameters 

for all other approaches employed. 

 

We similarly employ the exponentially weighted moving average (EWMA) model, popularised by J.P. 

Morgan, and which has been found to produce accurate volatility forecasts. Under the EWMA 

specification, the fitted variance from the model, which becomes the forecast for multi-step ahead 

forecasts, is an exponentially declining function of previous squared values. The decay factor, “”, is 

set to 0.94 following the J.P. Morgan recommendation and previous research in this area. 

 

2. The GARCH(1,1) Model 

Recent research (see Alexander and Leigh, 1997, for example), has suggested that GARCH-type 

models may be preferable for modelling volatility in a risk management context, and hence our 

conditional model analysis commences with the plain vanilla GARCH(1,1) model, given as follows: 

ttx    

1

2

1   ttt hh           (2) 

where, )/( 1 ttt PPLogx with tP  being the value of the stock index at time t. And ),0(~ tt hN 3 4.  

The volatility forecasts are constructed by iterating the conditional expectations operator in the usual 

                                                           
3
 The method of maximum likelihood using a Gaussian density and employing the BFGS algorithm is employed 

for estimation of the parameters of all models from the GARCH family, including the multivariate and 

asymmetric models.  
4
 The model coefficient estimates for each model are not presented due to space constraints, although they are 
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fashion.  

 

To determine whether an asymmetric conditional volatility model is necessary and to ensure that the 

model does not under-predict or over-predict volatility in periods where there are large innovations in 

returns, the standardised residuals from the GARCH(1,1) specification are examined for sign and size 

bias, which is carried out using the tests of Engle and Ng (1993). The test for asymmetry in return 

volatility is given as follows: 

t

t

t

1t3

t

t

1t21t10

t

2

t

h
Y

h
ZZ

h









       (3) 

where, t  is a white noise disturbance term. 1tZ   is defined as an indicator dummy that takes the 

value 1 if 

t

t

h


 < 0 and the value zero otherwise. 1tY   is defined as 1tZ1  . Significance of the 

parameter 1  indicates the presence of sign bias whereas significant 2  or 3  would suggest size 

bias, i.e. not only the sign but the magnitude of innovation in 

t

1

h


 is also important. A joint test for 

sign and size bias, based upon the Lagrange Multiplier Principle 
2R.T  may be performed as from the 

estimation of the above equation. The results of the tests are shown in Table 2, and suggest that the 

conditional volatility of the returns series may be sensitive to both the sign and size of shocks to 

volatility. Evidence for the presence of sign or size bias is presented for all countries (and the equally 

weighted portfolio), apart from South Korea.   

 

3. The GJR(1,1) Model 

The Threshold GARCH Model was suggested by Glosten, Jaganathan and Runkle (1993). The 

GJR(1,1) model utilises an additive modelling structure incorporating a dummy variable according to 

whether the previous innovation was positive or negative. The conditional variance th  is given by  

                                                                                                                                                                                      

available upon request from the authors. 
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2

111

2

1 



  ttttt Shh         (4) 

where 1S 1t 

  if 01t   and 0S 1t 

  otherwise 

This simple modification of the GARCH(1,1) model can capture asymmetric consequences of positive 

and negative innovations. According to Glosten et al. (1993), if future variance is not only a function 

of the squared innovation to current return, then a simple GARCH(1,1) model is mis-specified and 

any empirical results based on that particular model are unreliable. The adjustment in the simple 

GARCH(1,1) model is such that the impact of 
2

1t  on the conditional variance th  is different when 

1t  is positive (i.e., the dummy variable takes a value of zero) than when 1t  is negative (the 

dummy being one in this case). Glosten et al. (1993) found that negative residuals are associated with 

an increase in variance, while positive residuals are associated with a slight decrease in variance, 

conducive with the leverage argument and the volatility feedback hypothesis. The GJR coefficient 

estimates (not shown, but available upon request), show the asymmetry term, , to be significant at the 

1% level for all countries except South Korea (where it is not significant even at the 10% level). 

