Use of a reduced Schiff-Base ligand to prepare novel chloro-bridged chains of rare Cu(II) trinuclear complexes with mixed azido/oxo and chloro/oxo bridges

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Biswas, A., Drew, M. G. B., Gómez-García, C. J. and Ghosh, A. (2010) Use of a reduced Schiff-Base ligand to prepare novel chloro-bridged chains of rare Cu(II) trinuclear complexes with mixed azido/oxo and chloro/oxo bridges. Inorganic Chemistry, 49 (17). pp. 8155-8163. ISSN 0020-1669 doi: 10.1021/ic101183n

Abstract/Summary

Two mixed bridged one-dimensional (1D) polynuclear complexes, [Cu3L2(mu(1,1)-N-3)(2)(mu-Cl)Cl](n) (1) and {[Cu3L2(mu-Cl)(3)Cl]center dot 0.46CH(3)OH}(n), (2), have been synthesized using the tridentate reduced Schiff-base ligand HL (2-[(2-dimethylamino-ethylamino)-methyl]-phenol). The complexes have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. In both complexes the basic trinuclear angular units are joined together by weak chloro bridges to form a 1D chain. The trinuclear structure of 1 is composed of two terminal square planar [Cu(L)(mu(1,1)-N-3)] units connected by a central Cu(II) atom through bridging nitrogen atoms of end-on azido ligands and the phenoxo oxygen atom of the tridentate ligand. These four coordinating atoms along with a chloride ion form a distorted trigonal bipyramidal geometry around the central Cu(II). The structure of 2 is similar; the only difference being a Cl bridge replacing the mu(1,1)-N-3 bridge in the trinuclear unit. The magnetic properties of both trinuclear complexes can be very well reproduced with a simple linear symmetrical trimer model (H = JS(i)S(i+1)) with only one intracluster exchange coupling (J) including a weak intertrimer interaction (.j) reproduced with the molecular field approximation. This model provides very satisfactory fits for both complexes in the whole temperature range with the following parameters: g = 2.136(3), J = 93.9(3) cm(-1) and zj= -0.90(3) cm(-1) (z = 2) for 1 and g = 2.073(7), J = -44.9(4) cm(-1) and zJ = -1.26(6) cm(-1) (z = 2) for 2.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/18803
Identification Number/DOI 10.1021/ic101183n
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
Publisher American Chemical Society
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar