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Introduction

Many problems in control engineering, scientific computations, military and space applications can be
reduced to the solution of basic Linear Algebra problems, for solving systems of linear equations: AX = B.
For example many problems arising from partial differential equations where local effects or ordering of
finite difference/finite elements produce recurrences with limited spatial and temporal extension. Because
the problems are often large and involve many zero elements there is great need to speed up computations
or exploit structure of the matrices [13, 8]. In the former case to allow larger problems to be solved or
more iterations of a problem with varying parameters to be solved in the same time. In the sparse case
both computation time and hardware involved can be optimized by removing redundancies from standard
dense matrix approaches to the problem.

There are many ways to solve the system, AX = B [1, 7, 13], among which is to find first the inversion
A−1 and then calculate X = A−1B. The inversion of matrices with Banded structure [1, 7] is the classic
problem in Linear Algebra. In this paper we consider of hardware implementation of these algorithms
and, therefore, we will use the systolic or regular array approach for implementation of the proposed
methods. The best known arrays for matrix inversion are based on the so-called Algebraic Path problem
[6, 11, 12] and formulation of the Gauss Jordan method [3]. These arrays generally require 4n or 5n steps
using n2 processors and do not exploit any pivoting. Unfortunately the arrays cannot be easily adapted
to the banded or sparse cases and require the same run-time and processors as for dense systems even
for triangular matrices.

In this paper we introduce a Linear Algebra Processor based on Monte Carlo method for matrix
inversion [4, 5, 14]. The processor is based on a regular array approach and is implemented on an FPGA
platform. The most important part of the processor is the Matrix inversion regular processor array based
on Monte Carlo method. The Monte Carlo array uses a modification of the technique proposed in [9]
to exploit the zero structure in band systems [10]. This analysis results both in decreases in run-time
and array latency but also in drastically reduced hardware compared with previous Monte-Carlo array
for dense matrices and compared to previous solvers. In particular we consider arrays with O(TNw)
to O(nTNw) elements where T <

√
n is the length of a Markov chain, N is the number of chains, n

is the order of the matrix and w is the band width. The run-time ranges from O(n2 + T + N + w) to
O(n + T + N + w) when the design is laid out in higher dimensions. Consequently we produce arrays
with computation time t < 3n+ w steps where a step is the cost of a inner product.

A part of the Monte-Carlo based matrix inversion regular array has been implemented in Virtex-
II to invert a matrix of size 64 × 64. The FPGA circuit implementation runs at a frequency of over
200 MHz. It is observed that a well structured and regular architecture can balance the computational
resources of modern FPGA while maintaining high performance. The architecture is not limited by
FPGA computational resources to invert matrices of moderate size, but the practical implementation of
the architecture for matrices of large sizes is limited by the number of pin-out count of the design [2].



Monte Carlo method

Dense matrices

To find the inverse C = A−1 of a dense matrix B of order n we compute D = I − A (I is the identity
matrix), and then use the Monte Carlo method described below [9]:

crr′ ≈ 1
N

N∑
s=1


 ∑

(j|kj=r′)

Wj




s

, Wj = Wj−1

dkj−1kj

pkj−1kj

, (1)

where crr′ is the element of C. The sequence of indices kj , 0≤j≤T , form the states of a Markov
chain with transition probabilities pkj−1kj from state kj−1 to kj . Transitions will be denoted as tuples
< kj−1, kj >. Thus, a transition determines the element of D, dkj−1,kj . For each j-th state the Wj is
defined recurrently. A Markov chain starts with a row index, i.e. for computing an element crr′, the chain
starts at k0 = r, and only these Wj are included into sum of crr′ for which kj = r′. To compute one row
of inverse, N Markov chains (trials) are used over which the averages are computed to get the result. A
Markov chain is denoted by index s, 1≤s≤N . Notice, that N and T are the parameters of a stochastic
process: the mathematical expectations of the number and length of Markov chains respectively. Thus,
N and T do not depend on the matrix size, but depend only on the required precision of computation
and the norm of matrix [9]. In the following, we introduce matrix E such that ep,q = dp,q/pp,q.

Banded and sparse matrices

The Monte Carlo method, because of the probabilistic nature, produces the possibility to cut off the
zero parts of computations. Observe that the Monte Carlo methods operates with rows and columns
of the matrix not as objects with fixed ordered structures but as sets of elements which are selected
for computations in an arbitrary order. Thus, the number of elements in the sets does not affect the
computation structure and zero elements can be easily excluded from the set [10]. Suppose, the size of
matrix is 1024× 1024, and there are 1% non-zero elements. Thus, there are about 10000 elements that
can be rearranged as a new, dense matrix of size 100× 100.

Conclusion

In this paper we present a linear algebra processor that is based on a novel, Monte Carlo method approach
for matrix inversion. This approach allows us to achieve significant improvement in performance and to
reduce the amount of required hardware. Also, the same approach is easily used for banded and sparse
matrices reducing significantly the time and hardware resources.
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