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VARIATIONAL APPROACH IN WEIGHTED SOBOLEV SPACES TO
SCATTERING BY UNBOUNDED ROUGH SURFACES∗

SIMON N. CHANDLER-WILDE† AND JOHANNES ELSCHNER‡

Abstract. We consider the problem of scattering of time harmonic acoustic waves by an un-
bounded sound soft surface which is assumed to lie within a finite distance of some plane. The paper
is concerned with the study of an equivalent variational formulation of this problem set in a scale
of weighted Sobolev spaces. We prove well-posedness of this variational formulation in an energy
space with weights which extends previous results in the unweighted setting [S. Chandler-Wilde and
P. Monk, SIAM J. Math. Anal., 37 (2005), pp. 598–618] to more general inhomogeneous terms in the
Helmholtz equation. In particular, in the two-dimensional case, our approach covers the problem of
plane wave incidence, whereas in the three-dimensional case, incident spherical and cylindrical waves
can be treated. As a further application of our results, we analyze a finite section type approximation,
whereby the variational problem posed on an infinite layer is approximated by a variational problem
on a bounded region.

Key words. nonsmooth boundary, radiation condition, variational formulation, weighted
Sobolev spaces, Helmholtz equation

AMS subject classifications. 35J05, 35J20, 35J25, 42B10, 78A45
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1. Introduction. This paper is concerned with the analysis of problems of scat-
tering by unbounded surfaces, in particular, with what are termed rough surface scat-
tering problems in the engineering literature. By the phrase rough surface, we will
denote throughout a surface which is a (usually nonlocal) perturbation of an infinite
plane surface such that the surface lies within a finite distance of the original plane.
Rough surface scattering problems in this sense arise frequently in applications, for
example, in modeling acoustic and electromagnetic wave propagation over outdoor
ground and sea surfaces, and have been studied extensively in the physics and engi-
neering literature from the points of view of developing effective numerical algorithms
or asymptotic or statistical approximation methods (see, e.g., Ogilvy [33], Voronovich
[42], Saillard and Sentenac [35], Warnick and Chew [43], DeSanto [18], and Elfouhaily
and Guerin [19]).

Despite this extensive practical interest, relatively little mathematical analysis of
these problems has been carried out. In particular, only in the last five years have
the first results been obtained, establishing well-posedness for three-dimensional (3D)
rough surface scattering problems, using integral equation methods (see Chandler-
Wilde, Heinemeyer, and Potthast [13, 14] and Thomas [39]) or variational formulations
(see Chandler-Wilde and Monk [11], Chandler-Wilde, Monk, and Thomas [15], and
Thomas [39]). The variational approach proposed in [11] for the sound soft acoustic
problem leads to explicit bounds on the solution in terms of the data and applies
to a rather general class of nonsmooth unbounded surfaces. The approach in [11] is
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extended to more general acoustic scattering problems in [39], including problems of
scattering by impedance surfaces and by inhomogeneous layers (see [15]).

In this paper we will rigorously analyze time harmonic acoustic scattering, seeking
to solve the Helmholtz equation with wave number k > 0,

Δu+ k2u = g ,

in the perturbed half-plane or half-space D ⊂ Rn, n = 2, 3. The scattering surface
Γ := ∂D is assumed to lie within a finite distance of some plane; for example, it may
be the graph of an arbitrary bounded continuous function. Moreover, we assume that
the support of g lies in an infinite layer S0 of finite thickness between the surface Γ and
some plane Γ0 above Γ and that g belongs to a weighted L2 space (1+r2)�/2L2(S0) for
some |�| < 1, where r denotes the radial distance within the layer S0. This function
space setting with weights acting only along the boundary of the unbounded domain
D covers the important problems of plane wave incidence in the two-dimensional
(2D) case and of incident spherical and cylindrical waves in the 3D case; see section 5.
While the methods we use and the results we derive can be adapted to other boundary
conditions, to keep things specific and to make use of earlier results [11, 15], we will
restrict our attention to the simplest case when a homogeneous Dirichlet boundary
condition u = 0 holds on Γ. The problem formulation is completed by a suitable
radiation condition, expressing that the wave scattered by the surface must radiate
away from the surface, and the introduced weights allow us to integrate this condition
into an equivalent variational formulation of the Dirichlet problem.

This paper is closest in its results to Chandler-Wilde and Monk [11], who studied
the same Dirichlet scattering problem in the case of right-hand sides g ∈ L2(S0).
Extending the approach of [11] in the unweighted space setting, we introduce an
equivalent variational formulation of this problem in an energy space with weights
which decay or increase as (1+r2)�/2 , |�| < 1, on the layer S0. Moreover, on the upper
boundary Γ0 of S0, the solution is required to satisfy a nonlocal boundary condition
involving the exact Dirichlet-to-Neumann map T . This condition is often used in a
formal manner in the rough surface scattering literature (e.g., [18]) so that, above the
rough surface Γ and the support of g, the solution can be represented in integral form
as a superposition of upward traveling and evanescent plane waves. This radiation
condition is equivalent to the upward propagating radiation condition proposed for
2D rough surface scattering problems in [10] and has recently been analyzed carefully
in the 2D case by Arens and Hohage [4]. Arens and Hohage also propose a further
equivalent radiation condition (a “pole condition”).

In contrast to the general case of a nonlocally perturbed plane surface, there
is already a vast literature on the variational approach applied to periodic diffrac-
tive structures (diffraction gratings) or to locally perturbed plane scatterers; see, e.g.,
Kirsch [27], Bonnet-Bendhia and Starling [6], Elschner and Schmidt [20], Bao and Dob-
son [5], Elschner et al. [21], Ammari, Bao, and Wood [1], and Elschner and Yamamoto
[22]. The assumption made in all of these papers leads to a variational problem over
a bounded region so that compact imbedding arguments can be applied and that
the sesquilinear form that arises satisfies a G̊arding inequality which simplifies the
mathematical arguments considerably compared to the cases studied in [11, 15, 39].
However, the detection of eigenfunctions of such periodic diffraction problems (e.g.,
trapped-mode solutions along diffraction gratings) requires more sophisticated meth-
ods, and we refer to Kamotskǐı and Nazarov [25, 26] and Nazarov [31] for important
results in this direction.
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This paper is organized as follows. In sections 2 and 3 we formulate the boundary
value problem and its variational formulation precisely, and we give the details about
our assumptions on D and about the radiation condition we impose. Section 3 is also
devoted to new continuity properties of the DtN map T in weighted Sobolev spaces
on Γ0.

In section 4 we study the well-posedness of the variational formulation in the
energy space with weights. Our main result, Theorem 4.1, is to show, for a range
of increasing and decreasing weights, that the problem is well-posed in the weighted
space setting if and only if it is well-posed in the unweighted space setting. This
result depends on technical estimates of the commutator of the DtN map T and the
operation of multiplication by the weight function; see Theorem 3.1. Combining this
result with previous results on well-posedness in the unweighted setting for sound soft
scattering [11], we are able to show well-posedness in a weighted space setting.

In section 5, to illustrate the importance of these results, we make two applica-
tions. First, in the 2D case, we prove existence of solution to the problem of plane
wave scattering by an unbounded sound soft surface, extending previous results de-
rived for the case when the boundary is the graph of a sufficiently smooth function
[17] to much more general surface profiles. We note that, even in the well-studied
case when the boundary is periodic (is a diffraction grating), the uniqueness result we
obtain is a significant extension of the results known to date [22]. We briefly discuss
why our methods do not extend to the case of plane wave incidence in the 3D case
(indeed, why this problem may not be well-posed), and we apply our results to prove
existence of solution to the 3D problems of scattering of incident spherical and cylin-
drical waves. In the second application of our results, we analyze the approximation of
the variational problem in the infinite layer S0 by a variational problem in a bounded
region (to which finite element methods can then be applied), with this bounded re-
gion coinciding with the original layer S0 inside a ball of radius R. We prove stability
and convergence of this approximation procedure and use our weighted space results
to prove error estimates as a function of R.

The final section 6 is concerned with the proof of our crucial commutator estimates
stated in Theorem 3.1. Note that the DtN map T is a pseudodifferental operator
on Rn−1 with a nonsmooth symbol so that the standard calculus of pseudifferential
operators acting in weighted Sobolev spaces (see, e.g., [34]) is not sufficient to obtain
the result.