 

4. The EGARCH Model 

The conditional variance of the exponential GARCH (EGARCH) model, suggested by Nelson (1991) 

to take into account the asymmetric response of volatility to positive and negative shocks in financial 

time series, is an alternative to the GJR formulation, and is expressed as 

































2
)log()log(

1

1

1

1

1

t

t

t

t

tt
hh

hh            (5) 

The asymmetric feature is taken into account by the   parameter. When 01   , a positive 

surprise  increases volatility less than a negative surprise. When 1 , a positive surprise actually 

reduces volatility while a negative surprise increases volatility, whereas 0  leads to a positive 

surprise having the same effect on volatility as a negative surprise of the same magnitude. Empirical 

research has shown that 0 , again corroborating the leverage and volatility feedback stories. 

Under this formulation, the asymmetry parameter is found to be significant for all countries and for 
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the portfolio. 

 

5. Multivariate Models 

The next class of methods we propose to estimating value at risk, is based upon the multivariate 

GARCH, GJR and EGARCH models. This study employs the BEKK version of the multivariate 

GARCH model due Engle and Kroner (1995). This specification is a highly parsimonious quadratic 

form, and its development was motivated by the difficulty in checking and imposing the restriction 

that the variance-covariance matrix of residuals, Ht, be positive definite for general versions of the 

model, such as the vec specification or the diagonal model of Bollerslev, Engle and Wooldridge 

(1988). The matrix Ht comprises the conditional variances on the leading diagonal, and the conditional 

covariances elsewhere. The BEKK parameterisation may be expressed as 

H C C A A B H Bt t t t        0 0 1 1 1 1 1 1 1         (6) 

where C0, A1, and B1 are parameter matrices to be estimated, t-1 is a vector of lagged errors and 
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The BEKK parameterisation requires estimation of only 55 free parameters in the conditional 

variance-covariance structure (compared with 255 in the completely unrestricted vec model), and 

guarantees Ht positive definite. Simple modifications to (6) can be made to allow for asymmetries 

under the GJR and EGARCH formulations. The modified model including asymmetry terms in a 

quadratic form could be written 

*

1

'

11

*'

1

*

11

*'

1

*

1

'

11

*'

1

*

0

*'

0 DDBHBAACCH tttttt         (7) 

where  0,min, ttj    and  D1 is a 5  5 parameter matrix including all of the asymmetry 

coefficients. In all cases, the estimated asymmetry terms are significant at the 5% level or better.  
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6. The Semi-Variance 

Markowitz portfolio theory (MPT), which underlies many theoretical models in finance, carries with 

it the explicit assumption that asset returns are jointly elliptically distributed. Such an assumption may 

be considered undesirable since it rules out the possibility of asymmetric return distributions. Risk in 

the MPT framework is measured in terms of “surprises” rather than in terms of losses or failure to 

achieve an expected or benchmark return. Such a description of risk does not tie in well with most 

investors’ notions of what constitutes a risk. 

 

Another approach to estimating a volatility parameter, which may be used in the present context, and 

which has been given broad theoretical consideration in an asset allocation framework, is the concept 

of the lower partial moment (LPM) - see, for example, Choobineh and Branting (1986), Harlow 

(1991), and Grootveld and Hallerbach (1999). The lower partial moment of order  around  is 

defined as 

 LPM X x dF X




 ( ; ) ( ) ( ) 


        (8) 

where F(X) is the cumulative distribution function of the return X. Setting  = 2, and  =  in equation 

(8) above defines the semi-variance of a random variable X with mean .  

 

Following JP Morgan RiskMetrics, and many empirical studies, assuming5 that  = 0, an 

asymptotically unbiased and strongly consistent estimator of the semi-variance for a sample of size T 

is given by (see Josephy and Aczel, 1993) 6 

 






0

2

2

2

)1_(

_

tx

tx
T

T
          (9) 

where T_ denotes the number of terms for which xt < 0, defined as T-, and the scaled semi-standard 

                                                           
5
 In fact, this assumption can be made without loss of generality, for a zero mean series xt : t=1,…,T can be 

constructed by subtracting the mean of the series x from each observation t. 
6
 In (9), this is scaled by T_/(T_-1)  1 as T  , to obtain a consistent (asymptotically unbiased) estimator. 
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deviation which we employ for the computation of value at risk is given by the square root of (9). 

 

The square root of (9) can thus replace directly the usual standard deviation in (1). The scaled semi-

standard deviation (the square root of (9)) can account for the unconditional skewness in the 

distribution of returns. Expressed in this way, we can still employ the standard normal critical value 

since we now implicitly assume that xt < 0 follows a half-normal distribution. If desired, the formula 

in (9) could be trivially modified to estimate the upper scaled semi-standard deviation, which would 

be of interest for calculating the VaR of a short position. 

