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Variational data assimilation systems for numerical weather prediction rely on a
transformation of model variables to a set of control variables that are assumed
to be uncorrelated. Most implementations of this transformation are based on
the assumption that the balanced part of the flow can be represented by the
vorticity. However, this assumption is likely to break down in dynamical regimes
characterized by low Burger number. It has recently been proposed that a variable
transformation based on potential vorticity should lead to control variables that are
uncorrelated over a wider range of regimes. In this paper we test the assumption
that a transform based on vorticity and one based on potential vorticity produce
an uncorrelated set of control variables. Using a shallow-water model we calculate
the correlations between the transformed variables in the different methods. We
show that the control variables resulting from a vorticity-based transformation may
retain large correlations in some dynamical regimes, whereas a potential vorticity-
based transformation successfully produces a set of uncorrelated control variables.
Calculations of spatial correlations show that the benefit of the potential vorticity
transformation is linked to its ability to capture more accurately the balanced
component of the flow. Copyright c© 2011 Royal Meteorological Society and British
Crown Copyright, the Met Office

Key Words: Burger number; control variable transform; potential vorticity; shallow-water model

Received 13 April 2010; Revised 24 January 2011; Accepted 28 January 2011; Published online in Wiley Online
Library 16 March 2011

Citation: Katz D, Lawless AS, Nichols NK, Cullen MJP, Bannister RN. 2011. Correlations of control variables
in variational data assimilation. Q. J. R. Meteorol. Soc. 137: 620–630. DOI:10.1002/qj.798

1. Introduction

An important component of three- and four-dimensional
variational data assimilation schemes is the background-
error covariance matrix. This matrix, which specifies the
covariances of the a priori forecast errors, determines the
way in which information from observed variables is spread
to unobserved variables and to unobserved spatial points
(Bannister, 2008a). For operational weather forecasting, the
huge size of the system state means that a full representation
of this matrix is impossible and so the matrix is constructed
implicitly by means of a variable transformation. The

analysis is generally performed with a set of variables
different from the model variables, known as control
variables, and a transformation of these control variables
to the original model variables is defined (Lorenc et al.,
2000; Bannister, 2008b). An important assumption made in
building a variational data assimilation system in this way
is that the forecast errors in the control variables chosen
are statistically independent, so that no cross-covariance
information needs to be defined in the space of control
variables.

In practice the variable transformation from model to
control variables consists of several stages. The first stage is a

Copyright c© 2011 Royal Meteorological Society and
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Correlations of Control Variables 621

transformation to a set of physical variables whose errors are
assumed to be uncorrelated between themselves, but which
may contain spatial correlations. This part is known as the
parameter transform. Further transformations are then used
to remove spatial correlations in the horizontal and vertical
directions (Bannister, 2008b). A natural way of performing
the parameter transform is to partition the flow into balanced
and unbalanced components. For the linearized system,
these components are linearly independent and so there is
no dynamical interaction between them. Thus we may expect
that in a weakly nonlinear regime errors in control variables
based on such a partitioning will be largely uncorrelated. For
the atmosphere, it is known that the balanced component of
the flow is well characterized by the advection and inversion
of potential vorticity (PV) and so a parameter transform
based on PV would be expected to give a good decomposition
of the flow variables (Hoskins et al., 1985). In practice for
certain dynamical regimes, characterized by high Burger
number, the PV is well approximated by the vorticity. In this
case the inversion reduces from a three-dimensional to a
two-dimensional problem that is much easier to solve. Thus
Parrish and Derber (1992) proposed a parameter transform
based on the vorticity rather than the PV. In that paper,
and in many operational data assimilation systems since, it
is assumed that the rotational part of the flow is completely
balanced and so the balance is completely captured by the
vorticity (Derber and Bouttier, 1999; Gauthier et al., 1999;
Lorenc et al., 2000; Lorenc, 2003; Barker et al., 2004; Fischer
et al., 2005; Zupanski et al., 2005; Bannister, 2008b). While
this is true for many flow regimes, the approximation is
likely to break down on scales larger than the Rossby radius
of deformation. In operational systems, the lack of validity
in these dynamical regimes is usually accounted for by a
statistical regression technique. However, this results in a
univariate analysis in these regimes and the true correlations
between the mass and wind variables are ignored.

It is expected that these problems could be eliminated by
the use of a parameter transformation based on PV rather
than vorticity as the balanced variable. Wlasak et al. (2006)
showed, in the context of a two-dimensional shallow-water
model, that a PV-based control variable could capture the
true balance of the system over a wider range of regimes
than a vorticity-based control variable. In the context of
operational models, Cullen (2003) and Bannister and Cullen
(2007) performed initial studies with a PV-based control
variable transform in the models of the European Centre
for Medium-range Weather Forecasting (ECMWF) and the
Met Office respectively. However, the elliptic equations in
the transforms for the ECMWF and Met Office operational
systems were ill-conditioned, which made them difficult
to solve accurately. This problem was made worse in the
ECMWF system by the Lorenz vertical grid staggering, which
led to the need for extra regularization to make the problem
well-posed.