2. The boundary value problem and radiation conditions. Let x =
(x, xn) ∈ R

n (n = 2, 3) with x ∈ R
n−1, and let D ⊂ R

n be an unbounded domain
such that, for some b < 0,

U0 ⊂ D ⊂ Ub , Ub := {x : xn > b} .(2.1)

For h ∈ R, let Γh := {x : xn = h} and Sh := D\Uh. The variational problem will be
posed on the open set S0 which lies between the rough surface Γ = ∂D and the plane
(or line) Γ0 (cf. Figure 2.1). In addition to (2.1), we will assume that D satisfies the
condition that

x ∈ D ⇒ x + sen ∈ D for all s > 0 ,(2.2)

where en denotes the unit vector in direction xn. Condition (2.2) is satisfied if Γ is
the graph of a continuous function but also allows more general domains. We now
introduce weighted L2 and Sobolev spaces. For � ∈ R, l ∈ N and a domain G ⊂ Rn,
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Γ0

Γ

S0

x =bn

x =0n

Fig. 2.1. Geometrical setting of the scattering problem.

define the Hilbert spaces

L2
�(G) := {u ∈ L2

loc(G) : (1 + x2)�/2u ∈ L2(G)} ,
H l

�(G) := {u ∈ H l
loc(G) : (1 + x2)�/2u ∈ H l(G)} ,

equipped with the corresponding canonical norms

‖u‖L2
�(G) =

(∫
G

∣∣(1 + x2)�/2u
∣∣2dx)1/2

,

‖u‖Hl
�(G) =

⎛
⎝ l∑

j=0

∫
G

∣∣∇j(1 + x2)�/2u
∣∣2dx

⎞
⎠

1/2

,

∇ = ∇x .

The space Vh,� is then defined, for h ≥ 0, as the closure of {u|Sh
: u ∈ C∞

0 (D)} in the
norm

‖u‖Vh,�
= ‖u‖H1

�(Sh) =

(∫
Sh

(∣∣(1 + x2)�/2u
∣∣2 + ∣∣∇((1 + x2)�/2u)|2

)
dx

)1/2

.(2.3)

We set V0,� = V� in the following, which is the energy space for our variational
problem. Moreover, we introduce the weighted Sobolev space

Hs
�(Γh) := {v ∈ Hs

loc(Γh) : (1 + x2)�/2v ∈ Hs(Γh)} , s, � ∈ R ,

equipped with the canonical norm ‖v‖Hs
�(Γh) = ‖(1 + x2)�/2v‖Hs(Γh), where H

s(Γh)

is identified with the Sobolev space Hs(Rn−1) with norm

‖v‖Hs(Rn−1) =

(∫
Rn−1

(1 + ξ2)s|Fv|2dξ
)1/2

.(2.4)

Here Fv denotes the Fourier transform of v defined by

Fv(ξ) = (2π)−(n−1)/2

∫
Rn−1

exp(−ix · ξ)v(x) dx , ξ ∈ R
n−1 ,

with the inverse transform given by

F−1w(x) = (2π)−(n−1)/2

∫
Rn−1

exp(ix · ξ)w(ξ) dξ , x ∈ R
n−1 .
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Note that F is an isometry of L2(Rn−1) onto itself and also an isometry of L2
�(R

n−1)
onto H�(Rn−1) since, on using the norm (2.4) and the relation F 2u(x) = u(−x) , x ∈
Rn−1,

‖Fu‖2H�(Rn−1) =

∫
Rn−1

(1 + x2)�|F 2u|2dx =

∫
Rn−1

(1 + x2)�|u|2dx , u ∈ C∞
0 (Rn−1) .

More generally, F is an isomorphism of Hs
�(R

n−1) onto H�
s (R

n−1) for all s, � ∈ R;
see [34, 41]. From time to time, we will make use of the following lemma, the proof of
which is obvious.

Lemma 2.1. Suppose h ≥ 0 and � ∈ R. For u ∈ Vh,�, let

‖u‖′ :=
(∫

Sh

(1 + x2)�
(∣∣u∣∣2 + ∣∣∇u|2)dx)1/2

.

Then ‖ · ‖′ is a norm on Vh,� that is equivalent to the norm ‖ · ‖Vh,�
; precisely, for

some constants C1 and C2 depending only on �, ‖u‖Vh,�
≤ C1‖u‖′ ≤ C2‖u‖Vh,�

for
all u ∈ Vh,� and all h ≥ 0.

We now state our boundary value problem, formulated in a weighted space setting.
As indicated in the introduction, it is the study of this problem in weighted spaces,
and the application of the new results to which this gives rise, which is the object
of this paper. Indeed, a main result of this paper will be to show that solvability of
this boundary value problem in weighted spaces, for the range of � indicated, is a
consequence of its solvability without weights, i.e., for the case � = 0. (And this is
useful since solvability for the simpler case without weights is already established in
[11].) After stating the boundary value problem we will comment in the remainder of
this section on how the radiation condition is to be understood, in particular, when
� < 0. We will also comment on the restriction on the range of � (|�| < 1) in the
statement of the boundary value problem, explaining why this range is natural and
sharp. Precisely, we will point out that the radiation condition (2.5) does not make

sense for all u ∈ H
1/2
� when � ≤ −1, and we will show that the boundary value

problem is not, in general, solvable for � ≥ 1.
The boundary value problem (BVP). Given g ∈ L2

�(D), with |�| < 1 and supp g ⊂
S0, find u ∈ H1

loc(D) such that u|Sh
∈ Vh,� for every h > 0,

(Δ + k2)u = g in D ,

in a distributional sense, and the following radiation condition is satisfied:

u(x) = F−1 exp
(
−xn

√
ξ2 − k2

)
Fu0(ξ)

= (2π)−(n−1)/2

∫
Rn−1

exp
(
−xn

√
ξ2 − k2 + ix · ξ

)
Fu0(ξ) dξ , x ∈ U0 ,(2.5)

where u0 = u|Γ0 ∈ H
1/2
� (Γ0) (from the trace theorem) and

√
ξ2 − k2 = −i

√
k2 − ξ2

when |ξ| < k.
We explain in this paragraph and the next in what sense (2.5) is to be understood

and why, in the above formulation, we restrict � to the range � > −1 (the restriction
to � < 1 is explained at the end of this section). For � ≥ 0, the integral (2.5) exists
in the ordinary Lebesgue sense since Fu0 ∈ L2(Rn−1). Further, for u0 ∈ L2(Γ0), the
radiation condition (2.5) can be written in the alternative form

u(x) = 2

∫
Γ0

∂Φ(x, y)

∂yn
u(y) ds(y) = 2

∫
Rn−1

∂Φ(x, y)

∂yn
u0(y) dy , x ∈ U0 ,(2.6)
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where the fundamental solution Φ of the Helmholtz equation is given by

Φ(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

1

4π

exp(ik|x− y|)
|x− y| if n = 3,

i

4
H

(1)
0 (k|x− y|) if n = 2

for x = (x, xn), y = (y, yn) ∈ Rn, x 	= y. Here H
(1)
0 is the Hankel function of the first

kind of order zero. In the case n = 2, (2.6) is just the upward propagating radiation
condition (UPRC) proposed in [10], and we refer to [7, Chap. 5.1.1] for n = 3. For
further discussion of the rationale for the radiation condition (2.5) and its relationship
to other proposed radiation conditions for rough surface scattering, we refer the reader
to [11].

For � < 0, we understand (2.5) by extending the mapping u0 ∈ C∞
0 (Γ0) 
→ u(x),

given by (2.5) for any fixed x ∈ U0, to a bounded linear functional on H
1/2
� (Γ0).

The restriction � > −1 arises precisely because this extension is possible only for
the range � > −1. To see this, we observe that, since F is an isomorphism from

H
1/2
� (Rn−1) to H�

1/2(R
n−1), the mapping u0 
→ u(x) given by (2.5) extends to a

bounded linear functional on H
1/2
� (Γ0) for � < 0 if and only if fx ∈ H−�

−1/2(R
n−1),

where fx(ξ) := exp(−xn
√
ξ2 − k2+ ix · ξ). But this holds precisely for � > −1; in fact

(this can be deduced from (2.6) and Parseval’s theorem), the Fourier transform of fx
is given by

Ffx(y) = 2(2π)(n−1)/2 ∂Φ(x, y)

∂yn

∣∣
yn=0

,

and straightforward explicit calculations (see [10] for the case n = 2) yield that

|Ffx(y)| ∼ cnxn|y|−(1+n)/2(2.7)

as |y| → ∞, where the constant cn depends only on k and on the dimension n. From

this we deduce that Ffx ∈ H
−1/2
−� (Rn−1) so that fx ∈ H−�

−1/2(R
n−1) if and only if

� > −1. For � > −1, the extension of the mapping u0 
→ u(x), given by (2.5), to a

bounded linear functional on H
1/2
� (Γ0) is given explicitly by (2.6), the asymptotics

(2.7) guaranteeing the existence of the integral (2.6). Thus (2.6) makes explicit the
meaning of (2.5) in the case −1 < � < 0.