 

4. Methodologies for Calculating and Evaluating the Value at Risk 

The regulatory environment under the Basle Committee Rules requires that VaR should be calculated 

as the higher of (i) the firm’s previous day’s value-at-risk measured according to the parameters given 

below and (ii) an average of the daily VaR measures on each of the preceding sixty business days, 

with the latter subjected to a multiplication factor. Value-at-Risk is to be computed on a daily basis 

over a minimum “holding period” of 10 days. However, shorter holding periods can be used but they 

have to be scaled up to ten days, and in general this is achieved using the square root of time rule. 

Moreover, VaR has to be estimated at the 99% probability level, using daily data over a minimum 

length of one year (250 trading days), with the estimates being updated at least every quarter.  The 

rules do leave the bank a broad degree of flexibility in how the VaR is actually calculated. For 

example, the MCRR estimates can be updated more frequently than quarterly, a longer run of data 

than one trading year can be employed, and the BIS does not stipulate which model should be 

employed for the calculations. Changes in any of these factors could potentially result in large 

changes in the calculated MCRR, so it is important that all candidate models for the calculation of 

VaR be thoroughly evaluated. 

 

The multiplication factor, which has a minimum value of 3, depends on the regulator’s view of the 

quality of the bank’s risk management system, and more precisely on the backtesting results of the 
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models. Unsatisfactory results might see an increase in the multiplication factor of 3, up to a 

maximum of 4. The regulator performs an assessment of the soundness of the bank’s procedure in the 

following way. Under-prediction of losses by VaR models (that is, the days on which the banks 

calculated value at risk is insufficient to cover the actual realised losses in its trading book) are termed 

‘exceptions’. Between 0 and 4 exceptions over the previous 250 days places the bank in the Green 

Zone; between 5 and 9, it is in the Yellow Zone; and when 10 or more exceptions are noted, the bank 

is in the Red Zone. When the bank is in the Yellow Zone, one would almost certainly expect the 

Regulatory Body to increase the multiplication factor, while if the firm falls into the Red Zone, it is 

likely to be no longer permitted to use the internal modelling approach. It will instead be required to 

revert back to the “Building Block” approach, which does not include a reduction in the MCRR for 

diversified books and which will almost certainly yield a much higher capital charge. It is thus 

important for the securities firm or bank, as well as its regulators, that its risk measurement procedures 

are sound. 

 

The VaR for each individual index was estimated, using the simple 5% “delta-normal” approach 

proposed in the literature, i.e., 

daypermovementpriceAdverse

movementpricetoySensitivit

assetofpositionMarkedVaR







      (10) 

The sensitivity to price movements is taken to be 1 since we study equities which are linear 

instruments; the adverse price move per day is equal to )3645.1(   where   is the estimated 

standard deviation of the asset returns over the sample period. Note that we multiply the VaRs by the 

regulatory scaling factor of 3, and we use the 5% one-sided normal critical value. Whilst the Basle 

rules require the use of a 1% VaR, we use a 5% VaR since the use of 1% together with the scaling 

factor results in a VaR that is so large as to render the models virtually indistinguishable from one 

another.   is calculated on a length of 3 years of data (based on the above 7 mentioned models) and 

the sample is rolled over after each quarter (60 days). For our selected data sample, this leads to 46 
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separate sub-samples and out-of-sample periods which can be used to evaluate the adequacy of the 

value at risk estimates. 

 

Each model for VaR outlined above is estimated for the six series under investigation and for the 

portfolio of Southeast Asian equities. In the cases where a parametric model for the conditional 

covariances is not specified (the variance, the semi-variance, all univariate models) we estimate the 

portfolio returns and determine the VaR for the portfolio as a single series. Such an approach may 

usefully be termed the “full valuation” approach, since it involves a calculation of the returns, and 

therefore the full value of the portfolio, for each time period. These results for the portfolio calculated 

from a single column of portfolio returns will be displayed under the “univariate model” heading. For 

the multivariate GARCH models, we use a slightly different approach, which may be viewed as a 

modified version of the “volatilities and correlations” method. This approach makes use of Markowitz 