In this article, we extend these previous studies by testing
the fundamental assumption that the errors in the balanced
and unbalanced control variables are uncorrelated when
the vorticity-based and PV-based parameter transforms
are used. The need for numerical compromises in the
studies of Cullen (2003) and Bannister and Cullen (2007)
meant that a clean comparison between the two transforms
was not possible. Here we use a shallow-water model to
demonstrate the fundamental differences between the two
transforms numerically and to compare these numerical

results to theory. We use the shallow-water model to
calculate correlation statistics between the different control
variables to test how well the transforms remove correlations
by splitting the flow into its balanced and unbalanced
parts. We show that, for certain dynamical regimes, the
assumption of zero correlations between control variables is
valid when the PV-based transform is used, but not with the
vorticity-based transform. These results give further details
of the findings presented briefly in Bannister et al. (2008).
Furthermore, we calculate the spatial correlations for each
control variable and use these to understand the effectiveness
of the parameter transforms at decoupling the balanced and
unbalanced parts of the flow.

The outline of the remainder of the article is as follows.
In section 2 we present the model used in this study,
in its continuous and discrete forms. In section 3 we
present the two different parameter transforms as applied
to this model. Section 4 examines briefly the covariance
structures implied by these transforms. In section 5 we
present the statistics of the correlations between control
variables in different dynamical regimes. Section 6 presents
the correlation functions of the different control variables,
which allow us to diagnose how well the balanced part of
the flow is captured in the transforms. Finally we summarize
the results in section 7.

2. The model

2.1. Continuous system

The model we use for this study is the one-dimensional
shallow-water equations with rotation and orography, in
the presence of a constant mean flow. The model equations
are given by

Du

Dt
+ ∂φ

∂x
+ g

∂H̃

∂x
− fv = 0, (1)

Dv

Dt
+ fu = 0, (2)

D ln φ

Dt
+ ∂u

∂x
= 0, (3)

where

D

Dt
≡ ∂

∂t
+ (Uc + u)

∂

∂x
(4)

and φ = gh. In these equations, u denotes the departure
of the velocity in the x-direction from a known constant
forcing mean flow Uc, v is the velocity in the y-direction, h is
the height of the fluid, φ is the geopotential, H̃ = H̃(x) is the
height of the orography, f is the constant Coriolis parameter
and g is the gravitational force. The model assumes that
there is no variation in the y-direction and the boundary
conditions in the x-direction are taken to be periodic, with
x ∈ [0, l].

This model is chosen as it is the simplest system that
contains key properties required to define the vorticity-based
and PV-based parameter transforms. In particular, we have
a non-trivial first order geostrophic balance relationship

fv = g
∂(h + H̃)

∂x
. (5)
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622 D. Katz et al.

This relationship is found through an asymptotic expansion
in small Rossby number (Pedlosky, 1987), where the Rossby
number is defined as the dimensionless parameter

Ro = U

fL
, (6)

and U and L are characteristic velocity- and length-scales
respectively. At small Rossby number, the balance (5) is
dominant at horizontal length-scales that are larger than the
Rossby radius of deformation Lr, defined as

Lr =
√

gH

f
, (7)

where H is a characteristic depth-scale. The shallow-water
equations also conserve the PV, defined by

q = 1

h

(
f + ∂v

∂x

)
. (8)

In order to characterize the differing flow regimes in this
system, we will make use of the Burger number, which is
defined as

Bu =
√

gH

fL
(9)

(Wlasak et al., 2006). The Burger number is a measure of
the relative importance of rotation and stratification in the
flow. It is the ratio of the Rossby number and the Froude
number

Fr = U√
gH

. (10)

The Froude number is the ratio of the advective velocity to
the gravity wave speed. In most deep atmospheric motions,
Fr is small, that is the advective velocity is much less than the
gravity wave speed. The two components on the right-hand
side of the PV equation (8) take on a different importance
as the Burger number changes. For small Burger number
regimes, the PV is dominated by the first term, f /h, whereas
in regimes of high Burger number the PV can be well
approximated by (∂v/∂x)/h (Wlasak et al., 2006).

2.2. Discrete model

The model (1) to (3) is discretized using a semi-implicit,
semi-Lagrangian scheme, following a similar scheme to
Lawless et al. (2003). This gives the following time-discrete
equations

un+1
a − un

d

�t
+ α1

[
φx + gH̃x − fv

]n+1
a

+(1 − α1)
[
φx + gH̃x − fv

]n
d

= 0, (11)

vn+1
a − vn

d

�t
+ α2

[
fu

]n+1
a

+ (1 − α2)
[
fu

]n
d

= 0, (12)

ln φn+1
a −ln φn

d

�t
+α3[ux]n+1

a +(1−α3)[ux]n
d = 0, (13)

where the subscript x denotes the derivative with respect to
x, subscripts a and d denote arrival and departure points
respectively, and superscripts denote the time level. The

discrete equations are solved on a grid where the velocities
u and v are held on points staggered from those where the
height h is held, that is, on a one-dimensional analogue of
the Arakawa B grid. The time-weighting parameters α1, α2

and α3 are chosen to meet the stability requirements of the
scheme. Further details about the discrete solution of the
differential equations can be found in Katz (2007).