Remark 2.2. We note (and this is important in our later applications) that there
is a degree of arbitrariness in our radiation conditions (2.5) and (2.6). By this we
mean that we could replace xn in (2.5) by xn − c for any c > 0 (in fact, for any
c ∈ R such that supp g ⊂ Sc and Uc ⊂ D); the corresponding change to (2.6) would
be to replace Γ0 by Γc. We will show in Theorem 4.1 below that the boundary value
problem is uniquely solvable. Clearly (by a simple shift in the vertical direction of
the axes), we can deduce from this that the above boundary value problem with xn
replaced by xn− c in (2.5) is also uniquely solvable. We reassure the reader that these
unique solutions are the same! This is demonstrated for the case � = 0 in [11], and
this result, together with the density of L2(S0) in L

2
�(S0) for � < 0 and the stability

results proved in Theorem 4.1, implies that the solutions are the same also for |�| < 1.
We have explained above the restriction to � > −1 in the boundary value problem

formulation. We make the restriction � < 1 because we cannot, in general, expect the
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boundary value problem to be solvable for � ≥ 1 (with the solution satisfying that
u|Sh

∈ Vh,� for every h > 0). To see this, we consider the instructive case where D is
a half-plane or half-space, i.e., D = Uc, for some c ∈ (b, 0). Moreover, let us consider
the case when g is compactly supported in a ball centered on some point z ∈ S0 of
radius ε > 0 sufficiently small so that the ball lies in S0, and further let us assume
that g(x) ≡ 1 inside the ball.

We have remarked already that it is shown in [11] that the boundary value problem
is uniquely solvable when � = 0. For the specific case we are considering, the unique
solution to this boundary value problem can be written very explicitly. Let Gc(x, y)
denote the Dirichlet Green’s function for Uc, given by

Gc(x, y) := Φ(x, y)− Φ(x, y′c),

where y′c denotes the image of the point y in the plane yn = c. Then the solution to
the boundary value problem is

u(x) =

{
k−2(1 +Af(k|x− z|)), |x− z| ≤ ε,

Ck−2Gc(x, z), |x− z| > ε,
(2.8)

where the function f is defined by

f(r) :=

{
J0(r), n = 2,
sin r

r
, n = 3,

J0 is the Bessel function of the first kind of order zero, and the constants A and C
are chosen to ensure C1 continuity of u across the boundary of the ball; for example,
in 3D,

A = Q−1(iκ− 1) and C = 4πQ−1 exp(−iκ)(κ cos(κ)− 1),

where Q = κ cos(κ) − 1 + sin(κ)(1 − iκ) and κ = kε. It is easy to check that this
expression does satisfy Δu + k2u = g in D = Uc and that u|Sh

∈ Vh,� for all h > 0
if ρ = 0 (indeed, for all � < 1) follows from the asymptotics (2.9) below. To see that
u, given by (2.8), does satisfy the boundary value problem, it remains to check that
u satisfies the radiation condition; to do this, we can show that u satisfies the form
(2.6) of the radiation condition by applications of Green’s theorem to G0(x, ·) and u
in U0.

A first observation is that this example demonstrates that, if g is chosen carefully
enough, then the above boundary value problem is solvable for all � ∈ R. For certainly
it is true in this example that g, being compactly supported, satisfies g ∈ L2

�(D) for
all � ∈ R, and if ε is chosen so that C = 0, then u is also compactly supported,
and so u|Sh

∈ Vh,�, for all h > 0 and � ∈ R. But the example, slightly more subtly,
also illustrates that, in general, even if g is compactly supported and so satisfies
g ∈ L2

�(D) for all � > 0, we cannot expect that u|Sh
∈ Vh,� for any h > 0 and � ≥ 1

since u|S0 	∈ V0,� for � = 1 if C 	= 0. To see that this is true, it is enough to examine
the asymptotics of G(x, z) as x → ∞ in S0. From [12, eq. (4.2)] in the 2D case, and
by simple direct calculations in the 3D case we see that (cf. (2.7))

|G(x, z)| ∼ c′nk
4−n(xn − c)(zn − c)(k|x|)−(1+n)/2 as |x| → ∞(2.9)

uniformly in x ∈ S0 for some constant c′n > 0 depending only on n. From these
asymptotics, it is an easy calculation to see that u|S0 ∈ L2

�(S0) for � < 1 but not for
� = 1 so that u|S0 	∈ V0,1. This example explains why the boundary value problem is
not, in general, solvable in the case � ≥ 1.
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3. The Dirichlet-to-Neumann map and variational formulation. We now
consider a variational formulation in weighted Sobolev spaces of the above boundary
value problem, which involves the Dirichlet-to-Neumann operator on the artificial
boundary Γ0. As in [11] for � = 0, there exist continuous trace operators

γ− : V� → H1/2
� (Γ0) , γ+ : H1

�(U0\Uh) → H1/2
� (Γ0) , h > 0 .

Moreover, if u0 ∈ C∞
0 (Γ0) and u is given by (2.5), then

∂u

∂xn

∣∣∣
Γ0

= −Tγ+u ,

where the Dirichlet-to-Neumann map T is given by the pseudodifferential operator

Tv(x) := F−1t(ξ)Fv(ξ) , t(ξ) :=
√
ξ2 − k2 .(3.1)

Note that the symbol t of T is not smooth, which makes the study of (3.1) in weighted
Sobolev spaces more complicated than in the case � = 0 (which was treated in [11]).
The following commutator estimate is crucial for our analysis, and its proof is carried
out in section 6.

Theorem 3.1. Consider the commutator

C := T − (a2 + x2)�/2T (a2 + x2)−�/2·(3.2)

with parameter a > 0. Then, for ka ≥ 1 and |�| < 1, the norm of C on L2(Rn−1) is
bounded by c(�)

√
k/a.

Here and in the following, c(�) denotes a positive constant which depends only
on �. We remark (cf. the comments at the end of section 2) that the range |�| < 1 in
this theorem is optimal, i.e., this result does not hold for � = ±1. This follows in part
from the duality exhibited between positive and negative values of � in the proof of
Theorem 4.1 in section 6 below, which shows that the statement in this theorem holds
for � = −1 if and only if it holds for � = 1. Further, if the above theorem were to
hold for ρ = 1, then the proof of Theorem 4.1 below would extend to the case ρ = 1,
which would contradict the example of a solution of the boundary value problem with
g ∈ L2

1(D) but u0 	∈ V0,1 at the end of section 2.
Sometimes the following weaker version of Theorem 3.1 is sufficient, the proof of

which is analogous but simpler.
Lemma 3.2. For fixed k > 0 and a = 1, the norm of (3.2) on L2(Rn−1) is bounded

by some constant c(�) for |�| < 1.
The following lemma describes the continuity properties of T .
Lemma 3.3. (i) For any s ∈ R, T : Hs(Rn−1) → Hs−1(Rn−1) is bounded.
(ii) For |�| < 1, 0 ≤ s ≤ 1, T : Hs

�(R
n−1) → Hs−1

� (Rn−1) is bounded.
Proof. (i) follows by taking the Fourier transform and using the estimate |t(ξ)| ≤

c(1 + ξ2)1/2 on Rn−1; see also [11]. To prove (ii) for � 	= 0, we apply the commutator
estimate of Lemma 3.2 to get the continuity

C̃ := (1 + x2)−�/2T − T (1 + x2)−�/2· : L2(Rn−1) → L2
�(R

n−1) ,

and by the continuous imbeddings Hs
� ⊂ L2

� ⊂ Hs−1
� , the operator C̃ : Hs(Rn−1) →

Hs−1
� (Rn−1) is bounded. Moreover, by (i), (1 + x2)−�/2T : Hs(Rn−1) → Hs−1

� (Rn−1)

is bounded so that T (1+x2)−�/2 · is bounded there, too. This implies the result.
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To state the variational formulation of (BVP), we use the notation

(u, v) :=

∫
S0

uv̄ dx

and define the continuous sesquilinear form B : V� × V−� → C by

B(u, v) := (∇u,∇v)− k2(u, v) +

∫
Γ0

γ−v̄ T γ−u ds(x) .(3.3)

Note that this sesquilinear form is well defined and continuous on V�×V−� for |�| < 1
as a consequence of Lemma 3.3 with s = 1/2.

The variational formulation (V). Given g ∈ L2
�(S0), |�| < 1, find u ∈ V� such that

B(u, v) = −(g, v) for all v ∈ V−� .(3.4)

As in [11], the equivalence of (BVP) and (V) can be proved using the following
weighted version of Lemma 3.2 in that paper.

Lemma 3.4. Let |�| < 1.

(i) If (2.5) holds with u0 ∈ H
1/2
� (Γ0), then u ∈ H1

�(U0\Uh) for every h > 0.
(ii) Furthermore, we have (Δ + k2)u = 0 in U0, γ+u = u0, and∫

Γ0

v̄ T γ+u dx+ k2
∫
U0

uv̄ dx−
∫
U0

∇u · ∇v̄ dx = 0 for all v ∈ C∞
0 (D) .