Portfolio Theory, whereby for an N-asset portfolio, the value at risk can be calculated by using the 

following formula: 

 
 


N

i

N

jij

jiijji

N

i

iip VARVARaaVARaVaR
1 ,11

22 2       (11) 

where, VaRp is the value at risk of the portfolio, ai are the weights given to each of the assets in the 

portfolio, VaRi are the values at risk of the individual series A and B, and ij is the estimated 

correlation between the returns to i and j. Since under a multivariate GARCH approach, we have a 

specification, and can therefore generate forecasts for, the conditional covariances as well as the 

conditional variances, we make use of these in equation (11) above. Thus the VaRs for the individual 

assets and the correlations are estimated using the forecasts obtained from the multivariate GARCH, 

EGARCH and GJR models. Then the equally weighted portfolio VaR is constructed using (11) and 

labelled as “MGARCH”, “MGJR” and “MEGARCH” for the multivariate GARCH, GJR and 

EGARCH models respectively and these results are displayed under the “multivariate model” 

heading.  
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5. Results of VaR Estimation and Evaluation 

The VaR estimates for each asset and for each model, are presented in Table 3. Comparing the VaR 

estimates across Southeast Asian countries, they are highest for Hong Kong and Thailand, and lowest 

for the U.S., Singapore and the portfolio; unsurprisingly, the countries with the highest VaR estimates 

were also those which had the highest unconditional variance of returns. For most models, the country 

with the least stable VaRs over time, shown by the larger standard deviation of VaR across the 46 

windows, is South Korea, which did not have one of the highest average VaRs. Interestingly, the 

average of the VaR estimates for the S&P is approximately half that of the portfolio of 5 Southeast 

Asian stock indices, and about one quarter to one third of that of the individual component indices.  

 

Comparing the VaR estimates across models, on the whole the average VaRs are fairly similar. The 

unconditional variance and the semi-variance-based estimates and the multivariate EGARCH model 

seem to give the largest VaRs, while the simple GARCH models (both univariate and multivariate) 

which do not allow for asymmetries, give the lowest average VaRs across the 46 windows for all 

countries, except for the US, where the univariate symmetric GARCH VaRs are uncharacteristically 

high. For example, in the case of the equally weighted portfolio, the univariate GARCH(1,1) model 

yields an average daily VaR of around 3.2%, while the semi-variance-based estimator provides an 

average VaR of just above 4%. The least stable VaRs, evidenced by the highest standard deviation 

across the 46 windows, arise from the EGARCH models, in both their univariate and multivariate 

forms. By far the most stable VaRs over time for all countries and the portfolio, are those calculated 

using the semi-variance. The semi-variance-based VaRs have a standard deviation across windows of 

the order of one half that of other models, except for those based on the (symmetric) variance, which 

have only slightly higher variabilities across windows. In the context of the S&P index returns, the 

semi-variance gives a mean VaR of 1.8%, the lowest of any model. An example of the stability of the 

VaR based on the semi-variance compared with its competitors can be gleaned from Figure 1, which 

plots the estimated VaRs for the portfolio using the GARCH model and the semi-variance. Both the 
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higher average value at risk estimate under the latter model, and its relative smoothness over time, are 

apparent. The stability of the semi-variance VaR estimates relative to those calculated using the 

variance is quite surprising. If the returns were iid normally distributed, the semi-variance VaR should 

have a larger sampling variability since it employs approximately half as many observations as for the 

variance (and the trailing samples used for the variance and semi-variance cover the same 3-year 

period). Yet the semi-variance VaRs are equally stable for Hong Kong and are more stable for all 

other series. Clearly, however, the return distributions are non-normal and in particular are 

asymmetric. It also appears to be the case that the lower halves of the distributions that are picked out 

by the semi-variance, are more stable over time than the upper tails, which are included in the 

variance calculations but not in the semi-variance. 

 

Finally, comparing the univariate models with their corresponding multivariate counterparts, we note 

that in all cases, that is for returns to the individual indices and for the portfolio, allowing for time-

varying co-movements between the series leads to slightly higher average VaRs which are 

considerably more stable over time. 