3. Parameter transforms

The transformation from model variables to control
variables is used within the incremental formulation
of variational data assimilation. In this formulation
of the assimilation problem, the minimization of the
nonlinear variational cost function is replaced by a series
of minimizations of linear least-squares cost functions
(Courtier et al., 1994; Lorenc et al., 2000). We let x represent
the model state. In incremental variational data assimilation,
the nonlinear cost function is linearized about the current
state estimate x and this linear least-squares cost function
is minimized for an increment x′ in what is known as
the ‘inner loop’ minimization. The increment can then
be added to the estimate x in an ‘outer loop’ step to
provide a better estimate of the system state and the process
repeated as required. This is equivalent to applying an
approximate Gauss–Newton iteration to solve the nonlinear
minimization problem (Lawless et al., 2005).

The parameter transform occurs within the definition of
the inner loop minimization problem. We define a control
variable z′ and a transformation U from control variables to
model variables

x′ = Uz′ (14)

(the U-transform). In practice, the control variable vector
might not be the same length as the vector of original model
variables, and so the matrix U is not necessarily square
(Lorenc et al., 2000). The inverse transform from model to
control variables is defined by

z′ = Tx′ (15)

(the T-transform), where T is a generalized inverse of U.
The inner loop minimization problem is then defined in
terms of the control variables z′, which are assumed to be
independent. The solution to the minimization problem can
then be mapped to the space of model variables using the
U-transform in order to update the state estimate in the
outer loop step.

We note here that normally the transformation U is
defined to include also the transformation of the spatial
covariances to spectral space (e.g. Lorenc et al., 2000).
Here we use the notation U to imply only the parameter
transform. Hence the background-error covariance matrix
B in the space of model variables is given by

B = U�UT, (16)

where � is a block-diagonal matrix with the blocks
corresponding to auto-correlations for each of the control
variables. We now set out in detail the vorticity-based and
PV-based parameter transforms for the one-dimensional
shallow-water model introduced in the previous section.

Copyright c© 2011 Royal Meteorological Society and
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For this system, the linearization state x and the increment
field x′ are defined by the vectors

x =

 u

v
h


 , x′ =


 u′

v′
h′


 . (17)

In order to decompose the shallow-water flow into its
balanced and unbalanced components, we perform a normal
mode analysis of equations (1)–(3) in the absence of a mean
flow Uc, linearized around a state of rest. Such an analysis
reveals the presence of three normal modes, one slow mode
and two fast modes. The slow mode is taken to be the
balanced part of the flow and satisfies the linearization of
the PV equation (8)

q′h = ∂v′

∂x
− qh′, (18)

where q is the linearization state of the PV. The
corresponding first order linear balance equation is given by
a linearization of (5), which leads to

fv′ − g
∂h′

∂x
= 0. (19)

The two remaining modes represent the unbalanced part of
the flow and can be related to the departure from balance and
to the divergence. A decomposition of flow into balanced and
unbalanced variables has previously been used to develop
numerical methods for solving the flow equations (Dritschel
et al., 1999; Mohebalhojeh and Dritschel, 2004). Here we use
such a decomposition to design the parameter transforms
for incremental variational data assimilation. We seek three
control variables for the data assimilation problem which
represent one balanced and two unbalanced components of
the flow.

In order to derive both the vorticity-based and PV-
based transforms for our model, we make use of Wlasak
et al. (2006), who derived the corresponding T-transforms
for the two-dimensional shallow-water equations on the
sphere, and Cullen (2003), who derived the PV-based
transform for an operational numerical weather prediction
model. Appropriate transforms are defined for the one-
dimensional shallow-water model used in this study. We
first consider a separation of the flow into its rotational and
divergent parts by means of a Helmholtz decomposition.
We define a stream function ψ ′ and a velocity potential
χ ′. Then for the one-dimensional shallow-water model, the
Helmholtz decomposition reduces to the vorticity

ζ ′ = ∂v′

∂x
= ∂2ψ ′

∂x2
, (20)

and the divergence

D′ = ∂u′

∂x
= ∂2χ ′

∂x2
, (21)

with velocities u′ and v′ given by

u′ = ∂χ ′

∂x
, (22)

v′ = ∂ψ ′

∂x
. (23)

3.1. Vorticity-based transform

The vorticity-based transform makes the assumption that
the rotational component of the wind is totally balanced.
We define a balanced height variable h′

b which is related
to the stream function through the linear balance equation
(19). Thus we obtain

f
∂2ψ ′

∂x2
− g

∂2h′
b

∂x2
= 0 . (24)

For the case of periodic boundary conditions, this can be
integrated to obtain

h′
b = f

g
ψ ′. (25)

The control variables are then taken to be the stream
function, the velocity potential and the unbalanced
(residual) component of the height field, defined by

h′
res = h′ − h′

b. (26)

In operational systems, this unbalanced height component
is represented by an unbalanced pressure (Lorenc et al.,
2000). The T-transform, from model variables u′, v′, h′ to
control variables χ ′, h′

res, ψ
′, then proceeds as described for

the two-dimensional shallow-water equations by Wlasak
et al. (2006) with the following steps:

1. Find the velocity potential χ ′ from u′ using (21);
2. Find the stream function ψ ′ from v′ using (20);
3. Calculate the balanced height h′

b using (25);
4. Calculate the residual height h′

res using (26).

The solutions of (21) and (20) are unique up to a constant,
which is chosen to ensure that the mean values of ψ ′ and
χ ′ are zero. By choosing the constant in this way, we lose a
degree of freedom in each equation. These missing degrees
of freedom are used to retain the mean values of the wind
components that are lost through differentiation. Thus the
mean values, which we denote <u′ > and <v′ >, are also
control variables.