As in [11] (for � = 0), assertion (ii) is a consequence of (i). We will prove Lemma
3.4 (i) in section 6 by applying our commutator estimates. Following [11], Lemma 3.4
then implies Lemma 3.5.

Lemma 3.5. If u is a solution of (BVP), then u|S0 satisfies (V). Conversely, let
w be a solution of (V). If we set u = w in S0 and define u in U0 to be the right-hand
side of (2.5) with u0 = γ−w, and extend the definition of g to D by setting g = 0 in
U0, then u is a solution of (BVP).

Remark 3.6. We note that the equivalence of (BVP) and (V) stated in Lemma
3.5 holds whenever (2.1) holds. In particular, the proof is not dependent on (2.2).
Further, we note that there is no requirement that Γ0 ⊂ S0; it may be the case, for
example, that S0 is a bounded open set, which need not necessarily be connected. In
the case that Γ0 	⊂ S0, the action of the trace operator γ− on V� in (3.3) should be
understood by extending the definition of the functions in V� by zero to the whole
of the strip Ub \ U0 from S0, which is their initial domain of definition. This implies
that, for u ∈ V�, γ−u = 0 on Γ0 \ S0.

4. Existence and uniqueness results in weighted spaces. We shall estab-
lish that (BVP) and the equivalent problem (V) are uniquely solvable by using the
result of [11, Thm. 4.1] in the nonweighted case and a perturbation argument based on
the commutator estimates. By Lemma 3.3 (ii), the form (3.3) generates a continuous
linear operator B� : V� → V ∗

−�, where V
∗
−� is the dual of V−� (the space of continous

antilinear functionals on V−�) with respect to the scalar product (·, ·) in L2(S0).
Theorem 4.1. Under the assumptions (2.1), (2.2), and |�| < 1, the operator

B� is invertible. In particular, (V) and hence (BVP) have a unique solution for all
g ∈ L2

�(S0).
For � = 0, this was proved in [11, Thm. 4.1] using a Rellich identity and the

generalized Lax–Milgram theorem. Moreover, an explicit bound for the norm of B−1
0
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in terms of k and |b| was given there (using wave number dependent Sobolev norms on
S0 and Γ0; see Remark 4.2 below). A significant idea in the proof of this theorem for
the case � 	= 0 is the use of a perturbation argument, reducing the proof of invertibility
for � 	= 0 to that for � = 0. This idea has been used previously to study rough surface
scattering in 2D (n = 2) in weighted spaces of continuous functions via integral
equation methods in [2, 3]. A commutator result for boundary integral operators (cf.
Theorem 4.1) plays in [2] an important role, but the idea there is to prove that the
commutator is compact, or at least preserves Fredholmness, rather than to show the
stronger and more constructive result that the commutator is sufficiently small in
norm. (And it should be noted that the proof of properties of the commutator in [2]
is very much more straightforward than the proof of Theorem 3.1, not least because
the kernels of the boundary integral operators in [2] are absolutely integrable.) A
key ingredient in our commutator estimate, Theorem 3.1, is the parameter a in the
weight factor. We note that the idea of introducing such a parameter into commutator
estimates goes back at least to Shubin [36, Thm. 5.3], although we seem to be the
first to use this idea in an estimate of the commutator of a convolution operator with
multiplication by a weight function in the case when the convolution operator has a
nonsmooth symbol.

Proof for � 	= 0. Introduce equivalent norms ‖u‖L2
�
= ‖(a2 + x2)�/2u‖L2 with

parameter a > 0, and modify the norm (2.3) in V� correspondingly. We will choose
a > 0 sufficiently large, and set, for u ∈ V�, ϕ ∈ V−�,

v = (a2 + x2)�/2u ∈ V0 , ψ = (a2 + x2)−�/2ϕ ∈ V0 .

Then we obtain from (3.3)

B(u, ϕ) = B(v, ψ) +K(v, ψ) ,(4.1)

where K = K1 +K2 with

K1(v, ψ) = (∇(a2 + x2)−�/2v,∇(a2 + x2)�/2ψ)− (∇v,∇ψ)
= (v∇(a2 + x2)−�/2, ψ∇(a2 + x2)�/2) + (∇v, ψ(a2 + x2)−�/2∇(a2 + x2)�/2)

+ (v(a2 + x2)�/2∇(a2 + x2)−�/2,∇ψ)
(4.2)

and

K2(v, ψ) =

∫
Γ0

{
(a2 + x2)�/2ψ̄ T (a2 + x2)−�/2v − ψ̄ T v

}
dx = −

∫
Γ0

ψ̄ Cv dx(4.3)

with C defined in (3.2). For (4.2) we obtain the estimate

|K1(v, ψ)| ≤
( |�|
2a

)2

‖v‖L2(S0)‖ψ‖L2(S0) +

( |�|
2a

)(‖∇v‖L2(S0)‖ψ‖L2(S0)

+ ‖v‖L2(S0)‖∇ψ‖L2(S0)

)
≤ |�|

2a
max

(
1,

|�|
2a

)
‖v‖V0‖ψ‖V0 .

(4.4)

Note that

sup
S0

∣∣∇(a2 + x2)|�|/2
∣∣(a2 + x2)−|�|/2 ≤ |�|/2a,

and compare [15, sect. 4].
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Applying Theorem 3.1 to (4.3), we get

|K2(v, ψ)| ≤ c(�)
√
k/a ‖γ−v‖L2(Γ0) ‖γ−ψ‖L2(Γ0) ,(4.5)

and since ‖γ−v‖L2(Γ0) ≤ ‖γ−v‖H1/2(Γ0) ≤ c‖v‖V0 , (4.4) and (4.5) then imply that the
norm of the operator K0 : V0 → V ∗

0 generated by the form K tends to zero as a→ ∞.
Finally, from (4.1), we have

B� = (a2 + x2)−�/2(B0 +K0)(a
2 + x2)�/2 · .(4.6)

Since B0 is invertible, this operator is invertible provided that a is sufficiently
large.

Remark 4.2. Introducing norms dependent on the wave number k and/or the
parameter a > 0, defined by

|||v|||H1/2(Γ0) =

(∫
Rn−1

(k2 + ξ2)|Fv|2 dξ
)1/2

,

|||u|||V� =

(∫
S0

(
k2|(a2 + x2)�/2u|2 + |∇

(
(a2 + x2)�/2u

)
|2
)
dx

)1/2

,

|||g|||L2
�(Sh) =

(∫
Sh

|(a2 + x2)�/2g|2 dx
)1/2

on H1/2(Γ0), V�, and L
2
�(Sh), respectively, we can obtain a bound of the norm ‖B−1

� ‖
of B−1

� : V ∗
−� → V� in terms of κ = k|b|, provided that the parameter a > 0 is chosen

sufficiently large. From (4.4) we see that

|K1(v, ψ)| ≤ |�|
2ka

(
1 +

|�|
2ka

)
|||v|||V0|||ψ|||V0 ,

and since (cf. [11])

‖γ−v‖L2(Γ0) ≤ k−1/2|||γ−v|||H1/2(Γ0) ≤ k−1/2|||v|||V0 ,

(4.5) implies that

|K2(v, ψ)| ≤ c(�)√
ka

|||v|||V0|||ψ|||V0 .

Thus we have, for ka ≥ 1 and |�| < 1,

|K0(v, ψ)| ≤
( |�|
2ka

(
1 +

|�|
2ka

)
+
c(�)√
ka

)
|||v|||V0|||ψ|||V0 ≤ |�|+ c(�)√

ka
|||v|||V0|||ψ|||V0 ,

so that ‖K0‖ ≤ (|�|+ c(�))/
√
ka. Taking the bound

‖B−1
0 ‖ ≤ γ := 1 +

√
2κ(κ+ 1)2

from [11, Thm. 4.1] and using (4.6), we obtain the norm estimate

‖B−1
� ‖ ≤ 2γ,(4.7)
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provided that

‖K0‖ ≤ (|�|+ c(�))/
√
ka ≤ 1

2γ
≤ 1

2
‖B−1

0 ‖,

which holds for a ≥ 4γ2(|�| + c(�))2/k. Since (V) written in operator form is the
equation B�u = g̃, where g̃ ∈ V ∗

−� is defined by g̃(v) = (g, v), v ∈ V−�, this implies
that the solution u of (V) satisfies

|||u|||V� ≤ 2γ|||g̃|||V ∗
−�

≤ 2γk−1|||g|||L2
�(S0),(4.8)

provided ka ≥ max(1, 4γ2(|�|+ c(�))2).