 

One may suggest at first blush that an optimal model is one that gives the lowest average and the most 

stable VaR estimate over time. A low VaR would be deemed preferable for the obvious reason that a 

lower VaR implies that the firm should be required to tie up less of its capital in an unprofitable, 

liquid form, while a stable VaR would be appealing on the grounds that a highly variable VaR would 

make an assessment of the riskiness of the securities firm over the long term difficult. However, a 

more appropriate test of the adequacy of the VaR models is under an assessment of how they actually 

perform when used on a hold-out sample (“backtests” in the Basle Committee terminology). 

Regulators impose severe penalties on firms whose models generate more than an acceptable number 

of “exceedences” or “exceptions” (see section 4 above), and for this reason as well as to minimise the 

possibility of financial distress, it is in the firm’s interests to ensure that its VaR models perform 

satisfactorily in backtests. Backtest results for each model and for each asset series are presented in 
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Table 4. The mean and standard deviation of the percentage of days for which there was an 

exceedence in each of the 46 rolling samples of length 250 observations is given, together with the 

number of times where the firm’s VaR was insufficient on enough days in the sample to place it in the 

Yellow or Red Zone. Again, first considering the results across countries, in general the estimated 

VaR models for Hong Kong and Singapore seem to be the least adequate, while those for the U.S., 

South Korea and for the portfolio seem to yield the fewest exceptions. Only the univariate GARCH 

model would have ever led a securities firm with positions in these equities into the Red Zone, with 

consequent disallowance of the internal model and increased capital charges. Of the 46 sample 

periods, the models for four of the five countries would have been in the Red Zone at least once - with 

the worst being Singapore and Thailand, where the firm would have been in the Red Zone for two 

periods.  

 

Comparing the GARCH and multivariate GARCH models with their asymmetric counterparts, the 

latter seem to do somewhat better. The average proportion of exceedences is lower for the GJR and 

EGARCH models, especially the latter, than those conditional variance models that do not allow for 

asymmetries, for all countries. For example, the average percentage of exceedences in the case of 

Thailand is approximately 1.7 using the GARCH model, but only 1.2 and 0.3 for the GJR and 

EGARCH models respectively. Also, the multivariate models tend to fare better than their univariate 

counterparts, irrespective of whether the models are symmetric or asymmetric. This is particularly true 

in the portfolio context, where the model estimation approach uses the time-varying forecasts of the 

conditional covariances as well as the volatilities. For example, the univariate GARCH model has an 

average of exactly 1% exceedences, placing the firm in the Yellow zone on three occasions; the 

multivariate GARCH model, on the other hand, has an average percentage of exceedences of only 

0.1%, placing the firm in the Yellow Zone only once. In the case of the US stock returns, all models 

are deemed safe, with no ventures into either the Yellow or Red zones. This appears to arise from a 

fall in S&P volatility during the out of sample periods compared with the start of the sample. For 

example, splitting the whole sample exactly in half, the S&P variance in the second half is 
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approximately 50% of that in the first half. 

 

In terms of the Basle Committee criteria, the clear winner is the semi-variance based estimator, which, 

if it had been employed by a securities firm with long positions in any of these market indices or a 

portfolio of them, would never have been out of the Green Zone. Whilst this improved performance 

would not come costlessly to the firm, in the sense that the VaR from the semi-variance-based model 

is almost always the highest, the improvement in performance is considerable relative to the models 

which generated the next highest VaR levels (the asymmetric multivariate models). The usefulness of 

the measure based on the semi-variance is also shown in Figure 2, which presents the number of 

exceedences for the portfolio of stock returns, using this method and also the univariate GARCH 

model. As can be seen, the semi-variance produces, for most windows, a smaller number of 

exceedences in the 250 day hold-out samples, than the GARCH model. Moreover, comparing Figures 

1 and 2, the numbers of GARCH model exceedences are greater when the GARCH model VaR 

calculations are considerably below those of the semi-variance estimator. This seems to suggest that 

the GARCH model at times underestimates the VaR relative to the semi-variance model and relative 

to the actual out-turn. 