The U-transform, from control variables to model
variables, is defined in the following way:

1. Calculate the velocity v′ from ψ ′ and <v′ >:

v′ = ∂ψ ′

∂x
+ <v′ > ; (27)

2. Calculate the balanced height increment h′
b from ψ ′

using (25);
3. Calculate the full height increment h′ from h′

b using
(26);

4. Calculate the velocity u′ from χ ′ and <u′ >:

u′ = ∂χ ′

∂x
+ <u′ > . (28)

It is useful to note that the consideration of the mean values
is more natural in the implementation of the transforms in
operational systems such as that of the Met Office, where
the transforms are solved in spectral space (Lorenc et al.,
2000). For these systems, the transform is only applied to
wave numbers one and above, and wave number zero, which
holds the mean values, is not transformed. It is the lack of
a spectral transform in our study that makes necessary a
special treatment of the mean values.

Copyright c© 2011 Royal Meteorological Society and
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3.2. PV-based transform

For the PV-based transform, we allow the stream function
to have both balanced and unbalanced components, which
we denote ψ ′

b and ψ ′
u respectively, with corresponding

balanced and unbalanced winds v′
b and v′

u defined by the
Helmholtz decomposition. In a similar way, the height is
split into balanced and unbalanced components hb and hu.
We assume that the linearized PV is associated solely with
the balanced variables and that the balanced variables satisfy
the linear balance equation, with the unbalanced variables
satisfying departure from this balance. Thus from (18) and
(19) we obtain

f
∂2ψ ′

b

∂x2
− g

∂2h′
b

∂x2
=0 , (29)

∂2ψ ′
b

∂x2
− qh′

b =q′h , (30)

f
∂2ψ ′

u

∂x2
− g

∂2h′
u

∂x2
=ζ ′

a , (31)

∂2ψ ′
u

∂x2
− qh′

u =0 , (32)

where ζ ′
a, the departure from geostrophic balance, is defined

by the equation

ζ ′
a = f

∂2ψ ′

∂x2
− g

∂2h′

∂x2
. (33)

The control variables are then taken to be the balanced
stream function ψ ′

b, the unbalanced height h′
u and the

velocity potential χ ′. We note that other combinations of
balanced and unbalanced variables could theoretically be
chosen, but this set is the easiest to implement numerically
and is the most well conditioned (Cullen, 2003; Wlasak et al.,
2006).

Integration of (29) with periodic boundary conditions
gives

h′
b = f

g
ψ ′

b . (34)

This can be substituted into (30) to obtain a second-order
equation for ψ ′

b,

∂2ψ ′
b

∂x2
− f q

g
ψ ′

b = q′h, (35)

which is the PV inversion equation for this system. The T-
transform, from model variables u′, v′, h′ to control variables
χ ′, h′

u, ψ ′
b, follows Wlasak et al. (2006) and is given by the

following steps:

1. Find the velocity potential χ ′ from u′ using (21);
2. Solve (35) for ψ ′

b;
3. Evaluate h′

b using (34) and set h′
u = h′ − h′

b;
4. Store the mean values of u′ and v′ which are lost

through differentiation.

The U-transform, from control variables to model
variables, is defined as follows:

1. Calculate the balanced velocity increment v′
b from ψ ′

b
using (23);

2. Calculate ψ ′
u from h′

u using (32) and the unbalanced
velocity increment fromψ ′

u using (23) and reconstruct
the full velocity increment v′:

v′ = v′
b + v′

u+ <v> ; (36)

3. Calculate the balanced height increment h′
b from ψ ′

b
using (34) and reconstruct the full height increment
h′ = h′

b + h′
u ;

4. Calculate the velocity u′ from χ ′ and <u>:

u′ = ∂χ ′

∂x
+ <u> . (37)

The derivation of these transforms assumes that the
equation for the unbalanced stream function (32) with
periodic boundary conditions has a solution. This will be
true only if the mean value of q h′

u is zero. Within the
data assimilation system, this condition may not be satisfied
unless it is explicitly enforced. It is not straightforward to
understand how to do this, since q varies with x and is
modified on every outer loop of the incremental variational
data assimilation. It is possible to modify h′

u on each inner
iteration so that the mean of q h′

u is zero. This can be achieved
since we are always able to subtract a constant from h′

u such
that <q h′

u >= 0. The mean of the full height increment is
therefore split between h′

b and h′
u.

The problem could be avoided by choosing to
approximate q by a constant. An approximation of this
sort was made in Cullen (2003). This would mean that
we are simply able to set <h′

u >= 0 and the condition
<q h′

u >= 0 will always be satisfied. We then store the mean
of the full height increment solely in h′

b. This approximation
may be desirable from an operational perspective since
the transform is then less computationally demanding. In
section 5 we consider the possible implications of making
this approximation in the PV-based transform. We choose
to make the approximation

q = 1

h

(
f + ∂v

∂x

)
≈ f

<h>
, (38)

which essentially assumes that ∂v/∂x = 0. This is consistent
with the climatological assumptions and zonally averaged
quantities used in determining the background-error
covariance matrix in practice. However, the use of this
approximation would weaken the dependence of the
assumed background errors on the current state of the flow,
since the state only appears as a constant spatial average of
h, which is updated on each outer loop iteration.