5. Applications.

5.1. Plane wave incidence, diffraction gratings, and other scattering
problems. As an application of Theorem 4.1, the problem of plane wave incidence
in the 2D case (n = 2) can be treated. That is, it can be shown, in appropriate
function spaces, that the scattering problem for plane wave incidence has exactly one
solution in 2D. (For a brief discussion of what goes wrong in the 3D case, see Remark
5.5 below, and see Remark 5.6 for details of 3D scattering problems which can be
tackled by Theorem 4.1.) The incident plane wave has the form

vin(x) = exp(ik[sin θ x1 − cos θ x2]) ,

where θ is the angle of incidence, with |θ| < π/2. In this problem, we look for the
total field v = vsc + vin, vsc being the unknown scattered field, such that

(Δ + k2)v = 0 in D , v = 0 on Γ ,(5.1)

and vsc satisfies an appropriate radiation condition.
This 2D rough surface scattering problem with plane wave incidence has been

treated before, by integral equation methods, in [17], where it is shown that there
exists exactly one solution v ∈ C2(D)∩C(D̄) such that v is bounded in Sh, for every
h > 0, and vsc satisfies the radiation condition in the form (2.6) (the UPRC in [17]).
However, the proof in [17] is only for the case where ∂D is the graph of a sufficiently
smooth (C1,1) function. (This, or at least a restriction to Lyapunov surfaces, is an
essential restriction due to the compactness arguments in the existence proofs in [17].)
In this section we will establish unique existence of solution for much more general
surfaces, with only the constraints (2.1) and (2.2) on ∂D that we impose throughout
the paper.

To use the results of the previous section which are formulated in a Sobolev space
setting, including the results of Remark 4.2 which are formulated in terms of wave
number dependent norms, we will replace the assumption that v is bounded in Sh by
an assumption that v|Sh

∈ V∞
h , for all h > 0, where

V∞
h := {w ∈ Vh,−1 : |||w|||V ∞

h
<∞}.

In this definition the (wave number dependent) norm |||w|||V ∞
h

on V∞
h is defined by

|||w|||V ∞
h

:= sup
m∈Z

|||w|Sm
h
|||H1(Sm

h ) , Sm
h := {x = (x1, x2) ∈ Sh : Am < x1 < A(m+ 1)} ,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2566 SIMON N. CHANDLER-WILDE AND JOHANNES ELSCHNER

A > 0 is a parameter at our disposal, and ||| ·|||H1(Sm
h ) (cf. Remark 4.2) is a wave number

dependent norm on H1(Sm
h ), equivalent to the usual norm, defined by

|||w|||H1(Sm
h ) :=

(∫
Sm
h

(
k2|w|2 + |∇w|2) dx

)1/2

.

It is easy to see that V∞
h is a Banach space and that the different choices of A > 0 in

the definition of ||| · |||V ∞
h

provide a family of equivalent norms on V∞
h .

In terms of V∞
h our formulation of the plane wave scattering problem is as follows.

Plane wave scattering problem (PW). Given k > 0 and θ ∈ (−π/2, π/2), find
v ∈ H1

loc(D) ∩ C2(D) such that v|Sh
∈ V∞

h , for every h > 0,

Δv + k2v = 0 in D,

and such that vsc := v − vin satisfies the UPRC (2.6).
Our main result in this subsection is the following, which is an immediate conse-

quence of Theorem 5.3 below.
Theorem 5.1. The problem (PW) has exactly one solution. Moreover, for every

h > 0, there exists a constant Cp > 0, depending only on κ = k|b|, kh, and kA, such
that |||v|Sh

|||V ∞
h

≤ Cp.
An interesting application of this result is the much studied diffraction grating

case, where D is periodic in the horizontal direction with some period A > 0, i.e.,

x = (x1, x2) ∈ D ⇔ (x1 +A, x2) ∈ D.(5.2)

The standard formulation of the problem of plane wave scattering in the diffraction
grating case is the following (e.g., [20, 22]). In this formulation the function space V qp,θ

h

denotes the set of functions in H1
loc(Sh) that vanish on ∂D and are quasiperiodic in

the x1-direction with the same period and phase shift as the incident wave; more
precisely,

V qp,θ
h := {w ∈ V∞

h : w((x1 +A, x2)) = w(x) exp(ikA sin θ), x ∈ Sh}.

Note that, for w ∈ V qp,θ
h , the norm |||w|||V ∞

h
simplifies to

|||w|||V ∞
h

= |||w|S0
h
|||H1(S0

h)
.

Diffraction grating plane wave scattering problem (DGPW) (e.g., [22]). Given

k > 0 and θ ∈ (−π/2, π/2), find v ∈ H1
loc(D) ∩ C2(D) such that v|Sh

∈ V qp,θ
h , for

every h > 0,

Δv + k2v = 0 in D,

and such that vsc := v− vin satisfies the Rayleigh expansion radiation condition, that
is,

(5.3) vsc(x) =
∑
m∈Z

um exp(ik[αmx1 + βmx2]), x ∈ U0,

where the um are complex constants, αm := sin θ + 2πm/(kA), and

βm :=

{ √
1− α2

m, |αm| ≤ 1,

i
√
α2
m − 1, |αm| > 1.
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It is shown in [22] that (DGPW) has exactly one solution in the case that ∂D is
the graph of an (A-periodic) Lipschitz function, by extending well-known arguments
(see, e.g., [27]), which apply in the case when ∂D is the graph of a smooth function,
to the nonsmooth Lipschitz case. The following corollary of Theorem 5.1 extends that
result further to the much more general case, where ∂D is required only to satisfy
(2.1), (2.2), and (5.2).

Corollary 5.2. Suppose that (5.2) holds. Then (DGPW) has exactly one solu-
tion, and this is the unique solution of (PW).

Proof. Suppose that v satisfies (DGPW). Then it is clear that v satisfies (PW),
provided we can show that v satisfying the Rayleigh expansion radiation condition
implies that v satisfies the UPRC (2.6). But this is shown in [8]. Conversely, suppose
that v satisfies (PW). Then

v((x1 +A, x2)) = v(x) exp(ikA sin θ), x ∈ D,(5.4)

for otherwise w, defined by w(x) = v((x1 + A, x2)), is another, distinct solution of
(PW), which contradicts Theorem 5.1. Thus v satisfies (DGPW) provided that (5.3)
holds. But, in the case that (5.4) is satisfied, it is shown in [8] that (2.6) can be written
in the form (5.3).

Thus v satisfies (PW) if and only if v satisfies (DGPW), and the corollary follows
from Theorem 5.1.

We will prove Theorem 5.1 by applications of Theorem 4.1 and the observations
in Remark 4.2. To apply these results, we introduce the function u ∈ H1

loc(D)∩C1(D),
related to the solution v of (PW) by the formula

u(x) := vin(x)χ(x2) + vsc(x) = v(x) + (χ(x2)− 1)vin(x), x ∈ D ,(5.5)

where χ ∈ C1(R) is defined by

χ(t) :=

⎧⎪⎪⎨
⎪⎪⎩

1, t < |b|,
cos2

(
π(t− |b|)

2|b|
)
, |b| ≤ t ≤ 2|b|,

0, t > |b|.
Moreover, define gP ∈ L∞(D) by

gP (x) = (χ′′(x2)− 2ik cos θ χ′(x2)) vin(x), x ∈ D,(5.6)

so that (Δ+k2)u = gP in a distributional sense in D, supp gP ⊂ S−b, and gP ∈ L2
�(D)

for � < −1/2. Then Theorem 5.1 is an immediate consequence of the following result
whose proof is largely applications of Theorem 4.1.

Theorem 5.3. Define gP ∈ L∞(D) by (5.6). Then v satisfies (PW) if and only
if v and u are related by (5.5) and u satisfies the following boundary value problem:
given � ∈ (−1,−1/2), find u ∈ H1

loc(D) such that u|Sh
∈ Vh,�, for every h > 0,

(Δ + k2)u = gP in D ,

in a distributional sense, and u satisfies the radiation condition (2.5) with xn (= x2)
replaced by x2−b. Moreover, for every h > 0, there exists a constant C′

p > 0, depending
only on κ = k|b|, kh, and kA, such that |||u|Sh

|||V ∞
h

≤ C′
p.

Proof. It follows from the observations immediately above the theorem that if v
satisfies (PW), then u, defined by (5.5), satisfies the above boundary value problem.
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The only difficulty is to show the radiation condition. To see this we note that vsc

satisfies the radiation condition (2.6), from which it follows (see [9] and cf. Remark
2.2) that vsc satisfies (2.6) with Γ0 replaced with Γc, for all c > 0, in particular, with
c = −b. Since u = vsc in Uc, it is immediate that v satisfies (2.6) with Γ0 replaced by
Γ−b, which is equivalent (see Remark 2.2) to (2.5) with x2 replaced by x2 + b.