 

6. Conclusions 

This paper sought to consider the effect of two classes of asymmetry on the size and adequacy of 

market-based value at risk estimates in the context of five Southeast Asian stock market indices, and 

an equally weighted portfolio comprising these indices, with S&P 500 index returns examined for 

comparison. We found significant statistical evidence that both unconditional skewness and a 

conditionally asymmetric response of volatility to positive and negative returns were present in the 

data. We then examined a number of symmetric and asymmetric models for the determination of a 

securities firm’s position risk requirement. Our primary finding was that the semi-variance model, 

which explicitly allows for asymmetry, leads to more stable VaRs which would be deemed more 

accurate under the Basle Committee rules, than models which do not allow for such asymmetries. In 



 18 

particular, VaR estimates based upon a simple modification to the usual semi-variance estimator were 

the only ones which would have left the firm with a margin of safety during every time period and for 

every asset.  

 

Put another way, models that do not allow for asymmetries either in the unconditional return 

distribution or in the response of volatility to the sign of returns, lead to inappropriately small VaRs. 

Although the cost of capital is on average 1%-20% higher for the asymmetric models, we conjecture 

that the additional margin of safety is necessary and makes the additional cost worthwhile. Firms 

which fall into the Yellow Zone are likely to have their multiplication factor raised from 3 to 4 or 5, 

an increase of at least 33% in the required VaR. Firms which trip into the Red Zone would be 

forbidden from using an internal model, and would be required to revert to the building block 

approach which specifies a flat charge of 8% for equities. This would represent an approximate 

doubling of the required capital for the portfolios compared with that reported for the asymmetric 

models in Table 3. 

 

Skewness is a hitherto virtually neglected feature of financial asset return series, and it seems 

plausible that better value at risk estimates should arise from methodologies which are able to capture 

all of the stylised features that are undeniably present in the data. We propose that future research may 

seek to form a model which can capture the unconditional skewness in the data as well as volatility 

clustering, leverage effects, and unconditional kurtosis; one such model is the autoregressive 

conditional skewness formulation, recently proposed by Harvey and Siddique (1999), which, due to 

its infancy, is as yet untested in the risk management arena. 
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Table 1 

Summary Statistics: Stock Index Returns for the Period 1 January 1985 – 29 April 1999 

(3737 Observations) 

 Mean Variance Skewness Kurtosis Normality 

Test†
 

Hong Kong 0.00077 0.00030 -2.27613* 51.96710* 422368* 

      

Japan 0.00019 0.00018   0.10919* 10.03701* 15643* 

      

Singapore 0.00037 0.00020 -1.18975* 44.72603* 311360* 

      

South Korea 0.00056 0.00027   0.42596* 5.55209* 4897* 

      

Thailand 0.00042 0.00030   0.15243* 9.85702* 15095* 

      

Portfolio 0.00046 0.00009 -0.62792* 14.59893* 33324* 

      

S&P 500 0.00024 0.00010 -3.62493* 80.59497* 1019595* 

Notes: * denotes significance at the 1% level. † Bera-Jarque Normality Test. The portfolio is an equally weighted 

combination of the 5 Southeast Asian market returns.  

 

 

Table 2 

Engle and Ng (1993) Test for the GARCH(1,1) Model: Stock Index Returns for the 

Period 1 January 1985 – 29 April 1999 (3737 Observations) 
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 0
  

1  2  3  )3(2  

Hong Kong 0.913 

(0.138)** 

0.189 

(0.176) 

-0.128 

 (0.103) 

-0.088 

(0.142) 

10.141* 

Japan 0.937 

(0.112)** 

-0.042 

(0.148) 

-0.304 

     (0.095)** 

-0.151 

(0.117) 

19.723** 

Singapore 0.705 

(0.145)** 

0.159 

(0.188) 

-0.429 

     (0.119)** 

0.149 

(0.146) 

20.342** 

South Korea 0.979 

(0.075)** 

0.082 

(0.100) 

0.061 

 (0.072) 

-0.037 

(0.070) 

1.991 

Thailand 0.846 

(0.113)** 

0.322 

  (0.108)** 

0.085 

(0.100) 

-0.018 

(0.108) 

10.222* 

Portfolio 1.085 

(0.110)** 

-0.168 

(0.151) 

-0.173 

(0.101) 

-0.179 

(0.115) 

10.992* 

S&P 500 0.960 

(0.115)** 

0.037 

(0.151) 

-0.222 

(0.093)* 

-0.178 

(0.122) 

17.590** 

Notes: Standard errors are in parentheses; * and ** indicate significance at the 5% and 1% levels respectively. 