Having presented both the vorticity-based and PV-based
parameter transforms for the one-dimensional shallow-
water model, we now consider the covariance structure
implied by these transforms.

4. Implied covariance structures

We can understand something of the difference between
the two parameter transforms presented by looking at the
implied background-error covariance matrix by means of
(16). For ease of presentation, we do not consider the mean
values of the increments in this analysis, although they
are included in the numerical calculations discussed in the
remainder of this article.

Copyright c© 2011 Royal Meteorological Society and
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Correlations of Control Variables 625

For the vorticity-based transform, the control variables
are χ ′, ψ ′ and h′

res and the discrete form of the U-transform
defined in section 3.1 can be written in matrix notation as


u′

v′

h′


 =




�x 0 0

0 �x 0

0 f /g 1







χ ′

ψ ′

h′
res


 , (39)

where �x is the matrix representing the discretization of
the first-derivative operator ∂/∂x on the periodic domain
[0, l]. Therefore the background-error covariance matrix for
model variables u′, v′ and h′ implied by the transform is

BV =




�x�χ�T
x 0 0

0 �x�ψ�T
x �x�ψ

f
g

0
(
�x�ψ

f
g

)T (
f
g

)2
�ψ +�hr


, (40)

where �χ , �ψ and �hr are the autocovariance matrices
for χ ′, ψ ′ and h′

res respectively and form the blocks of the
block-diagonal matrix � defined in (16).

For the PV-based parameter transform defined in
section 3.2, the control variables are χ ′, ψ ′

b and h′
u. For

this case the discrete U-transform can be written in matrix
notation as


u′

v′

h′


 =




�x 0 0

0 �x Q

0 f /g 1







χ ′

ψ ′
b

h′
u


 , (41)

where the matrix Q is the discrete operator such that

Q h′
u ≈ ∂

∂x

(∇−2q h′
u

)
(42)

on the periodic domain [0, l], with ∇2 ≡ ∂2/∂x2. The
implied background-error covariance matrix is then

BPV =


�x�χ�T
x 0 0

0 �x�ψb�
T
x +Q�huQ

T �x�ψb
f
g +Q�hu

0
(
�x�ψb

f
g +Q�hu

)T (
f
g

)2
�ψb +�hu


, (43)

where �χ , �ψb and �hu are the autocovariance matrices for
χ ′, ψ ′

b and h′
u respectively and form the blocks of the block-

diagonal matrix � defined in (16) for the PV-transform.
We note first that for both BV and BPV there are no

implied covariances between u′ and other model variables.
This de-coupling of u is a result of assuming that there is no
variation in the y direction in the one-dimensional shallow-
water model and hence the divergence depends solely on u.
This would not be true in a more general model. Implied
covariance with u could be introduced into this model by
splitting the u into balanced and unbalanced components.
We would then need a relationship defining a balanced
component of u (e.g. Fletcher, 2004; Wlasak et al., 2006).

A comparison of BV and BPV shows that the differences
between the implied background-error statistics occur in the
auto-correlations of the v field and in the cross-correlations
between v and h. For each of these, we see that the PV-
based implied background-error statistics depend on the
currrent dynamical state through the dependence on q(x, t),
the linearization state of the PV. The state dependence
introduces a mechanism to change the implied background

statistics on each outer iteration of the incremental 4D-Var
algorithm through the linearisation state. In the case where
the approximate PV (38) is used in the transform, the state
dependence arises only through the current mean value of
the h field, which is updated on each outer loop. The statistics
implied by the vorticity-based transform on the other hand
have no state dependence and so are not updated when using
this transform. Thus other mechanisms must be used if we
wish to introduce state-dependent background statistics
when using the vorticity-based transform. For example,
some state dependence is also included in the transform
used at ECMWF, where the linear balance equation in
the vorticity transform is replaced by a nonlinear balance
operator, which is then linearized for use in the incremental
4D-Var system (Fisher, 2003).

5. Correlations between control variables

Having presented an analysis of the two different parameter
transforms, we examine how well the transforms remove
correlations between control variables. In particular, we
wish to understand whether the balanced and unbalanced
components of the flow, as described by the transform,
really are uncorrelated; whether the PV-based transform is
more successful at removing correlations between variables;
and what the consequences are of using the approximate
linearization state PV (38) in the transform. In order
to address these questions, we generate statistics of the
correlations between background errors as represented
by the different control variables. To do this we use the
numerical model introduced in section 2.2. First we discuss
the methodology we use to generate the correlation statistics.

5.1. Methodology

A common method for generating background-error
covariance statistics in data assimilation is that introduced
by Parrish and Derber (1992) and referred to as the ‘NMC
method’. This method uses differences between forecasts of
different lead times for the same validity time as a proxy for
forecast errors. A large sample of such differences is created,
over which statistics can be calculated. A disadvantage with
this method is that it requires an existing data assimilation
system before the statistics can be calculated.