We next observe that it follows from Theorem 4.1 that the boundary value prob-
lem for u has exactly one solution (u satisfies exactly a boundary value problem of the
form of section 2 after vertical translation of the axes by a distance |b|). The theorem
is thus proved if we can show that this solution satisfies that u|Sh

∈ V∞
h , for every

h > 0, and the bound |||u|Sh
|||V ∞

h
≤ C′

p.

To see this we make the following construction. Given h > 0, set h̃ := max(|b|, h)
and, for j ∈ Z, define Dj , gj ∈ L∞(Dn) and uj ∈ H1

loc(Dj) by

Dj := {(x1 + jA, x2 − h̃) : x = (x1, x2) ∈ D},

gj(x) := gP ((x1 − jA, x2 + h̃)) , uj(x) := u((x1 − jA, x2 + h̃)) , x ∈ Dj .

Then uj satisfies (BVP), with D replaced by Dj and g replaced by gj in (BVP).
(Since u satisfies (2.5) with x2 replaced by x2 − b, it follows in the first instance that
uj satisfies (2.5) with x2 replaced with x2 − b− h̃, but this implies that (2.5) holds as
written, by Remark 2.2.) Thus Theorem 4.1 and Remark 4.2 apply for � ∈ (−1,−1/2).
In particular, choosing ka sufficiently large (by Remark 4.2, how large is sufficient
depends on only the values of κ and �), it follows from (4.8) that, for some constant
cκ > 0 depending only on κ̃ := k(|b|+ h̃) and �, |||uj|||V j

�
≤ cκk

−1|||gj|||L2
�(S0,j), for j ∈ Z,

where S0,j and V
j
� denote S0 and V�, respectively, in the case D = Dj . Since, for some

constant c > 0 depending only on �,

|||gj|||L2
�(S0,j) ≤

(∫
S0,j

(a2 + x21)
� dx

)1/2

‖gj‖L∞(S0,j) ≤ c|b|1/2a�+1/2‖gP‖L∞(S−b) ,

we see that

|||uj|||V j
�
≤ c′κ|b|−1/2a�+1/2, j ∈ Z,

for some constant c′κ depending only on κ̃ and �. Careful calculations yield that, again
for some constant c > 0 depending only on � and where S0

0,j denotes S0
0 in the case

D = Dj,

|||uj |S0
0,j
|||H1(S0

0,j)
≤ c(a2 +A2)−�/2|||uj|||V j

�
, j ∈ Z.

Thus

|||u|Sh
|||V ∞

h
≤ |||u|Sh̃

|||V ∞
h̃

= sup
j∈Z

|||uj|S0
0,j
|||H1(S0

0,j)
≤ c′′κ

(
1 +A2/a2

)|�|/2
(ka)1/2,

where c′′κ > 0 depends only on κ̃ and �. Now this bound holds for all ka sufficiently
large, but how large is sufficient depends only on κ̃ and �. Thus, choosing such a suffi-
ciently large ka and choosing, say, � = −3/4, we see that the theorem is proved.

Remark 5.4. Theorem 5.3 explains how, in the 2D case, (PW) is equivalent to
an instance of (BVP). This enables us to prove solvability of (PW) via the refor-
mulation of (BVP) in variational form as (V). This is convenient for the purpose
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of proving Theorem 5.1 above, but, as a starting point for numerical computation
(cf. section 5.2 below), we would choose rather to reformulate (PW) directly in vari-
ational form. Arguing analogously to the proof of Lemma 3.5, in particular, using
Lemma 3.4 which applies to vsc, we can show that v satisfies (PW) if and only if, for
some � ∈ (−1,−1/2), v|S0 satisfies the following variational problem: find v ∈ V� such
that

B(u,w) = G(w) for all w ∈ V−� ,(5.7)

where G ∈ V ∗−� is defined by

G(w) =

∫
Γ0

γ−w̄
(
∂vin

∂x2
+ Tγ−vin

)
ds(x) , w ∈ V−� .(5.8)

The restriction to the range � < −1/2 arises since vin ∈ V� for � < −1/2 but not for
� = 1/2. Having solved this variational problem to determine v|S0 , v is determined
throughout D through (2.6) satisfied by vsc. Of course, this variational formulation
is well-posed by Theorem 4.1.

Remark 5.5. The above results show that the problem of plane wave incidence is
well-posed in the 2D case. In the 3D case, it seems to us likely that a solution to the
problem of plane wave incidence does not exist for every choice of domain D satisfying
(2.1) and (2.2). Certainly the methods of argument above do not extend to the 3D
case, for, in the 3D case, gP in Theorem 5.3 is in L2

�(D) only for � < −1 and G given
by (5.8) is in V ∗

−� only for � < −1, so that Theorem 4.1 does not apply. Further, even
the formulation of the 3D plane wave problem appears problematic in 3D. Precisely,
just as the radiation condition (2.5) does not extend to a bounded linear functional

on H
1/2
� (Γ0) for � < −1, it does not extend to a bounded linear functional on L∞(Γ0)

(which would require that the integral in (2.6) be absolutely convergent for every
u0 ∈ L∞(Γ0), which is true in 2D but not in 3D, as a consequence of the asymptotics
(2.9)). Thus it is difficult to envisage that the radiation condition (2.5) or (2.6) can
hold in general in the case of 3D plane wave incidence.

Remark 5.6. In the 3D case, the above approach does apply to prove unique
existence of solution in weighted spaces in the cases of incoming spherical or cylindrical
waves. That is, it applies to the cases, respectively, where

vin(x) := Φ(x, z) =
1

4π

exp(ik|x− z|)
|x− z| , x ∈ R

3 \ {z},(5.9)

for some z ∈ D, and

vin(x) = H
(1)
0

(
k
√
x21 +H2

)
, x ∈ R

3 \ ΣL,(5.10)

for some H ∈ R such that ΣL := {(0, x2, H) : x2 ∈ R} ⊂ D. This second case is the
case of an incident cylindrical wave generated by a line source occupying the line ΣL

which, without loss of generality, we choose to lie in the plane x1 = 0. The problem
in each case is to find the unknown scattered field vsc and the total field v = vsc+ vin

such that

(Δ + k2)vsc = 0 in D , v = 0 on Γ ,

and vsc satisfies an appropriate radiation condition.
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One way to make use of Theorem 4.1 to study these scattering problems is to
formulate each scattering problem as an instance of (BVP) in section 2. To do this
we can adapt the construction already used around (2.8). Precisely, in the spherical
wave case, we choose ε > 0 such that dist(z, ∂D) > ε and replace vin by ṽin which
coincides with vin except within distance ε of the source z, given by

ṽin(x) :=

{
vin(x), |x− z| > ε,

A+B
sin kr

r
, |x− z| ≤ ε,

where the constants A and B are chosen to ensure that ṽin ∈ C1(R3) (which is possible
provided that ε is chosen sufficiently small, e.g., if kε < 1). Then ṽin ∈ H2

loc(R
3) with

(Δ+ k2)vin = gS, where gS(x) := Ak2, |x− z| < ε, gS(x) := 0 otherwise. Similarly, in
the cylindrical wave case, we choose ε > 0 such that dist(ΣL, ∂D) > ε and replace vin

by ṽin which coincides with vin except within distance ε of the source ΣL, given by

ṽin(x) :=

{
vin(x),

√
x21 + (x3 −H)2 > ε,

A+BJ0

(
k
√
x21 + (x3 −H)2

)
,
√
x21 + (x3 −H)2 ≤ ε,

where the constants A and B are chosen to ensure that ṽin ∈ C1(R3). (Again this
is possible provided ε is chosen sufficiently small.) Then ṽin ∈ H2

loc(R
3) with (Δ +

k2)vin = gC , where gC(x) := Ak2,
√
x21 + (x3 −H)2 < ε, gC(x) := 0 otherwise. We

observe that gS is compactly supported so that gS ∈ L2
�(D) for every � ∈ R. Further,

it is an easy calculation to see that gC ∈ L2
�(D) for � < −1/2 but not for � = −1/2.

Since vin = ṽin, except in neighborhoods of z or ΣL which do not intersect ∂D, so
that, in particular, vin = ṽin in a neighborhood of ∂D, the substitution of vin by ṽin

does not change the scattered field vsc. Further, since ṽin ∈ H2
loc(R

3), the scattering
problem with this modified incident field can be formulated as an instance of (BVP).
Precisely, in the spherical wave case, we can formulate the scattering problem as
seeking the total field ṽ = ṽin + vsc which satisfies (BVP) for some � ∈ (−1, 1), with
g := gS ∈ L2

�(D) (and if supp g 	⊂ S0, we need to replace xn by xn − a in (2.5) for
some a > 0 such that supp g ⊂ Sa). Theorem 4.1 tells us that there is exactly one
solution to this boundary value problem and that this solution ṽ satisfies ṽ|Sh

∈ Vh,�
for every h ≥ 0 and � ∈ (−1, 1). In the cylindrical wave case, we seek the total field
ṽ = ṽin + vsc which satisfies (BVP) for some � ∈ (−1,−1/2), with g := gC ∈ L2

�(D)
(again, if supp g 	⊂ S0, we need to replace xn by xn − a in (2.5) for some a > 0 such
that supp g ⊂ Sa). Theorem 4.1 again tells us that there is exactly one solution and
that this solution ṽ satisfies ṽ|Sh

∈ Vh,� for every h ≥ 0 and � ∈ (−1,−1/2).