The portfolio is an equally weighted combination of the 5 Southeast Asian market returns.  
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Table 3 

Value-at-Risk Estimates: Stock Index Returns for the Period 1 January 1985 – 29 April 

1999 (3737 Observations) 

 Hong Kong Japan Singapore S. Korea Thailand Portfolio S&P 500 

Panel A: Symmetric Approaches       

Variance        

Mean 

Std. Deviation 

0.07411 

0.01356 

0.06019 

0.01878 

0.05165 

0.01489 

0.07002 

0.02584 

0.07486 

0.01676 

0.04005 

0.00991 

0.02010 

0.00714 

EWMA        

Mean 

Std. Deviation 

0.07483 

0.04858 

0.06254 

0.03006 

0.05851 

0.03903 

0.07463 

0.03579 

0.08288 

0.04316 

0.04345 

0.02333 

0.01841 

0.01174 

GARCH        

Mean 

Std. Deviation 

0.07317 

0.03670 

0.05534 

0.02792 

0.04908 

0.02672 

0.06793 

0.04318 

0.07152 

0.04619 

0.03208 

0.04023 

0.05273 

0.03867 

MGARCH        

Mean 

Std. Deviation 

0.07330 

0.02089 

0.05904 

0.01911 

0.05046 

0.01630 

0.06728 

0.02191 

0.07031 

0.02862 

0.03536 

0.02259 

- 

 

Panel B: Asymmetric Approaches 

    

GJR        

Mean 

Std. Deviation 

0.07335 

0.03716 

0.05618 

0.02766 

0.05062 

0.02749 

0.06805 

0.04842 

0.07289 

0.04887 

0.03493 

0.03931 

0.02025 

0.00718 

EGARCH        

Mean 

Std. Deviation 

0.07399 

0.05252 

0.05923 

0.02709 

0.05082 

0.08298 

0.06953 

0.05331 

0.07351 

0.05271 

0.03823 

0.07184 

0.01935 

0.00836 

Semi-Variance        

Mean 

Std. Deviation 

0.07461 

0.01316 

0.06025 

0.01142 

0.05166 

0.01253 

0.07009 

0.01963 

0.07500 

0.01570 

0.04030 

0.00742 

0.01800 

0.00520 

MGJR        

Mean 

Std. Deviation 

0.07397 

0.02714 

0.06004 

0.02265 

0.05094 

0.01752 

0.06818 

0.02354 

0.07349 

0.03045 

0.03696 

0.02809 

- 

MEGARCH        

Mean 

Std. Deviation 

0.07401 

0.04860 

0.06014 

0.02610 

0.05100 

0.02718 

0.07011 

0.03047 

0.07414 

0.03283 

0.03920 

0.02881 

- 

Note: Model acronyms are as follows: variance - denotes VaR calculated using the historical standard deviation 

of returns; EWMA denotes the VaR calculated using the exponentially weighted moving average method; MGJR 

and MEGARCH denote the multivariate GJR and EGARCH models respectively; semi-variance denotes a VaR 

calculated using the scaled semi-standard deviation of (9). Cell entries refer to the average and standard deviation 

of the VaR across the 46 out of sample windows; VaR is expressed as a proportion of the initial value of the 

position. The portfolio is an equally weighted combination of the 5 Southeast Asian market returns.  
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Table 4: Back-Testing (i.e. out of sample tests) of the VaR for Stock Index Returns  

January 1985 – 29 April 1999 (3737 Observations) 