An alternative approach, presented by Polavarapu
et al. (2005), is to generate one long integration of the
numerical model and take differences between the forecast
fields at constant intervals of time apart as a proxy for
forecast errors. Statistics can then be taken over a sample
of these forecast differences. It is this method which we
use to generate the correlation statistics in this article.
The correlations between different control variables are
calculated by first transforming the forecast differences using
the appropriate T-transform to give a set of increments in the
space of control variables and then using these increments
as a statistical sample. The linearization state x used in the
transform is given by the full model field at the start of each
time interval. In the calculation of the statistics, the values
of the forecast differences at each grid point and for each
time interval are assumed to be statistically independent
and so the total sample size is the number of grid points
multiplied by the number of time intervals. We note that
one characteristic of the approach of Polavarapu et al. (2005)
is that the largest forecast differences are always associated
with the highest frequencies (Jackson et al., 2008).

For the experiments presented in this paper, we discretize
the model using 500 grid points and take 100 time
differences, giving a total statistical sample of size 50 000.
This sample size was chosen as that for which the correlation
statistics were seen to have converged in a series of
experiments with different sample sizes. The model grid
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spacing is taken to be �x = 12.5 m, which means that the
domain length l = 6250 m, the model time step �t = 2.5 s,
the Coriolis parameter f = 0.01 s−1 and the time-weighting
parameters α1, α2, α3 are set to 0.6. The model orography is
defined by

H̃(x) = Hc

(
1 − x2

a2

)
, (44)

where a = 40�x and Hc is a mean height. The model is
run in two different dynamical regimes, defined by high
and low Burger number. For the high Burger regime, we
set Hc = 7.6 m and for the low Burger regime we have
Hc = 0.019 m. With these parameters, the Burger numbers
of the different regimes are 4.0 and 0.2. The initial conditions
for the model are defined to be a state of rest, with h a constant
height above the orography of 40 m in the high Burger regime
and 0.1 m in the low Burger regime. These initial conditions
are in geostrophic balance, but unbalanced motions are then
created by the presence of the orography. This ensures that
there is a mixture of balanced and unbalanced modes in
the solution fields, which thus provides a strong test for the
parameter transforms. Different experiments are performed
in which the mean flow Uc is varied from 0.1 to 5.0 m s−1,
which varies the Rossby number between 0.02 and 1.0.

In order to generate the statistics, we must choose an
appropriate time interval for the forecast differences. When
the NMC method is used to generate statistics for operational
systems, the forecasts are taken to be 24 h apart, so as to
remove the diurnal cycle, which would otherwise dominate
the statistics. Polavarapu et al. (2005) use a 6 h interval in
their method, but the time differences are then adjusted
to account for diurnal changes. In a similar way, for the
shallow-water model used here, we must choose the time
interval over which we difference the model fields in order to
remove any similar dominant signal which may be present.
To identify the dominant signal, we generate a forecast and
plot values of the variables at fixed points in space against
time. As an example, we show in Figure 1 the evolution of
the u variable in the high Burger regime at two different
spatial points when the mean flow Uc = 0.5 m s−1. We see
that the variable has a fast oscillation, which we calculate to
have a period of approximately 300 s. A similar oscillation
is seen in the φ field. Analysis of the model equations shows
that this arises from fast-moving gravity waves travelling in
the positive x-direction at a speed of 20 m s−1 relative to the
mean flow, which take a time of

l

(
√

gD + Uc)
≈ 300 s

to cover the whole domain, where D is the height of the
surface at rest. Since the oscillation is a product of the
periodicity of this particular problem, we choose to filter the
signal by choosing a time interval of approximately 300 s.
For the low Burger regime, the gravity wave speed is much
slower relative to the mean flow at 1 m s−1 and so no fast
oscillation is seen in plots of the different variables against
time. Hence we are free to choose the time-differencing
interval in the low Burger regime to be also approximately
300 s, without worrying that the statistics will be affected by
a dominant signal. Further evidence of the appropriateness
of the time intervals chosen is obtained by verifying that the
correlations in time between the difference fields decay in
time. Details of this analysis can be found in Katz (2007,
Appendix A). We now examine the correlations between the
control variables in the different dynamical regimes.

5.2. Correlations in high Burger regime

We begin by considering the correlations between control
variables in a high Burger regime, where we expect the
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Figure 1. Values of u at spatial points i = 125 (top) and i = 250 (bottom),
plotted against time for Bu = 4.0.
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Figure 2. Plot of correlation coefficient against Rossby number for the high
Burger number regime. The different lines show the correlations between
the full model fields (solid line), between the model increments (dashed
line), between vorticity-based control variables (∗), and between PV-based
variables using the full linearized PV (◦) and using the approximate PV
(
).

vorticity-based and PV-based transforms to exhibit similar
behaviour. The variation in the input values of Uc leads to
a variation of the Froude number from 0.005 to 0.25. The
time differencing interval is chosen to be

l

(
√

gD + Uc)
= 277.5 s,

where we assume an approximate average mean flow
of Uc = 2.5 m s−1. We calculate the correlations between
full model fields (ψ , h + H̃), model field increments
(ψ ′, h′), vorticity-based control variables (ψ ′, h′

res) and PV-
based control variables (ψ ′

b, h′
u). For the PV-based control

variables, calculations are made using both the full linearized
PV and the approximation (38). The variation of the
different correlations with Rossby number is shown in
Figure 2.