5.2. Analysis of a finite section method for the variational formulation.
An obvious approach to computing the solution to (BVP) numerically is to solve (V)
by a finite element method. This is a standard approach for the numerical treatment of
(DGPW) [20, 22], but in that case, the corresponding variational formulation, thanks
to the periodicity, reduces to one on S0

0 , a single period of S0. In the case of (V),
the region of integration is the whole infinite region S0. Thus a necessary first step
toward solving (V) numerically is to approximate (V) by a variational formulation on
a domain of finite size to which standard FEMs can then be applied.

We are not aware of any analysis of such an approximation for (V) or any similar
variational formulations for rough surface scattering problems. However, the analo-
gous approximation when boundary integral equation methods are applied to (BVP),
namely, truncation of the region of integration, which is the infinite boundary ∂D,
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to a finite part of that boundary (a so-called finite section approximation) has been
analyzed in both the 2D case [29] (and see [30, 23]) and, very recently, in the much
more difficult 3D case [24]. In [29, 24], convergence and stability of modifications of
the finite section method are proved. In the theses [30, 25] (cf. [16]), for the easier 2D
case, convergence rates are also established via results on stability and convergence
of the finite section method in weighted spaces of continuous functions.

In this section we prove stability and convergence of an approximation method in
the same spirit for (V). This approximation method consists simply of replacing S0

by a finite region S(R) ⊂ S0 which coincides with S0 in the region |x| < R+ 1 and of
making the same approximation for D so that D is replaced by D(R) ⊂ D with S(R) =
D(R) \ Ū0. The only constraint on the choice of S(R) is that (2.1) and (2.2) should
apply to D(R); this is the case, for example, for the simple explicit choice S(R) := {x =
(x, xn) ∈ S0 : |x| < R+ 1}. In addition to proving stability and convergence, we also
establish rates of convergence for the error measured in weighted spaces. In the case
when g, the source of the acoustic waves, is compactly supported, these results imply
that, locally in the energy norm, the error converges at a rate O(Rε−2) for every ε > 0.
This convergence rate is consistent with those obtained previously by methods specific
to the 2D case for boundary integral equation formulations [30, 16, 23]. For example,
the results in [30], in the case when the boundary Γ is the graph of a function which
is sufficiently smooth, imply a convergence rate R−2 locally in the uniform norm for
the solution of a boundary integral formulation when the source of the acoustic waves
is compactly supported and the finite section that is taken coincides with Γ inside a
ball of radius R.

Given g ∈ L2
�(S0), with |�| < 1, let u ∈ V� be the unique solution of the variational

problem (V) so that

B(u, v) = −(g, v) for all v ∈ V−� .(5.11)

For R > 0, we approximate problem (5.11) by a corresponding variational equation

on the bounded domain S(R). For � ∈ R and R > 0, let V
(R)
� denote the Hilbert space

V� in the case that we replace D by D(R); explicitly V
(R)
� denotes the completion of

{u|
S

(R)
0

: u ∈ C∞
0 (D(R))} in the norm

‖u‖
V

(R)
�

=

(∫
S

(R)
0

(∣∣(1 + x2)�/2u
∣∣2 + ∣∣∇((1 + x2)�/2u)|2

)
dx

)1/2

.(5.12)

We remark, as is easily seen from Lemma 2.1, that the norms ‖ · ‖
V

(R)
�

, � ∈ R, are

equivalent since S
(R)
0 is bounded so that, as linear spaces, for � ∈ R, V

(R)
� = V (R) :=

V
(R)
0 . The approximating variational problem is the following: find u(R) ∈ V (R) such

that

B(R)(u(R), v) = −(g, v) for all v ∈ V (R) .(5.13)

Here B(R) is the continuous sesquilinear form on V (R) × V (R) defined by (3.3) with
D replaced by D(R), i.e., defined by

B(R)(u, v) :=

∫
S

(R)
0

(∇u · ∇v̄ − k2uv̄) dx +

∫
Γ
(R)
0

γ−v̄ T γ−u ds(x) ,(5.14)

where Γ
(R)
0 := S

(R)
0 ∩ Γ0 (see Remark 3.6 for the interpretation of γ− in this case).
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Making the observation that we can view V
(R)
� as a closed subspace of V� (the

elements of V
(R)
� become elements of V� if we extend them by zero from S

(R)
0 to

S0), the analysis of the error in approximating u by u(R) follows the usual pattern
for analyzing the Galerkin method for variational problems via a generalized Céa’s
lemma. Precisely, if ũ ∈ V (R) ⊂ V�, then, for v ∈ V (R), applying (5.11),

B(R)(ũ, v) = B(ũ, v) = B(ũ− u, v)− (g, v) .

Subtracting this equation from (5.13), we see that

B(R)(ũ− u(R), v) = B(ũ− u, v) for all v ∈ V (R) .(5.15)

Now recall from section 4 that B� : V� → V ∗
−� is our notation for the bounded linear

operator induced by the continuous sesquilinear form B. Similarly, let B(R)
� : V

(R)
� →

V
(R)
−�

∗
denote the operator induced by the sesquilinear form B(R); in other words,

B(R)
� is just B� in the case that D is replaced by D(R). From Theorem 4.1 it is clear

that B(R)
� is invertible for every R > 0 and � ∈ (−1, 1). From Remark 4.2 it is clear,

moreover, that ‖(B(R)
� )−1‖ is bounded uniformly for R > 0, with a bound which

depends only on |b|, k, and �. Thus, from (5.15), it follows that, for �1 ∈ (−1, 1),

‖ũ− u(R)‖
V

(R)
�1

≤ c‖ũ− u‖V�1
,

where the constant c > 0, which depends only on |b|, k, and �1, is an upper bound

for ‖B�1‖ supR>0 ‖(B(R)
�1 )−1‖. Thus

‖u− u(R)‖V�1
≤ (1 + c) inf

ũ∈V
(R)
�1

‖ũ− u‖V�1
.(5.16)

To obtain a more concrete error estimate, choose a cutoff function χR ∈
C∞

0 (Rn−1) such that, for all R > 0,

χR(x) := 1 for |x| < R , χR(x) := 0 for |x| > R+ 1 , sup
Rn−1

{|χR|+ |∇χR|} ≤ c1

for some constant c1 > 0 independent of R. Defining ũ ∈ V
(R)
�1 by ũ(x) := u(x)χR(x),

x ∈ S0, we see by using Lemma 2.1 that, for −1 < �1 ≤ �, where S̃R
0 := {x ∈ S0 :

|x| > R} and c2, c3, and c4 denote further constants dependent only on � and |b|,

‖ũ− u‖V�1
= ‖(1− χR)u‖V�1

≤ c2

(∫
S̃R
0

(1 + x2)�1
(|u|2 + |∇u|2) dx

)1/2

≤ c3R
�1−�

(∫
S̃R
0

(1 + x2)�
(|u|2 + |∇u|2) dx

)1/2

≤ c4R
�1−� ‖u‖V� .

We see that we have proved the following theorem.
Theorem 5.7. Suppose g ∈ L2

�(S0) with |�| < 1, and let u ∈ V� be the unique
solution of the variational problem (V). Choose, for R > 0, approximating domains
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D(R) ⊂ D which satisfy (2.1) and (2.2) and are such that S(R) ⊂ S0 is bounded and
S(R) ⊃ ΩR := {x ∈ S0 : |x| < R + 1}. Then the approximating variational problem
(5.11) on the finite region S(R) has exactly one solution u(R) for every R > 0. Further,
for some constant c > 0 dependent only on k, �, �1, and |b|, it holds for −1 < �1 < �
that

‖u− u(R)‖
V

(R)
�1

≤ cR�1−� ‖u‖V�.

As a consequence, for every R1 > 0, it holds that ‖u − u(R)‖H1(ΩR1)
= O(R�1−�) as

R → ∞. In particular, if g ∈ L2
�(S0) for every � < 1, which holds, for example, if g

is compactly supported, then, for every ε > 0 and R1 > 0,

‖u− u(R)‖H1(ΩR1)
= O(Rε−2) as R → ∞ .