 Hong Kong Japan Singapore S. Korea Thailand Portfolio S&P 500 

Panel A: Symmetric Approaches       

Variance        

Mean 

Std. Deviation 

Green 

Yellow 

Red 

1.10870 

1.43338 

43 

3 

0 

0.39130 

0.88137 

46 

0 

0 

0.78261 

1.28085 

44 

2 

0 

0.60870 

1.02151 

46 

0 

0 

1.36957 

1.27120 

45 

1 

0 

1.06522 

1.10357 

46 

0 

0 

0.32609 

0.70093 

46 

0 

0 

EWMA        

Mean 

Std. Deviation 

Green 

Yellow 

Red 

1.65217 

2.0831 

42 

4 

0 

1.78261 

5.90635 

43 

1 

2 

1.34783 

2.07865 

42 

4 

0 

0.76081 

2.6263 

44 

1 

1 

1.43478 

2.16695 

42 

3 

1 

1.69565 

2.45737 

42 

3 

1 

0.63043 

1.10270 

46 

0 

0 

GARCH        

Mean 

Std. Deviation 

Green 

Yellow 

Red 

1.84783 

2.24071 

39 

6 

1 

1.04348 

2.46718 

41 

4 

1 

1.43478 

2.28670 

41 

3 

2 

1.00070 

1.98889 

43 

3 

0 

1.69565 

3.82895 

42 

2 

2 

1.00000 

1.57762 

43 

3 

0 

0.56522 

0.77895 

46 

0 

0 

MGARCH        

Mean 

Std. Deviation 

Green 

Yellow 

Red 

1.43478 

1.77203 

41 

5 

0 

0.52174 

1.41011 

44 

2 

0 

1.13043 

1.52911 

43 

3 

0 

0.54348 

1.14904 

44 

2 

0 

1.30435 

1.77476 

42 

4 

0 

0.10870 

0.73721 

45 

1 

0 

 

 

- 

Panel B: Asymmetric Approaches        

GJR        

Mean 

Std. Deviation 

Green 

Yellow 

Red 

1.73913 

2.12326 

41 

5 

0 

0.82609 

2.01444 

43 

3 

0 

1.17391 

1.62350 

41 

5 

0 

1.00000 

1.98886 

43 

3 

0 

1.21739 

1.56224 

44 

2 

0 

0.99864 

1.21100 

44 

2 

0 

0.36957 

0.74113 

46 

0 

0 

EGARCH        

Mean 

Std. Deviation 

Green 

Yellow 

Red 

0.86957 

1.80873 

40 

6 

0 

0.84783 

2.23077 

41 

5 

0 

0.93478 

1.59725 

42 

4 

0 

0.92174 

1.89626 

44 

2 

0 

0.32609 

0.87062 

45 

1 

0 

0.32609 

1.24819 

44 

2 

0 

0.52174 

0.88792 

46 

0 

0 

Semi-Variance        

Mean 

Std. Deviation 

Green 

Yellow 

Red 

1.00000 

1.07497 

46 

0 

0 

0.26087 

0.49147 

46 

0 

0 

0.95652 

1.26415 

46 

0 

0 

0.52174 

0.96007 

46 

0 

0 

1.17391 

1.23476 

46 

0 

0 

0.95652 

1.09456 

46 

0 

0 

0.63041 

1.10270 

46 

0 

0 

MGJR        

Mean 

Std. Deviation 

Green 

Yellow 

Red 

1.36957 

1.70436 

42 

4 

0 

0.60870 

1.86760 

43 

3 

0 

1.06522 

1.43608 

43 

3 

0 

0.17391 

1.03932 

45 

1 

0 

1.21739 

1.93118 

42 

4 

0 

0.17391 

0.76896 

45 

1 

0 

 

 

- 

MEGARCH        

Mean 

Std. Deviation 

Green 

Yellow 

Red 

0.56522 

1.40874 

44 

2 

0 

0.13043 

0.88465 

45 

1 

0 

0.19565 

1.18546 

45 

1 

0 

0.13043 

0.74859 

45 

1 

0 

0.36957 

1.08236 

45 

1 

0 

0.30435 

1.05134 

45 

1 

0 

 

 

- 

Notes: Note: Model acronyms are as follows: variance - denotes VaR calculated using the historical standard deviation of returns; EWMA 

denotes the VaR calculated using the exponentially weighted moving average method; MGJR and MEGARCH denote the multivariate GJR 

and EGARCH models respectively; semi-variance denotes a VaR calculated using the scaled semi-standard deviation of (9). Cell entries 

refer to the average and standard deviation of the number of exceedences of the VaR across the 46 out of sample windows, and the number 

of times that such a number of exceedences would have placed the firm in the Green, Yellow and Red zones; VaR is expressed as a 

proportion of the initial value of the position. The portfolio is an equally weighted combination of the 5 Southeast Asian market returns.  
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Figure 1: VaR for the Portfolio in 46 Rolling Samples as a Porportion of 

Initial Value, Estimated Using GARCH and Semi-Variance
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Figure 2: Number of Exceedences for the Portfolio in 46 Rolling 

Samples of VaR Calculated Using GARCH and Semi-Variance
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