The first thing we notice is that there is a strong correlation
between model variables in both the full fields (ψ , h + H)
and the increment fields (ψ ′, h′), which decreases with
Rossby number. This indicates a high degree of balance in
the fields. Since the balance approximation (19) is valid in
the asymptotic limit of small Rossby number, we see an
increase in the correlation as the Rossby number decreases
and the flow becomes more balanced. This result helps to
validate our choice of statistical method, since this behaviour
is exactly as we would expect.
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Figure 3. Plot of correlation coefficient against Rossby number for the high
Burger regime using a time-differencing interval of 100 s. The lines are
labelled as in Figure 2, but the experiment using the approximate PV is not
shown.

The correlation between the vorticity-based variables
(ψ ′, h′

res) and between the PV-based variables (ψ ′
b, h′

u) is
much less than the correlation between the model field
increments (ψ ′, h′), with the largest correlations being of
order 10−2. We see that in this high Burger regime both
control variable transforms have been successful in removing
the strong correlation between model variables. For all
values of the Rossby number, the correlations obtained
from the two different control variable transforms are very
similar. This is to be expected, since in a high Burger
regime the balanced variable is approximated well by the
vorticity. When the approximation (38) is used in the PV-
transform, the correlation between the control variables is
almost exactly the same as when we use the full PV variables.
The approximation therefore seems to have little effect on
the correlation between the PV-based control variables in
this case.

To demonstrate that our choice of time interval is
appropriate to the high Burger regime, and that the
method used to generate the statistics is sensitive to any
dominant signal in the data, we compare these results
with those obtained when we use a different time interval.
Figure 3 shows the correlation coefficients using an interval
of 100 s, which does not filter the gravity wave signal.
These correlations do not correspond with the balances
we understand to be present. There is very little balanced
correlation in the increments ψ ′ and h′. However the full
model fields ψ and h + H are highly correlated. As the
Rossby number is decreased, the balance approximation
becomes more accurate and therefore ψ and h + H become
increasingly correlated. The same behaviour should also
be apparent in the increment fields. However, this is not
observed in the correlations. This is because the gravity wave
signal is dominating the correlations. A consequence of the
lack of correlation between ψ ′ and h′ in the data is that an
unduly strong negative correlation between the vorticity-
based variables, ψ ′ and h′

res, is produced, since from (25)
and (26) we have

h′
res = h′ − f

g
ψ ′. (45)

Hence, if the dominant signal of the data is not filtered, then
this method for generating the statistics is unable to extract
the true correlations which are known to exist.
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Figure 4. As Figure 2, but for the low Burger regime.

5.3. Correlations in low Burger regime

We now consider the correlations between control variables
in a low Burger regime, with Bu = 0.2. In this regime the
stream function is not completely balanced and we expect
the vorticity-based transform to be less effective at removing
correlations between variables. The correlations between
control variables for this regime are shown in Figure 4.
We note that here the Rossby number has the same range
as in the high Burger regime, but the Froude number is
larger, with the largest value now being 5.0. Here the Froude
number is larger than the Rossby number and the flow is
dominated by the effects of rotation.

If we examine first the correlations between the full model
fields, we note that in this regime, as for the high Burger
regime, there is a strong balanced correlation between the
full fields for small Rossby number. For Rossby number close
to 1.0, we are not in a low Rossby number regime and we see
that for this case the flow is unbalanced. This is observed in
the small correlation of ψ and h + H. However, a positive
correlation remains in the increment fields (ψ ′, h′). This
is attributed to an unbalanced stationary wave in the full
model fields that is tied to the orography, which is not seen
in the increment fields but does have a signal in the full field
correlations. Such a wave would be expected to form when
the Froude number increases above 1, leading to a loss of
balance in the full fields. This explains the sudden fall in the
correlation between ψ and h + H at this value of the Froude
number.

The PV-based control variables show a correlation that is
close to zero over the whole range of the Rossby number. As
in the high Burger regime, this transform is also successful
at removing the correlations in a low Burger regime. The
vorticity-based control variables on the other hand show
a large negative correlation for all values of the Rossby
number. It is clear that in the low Burger regime these
variables remain highly correlated and so are not a valid
choice of control variables for a data assimilation system
that assumes the variables are uncorrelated. In this case,
the balance is dominated by the mass variables and is not
well captured by the vorticity field. Again we find that when
the approximation (38) is used in the PV-based transform,
the correlations between the control variables are almost
identical to those of the unapproximated transform.

6. Spatial auto-correlations of control variables

We can gain further insight into the way the control
variables decompose the balanced and unbalanced parts of
the flow by calculating the spatial auto-correlations for the
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different control variables. These auto-correlations provide
information on the inherent length-scale of each variable.
This length-scale can be compared to the Rossby radius of
deformation Lr, defined by (7), and used to assess the degree
to which each variable is representing the balanced and
unbalanced dynamics of the problem. We expect balanced
variables to have a horizontal length-scale L ≈ Lr, whereas
unbalanced variables may have horizontal scales smaller
than this, determined by the size of the orography and the
value of the mean wind field.

As in section 5, we generate the correlations from a set
of 100 time differences, each with 500 grid points. For each
control variable, we calculate the correlation between the
field at a spatial point i and the field at a spatial point i + j at
the same time level for j = −N/2, . . . , N/2 − 1, where N is
the number of grid points. The spatial correlation pattern,
or correlation function, can then be found by plotting these
correlations as a function of the separation distance j. In
order to compare the auto-correlations produced by the
two different parameter transforms, we require a regime in
which both balanced and unbalanced motions are present
and in which the gravity wave speed is greater than the
advective velocity (that is Fr < 1.0). We use the results of
section 5.2 to identify regions in parameter space where
there are strong correlations between the model variable
increment fields (ψ ′, h′) and also full fields (ψ , h + H̃),
which indicate that there is a high degree of balance in
the flow, without it being totally balanced. For the results
of the high Burger experiment shown in Figure 2, we see
that the flow is highly balanced for Ro = 0.25, and so we
choose the mean flow to be Uc = 1.25 m s−1. This gives a
Froude number of Fr = 0.0625. For the low Burger regime,
shown in Figure 4, it is necessary to choose a smaller mean
velocity to ensure that the Froude number remains less than
1. Hence we choose Uc = 0.75 m s−1, which implies that
Ro = 0.15 and Fr = 0.75. By avoiding regimes where the
Froude number is greater than 1, we ensure that the fields
are not strongly unbalanced.

We consider first the spatial correlations in a high Burger
regime. For this experiment Lr, calculated from (7), is
2000 m, which corresponds to 160 grid points. In Figure 5
we plot the correlation functions corresponding to a point
in the centre of the domain for the vorticity-based and
PV-based variables. We see that the correlation scale is
largest for the balanced variables ψ ′ and ψ ′

b and is of order
approximately Lr. The correlation scales for the unbalanced
variables h′

res and h′
u are less than the Rossby deformation

radius. These results indicate that both the vorticity-based
and PV-based variables are capturing the balanced and
unbalanced flows well in this regime.

For the low Burger regime, the Rossby radius is much
smaller and is equal to approximately 100 m, or 8 grid points.
In Figure 6 we plot the correlation functions calculated in
this regime. We would expect that correlations for the
unbalanced height variable to be on a scale of less than
100 m if it accurately represents the unbalanced motion.
We see that this is the case for the PV-based variable h′

u
but not the vorticity-based variable h′

res. In this regime the
balanced part of the flow is dominated by the height and
the vorticity-based variables do not account for this. Hence
we see correlation structures for h′

res on too large a scale.
We can therefore conclude that the PV-based variables are
accurately capturing the correct balances in the low Burger
regime while the vorticity-based variables are not.

7. Conclusions

The ability of the parameter transform to split the flow
into uncorrelated parts is an important assumption of
many operational variational data assimilation systems. A
decomposition of the variables based on PV has previously
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Figure 5. Correlation functions in the high Burger regime for (a) vorticity-
based variables ψ (top), hres (middle) and χ (bottom) and for (b) PV-based
variables ψb (top), hu (middle) and χ (bottom). The Rossby radius is
marked with a dashed line.

been proposed in the literature as being more valid than
the commonly used vorticity-based decomposition. In this
study we have demonstrated that the approximate transform
based on vorticity does effectively remove correlations in a
high Burger regime, but that the control variables are highly
correlated in a low Burger regime. This is explained by the
fact that the balanced part of the flow in the low Burger
regime is best represented by the mass variables rather than
the rotational part of the wind. Thus the stream function,
which is used as the balanced variable in this transform,
is unable to represent the balanced flow correctly. On the
other hand, the PV-based variables are able to decouple
the flow successfully for both the high and low Burger
regimes. As expected from previous theoretical studies,
the splitting of the stream function into balanced and
unbalanced components in this transform allows a better
representation of balance over a wider range of dynamical
regimes. A key assumption of this method is that the flow
can be separated into a balanced component, dominated
by the PV, and an unbalanced component, dominated by
gravity waves. Although this assumption may not be true
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Figure 6. As Figure 5, but for the low Burger regime.

everywhere in the atmosphere, within a real assimilation
system it is necessary to make assumptions that are valid
most of the time and for most of the atmosphere. This
work indicates that the assumptions made when using the
PV-based transformation are more valid in this respect than
those made using the vorticity-based transfromation.

We note that, although we have been concerned here
with the application of the control variable transform in
a standard variational assimilation setting, these results
may also have implications for correlations obtained
by ensemble-based techniques. Mitchell et al. (2002)
demonstrated that the localization needed in an ensemble
Kalman filter could destroy balances which are present. More
recently Kepert (2009) has shown in a shallow-water model
that the balance can be better preserved by performing
localization in the stream function and velocity potential
variables rather than the wind components. Thus, even
within ensemble methods, the correct assumption as to
which variables are correlated is likely to be essential in
order to obtain a good performance of the assimilation.

Despite the evident advantage in using the PV-
based transform, issues still remain with regard to its
implementation in data assimilation systems. As noted by
Bannister and Cullen (2007), the use of a transform based on
PV in a full numerical weather prediction system requires the

iterative solution of a three-dimensional elliptic equation,
which is not well conditioned. Cullen (2003) commented
that this poor conditioning of the transform could lead to
slower convergence of the assimilation, even though the
assumption of uncorrelated errors is more realistic. Hence
further preconditioning techniques need to be developed in
order to implement the transform efficiently. Nevertheless
the results of this study indicate that there is much advantage
to be gained from using a parameter transform based
on PV and so the effort towards an efficient numerical
implementation should be worthwhile.
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