6. Commutator estimates. This section is devoted to the proofs of Theorem
3.1 and Lemma 3.4 (i). Let k > 0, a > 0, and consider the pseudodifferential operator
Ta on Rm, m := n− 1 = 1, 2, with symbol ta(ξ):

Tau(x) = F−1ta(ξ)Fu(ξ) , ta(ξ) := a−1
√
ξ2 − k2a2 .(6.1)

Here and in the following the square root is chosen so that its argument lies in
[−π/2, 0]:

ta(ξ) = (−i/a)
√
k2a2 − ξ2, |ξ| ≤ ka; ta(ξ) = (1/a)

√
ξ2 − k2a2, |ξ| > ka .(6.2)

We have T1 = T , t1 = t, where T and t are defined in (3.1).
Using a scaling argument, we reduce the assertion of Theorem 3.1 to a corre-

sponding estimate for the commutator defined by

Ca := Ta − (1 + x2)�/2Ta(1 + x2)−�/2 · .(6.3)

With Sau(x) := u(ax), we obtain FSau = a−mS1/aFu, and the same relation holds
with F replaced by F−1. Hence

amSaF
−1tFu = F−1(S1/at)S1/aFu = amF−1(S1/at)FSau ,

giving SaTu = TaSau, where Ta is the operator (6.1) with the symbol t(ξ/a) = ta(ξ).
From (3.2) and (6.3), we then have

SaC = TaSa − (1 + x2)�/2Ta(1 + x2)−�/2Sa = CaSa .(6.4)

Using the relation ‖Sau‖L2(Rm) = a−m/2‖u‖L2(Rm) and (6.4), we now observe that
Theorem 3.1 is equivalent to the following theorem.

Theorem 6.1. For ka ≥ 1 and |�| < 1, the commutator Ca defined in (6.3) has
norm ≤ c(�)

√
k/a on L2(Rm).

It is enough to consider � ∈ (0, 1) since the case of negative � then follows by
duality (with respect to the scalar product on L2(Rm)). We split the symbol ta as

ta = t(0) + t(1) =: χ(|ξ|) ta(ξ) + (1− χ(|ξ|)) ta(ξ) ,(6.5)

where χ is a suitable cutoff funtion (see below), and we consider the corresponding
decomposition of Ta,

Ta = T (0) + T (1) ,(6.6)
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where T (j) is defined by (6.1) with t(j) in place of ta. Then the commutator Ca takes
the form

Ca = C(0) + C(1) =:
(
T (0) − (1 + x2)�/2T (0)(1 + x2)−�/2 · )

+
(
T (1) − (1 + x2)�/2T (1)(1 + x2)−�/2 · ) .(6.7)

We will estimate the norm of the operators

N := (1 + x2)−�/2C(0) : L2(Rm) → L2
�(R

m) ,(6.8)

N̂u := FNF−1u, N̂ : L2(Rm) → H�(Rm) ,(6.9)

T̂ := t(1)(ξ)· : H�(Rm) → H�(Rm) .(6.10)

In view of (6.7)–(6.10) and recalling that F is an isometry of L2
�(R

m) onto H�(Rm)
for every � ∈ R, Theorem 6.1 then follows from Theorem 6.2.

Theorem 6.2. (i) For � ∈ (0, 1], the norm of N̂ is bounded by c(�)
√
k/a.

(ii) For � ∈ [0, 1), the norm of T̂ is bounded by c(�)
√
k/a, too.

We now choose the cutoff function χ ∈ C∞[0,∞) with 0 ≤ χ ≤ 1 and

χ(r) = 0 on |r − ka| ≤ 1/3 , χ(r) = 1 on |r − ka| ≥ 2/3 ,(6.11)

and such that, for some c > 0 independent of ka ≥ 1,

|∂rχ(r)| ≤ c on R
+ .(6.12)

Note that (6.11) implies

∂rχ(r) = 0 on {|r − ka| ≤ 1/3} ∪ {|r − ka| ≥ 2/3} .(6.13)

To prove Theorem 6.2, we need some auxiliary results.
Lemma 6.3. For ka ≥ 1, we have |∂rt(0)(ξ)| ≤ c

√
k/a on R+, where r = |ξ|.

Proof. Setting h(r) := ata(ξ) = (r − ka)1/2(r + ka)1/2 for r > ka and h(r) :=
iata(ξ) = (ka− r)1/2(r + ka)1/2 for r < ka, we obtain

∂rh =

{
r/h, r > ka,
−r/h, 0 ≤ r < ka,

∂2rh = −k2a2/h3 , r 	= ka ,

which implies that ∂jrh (j = 1, 2) do not change sign on (0, ka) and (ka,∞). Therefore,
the maximum of h on 1/3 ≤ |r−ka| ≤ 2/3 is attained at r = ka−2/3 or r = ka+2/3,
while the maximum of |∂rh| on |r − ka| ≥ 1/3 is attained at r = ka − 1/3 or r =
ka+1/3, and both maxima are bounded from above by c

√
ka. Together with (6.11)–

(6.13), this easily implies the result.
To prove Theorem 6.2 (i), we write (cf. (6.7)–(6.9))

N̂Fu(ξ) =

∫
Rm

b�(ξ − η) (t(0)(η)− t(0)(ξ))Fu(η)dη , u ∈ C∞
0 (Rm) ,(6.14)

with b� := F (1+x2)−�/2. Here the integral in (6.14) is well defined since Fu is rapidly
decreasing and b� ∈ L1(Rm) for � > 0 (see the next lemma), and we have used the
relation F (1 + x2)−�/2v = b� ∗ Fv for a function v of rapid decay, with ∗ denoting
convolution.

Lemma 6.4. For any � > 0, the functions b� and |ξ| ∇ξb� are rapidly decreasing
as |ξ| → ∞ and belong to L1(Rm).
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For the proof of this, we refer to [32, Chap. 8.1]; see also [37, Chap. 5.3].
Proof of Theorem 6.2 (i). From (6.14) and Lemma 6.3,

‖N̂Fu‖L2(Rm) ≤
∥∥∥∥
∫
Rm

|b�(ξ − η)| |ξ − η| sup
R+

|∂rt(0)| |Fu(η)| dη
∥∥∥∥
L2(Rm)

≤ c
√
k/a ‖ |ξ|b�‖L1(Rm) ‖Fu‖L2(Rm)

(6.15)

using the mean value theorem and Young’s inequality. Moreover, since

∇ξN̂Fu(ξ) =

∫
Rm

(
t(0)(η)− t(0)(ξ)

) ∇ξb�(ξ − η) Fu(η) dη

+

∫
Rm

b�(ξ − η) (−∇ξt
(0)(ξ)) Fu(η) dη ,

we obtain analogously

‖∇N̂Fu‖L2(Rm) ≤ c
√
k/a

(‖ |ξ|∇b�‖L1(Rm) + ‖b�‖L1(Rm)

) ‖Fu‖L2(Rm) .(6.16)

Together with Lemma 6.4, (6.15) and (6.16) imply that, for any � ∈ (0, 1], the opera-
tors N̂ : L2(Rm) → L2(Rm) and N̂ : L2(Rm) → H1(Rm) have norm ≤ c(�)

√
k/a. By

interpolation, we then get the result.
Proof of Theorem 6.2 (ii). We have to show that the multiplication operator

T̂ v = (1− χ(|ξ|)) a−1
√
ξ2 − k2a2 v : H�(Rm) → H�(Rm) , 0 ≤ � < 1 ,(6.17)

has norm ≤ c(�)
√
k/a. Note that the support of 1 − χ is contained in the set R :=

{|r − ka| ≤ 2/3}, r = |ξ|; see (6.11). By localization, (6.17) can be reduced to an
estimate of the form

‖qv‖H�(Rm) ≤ c(�)
√
k/a ‖v‖H�(Rm) , 0 ≤ � < 1 ,(6.18)

where

q(ξ) := a−1
√
ξm (ξm + 2ka)1/2 ψ(ξm)(6.19)

with ψ ∈ C∞
0 (−2/3, 2/3) fixed and

√
ξm = −i|ξm|1/2 for ξm < 0. This reduction is

clear for m = 1, where we have to localize near ξ1 = ka and ξ1 = −ka. For m = 2,
we parametrize the annulus R by ξ2 := r − ka and arclength ξ1 on |ξ| = r = ka and
need two local charts again to cover R. Note that the Jacobians of the corresponding
coordinate transformations (with respect to the original ξ-coordinates) are uniformly
bounded from above and below for ka ≥ 1. We omit the details since we present an
alternative approach in the 3D case below.

To prove (6.18), we first observe that the operator of multiplication by q1 :=
a−1(ξm + 2ka)1/2 ψ has norm

sup
R

|q1| ≤ c
√
k/a and ≤ sup

R

|q1|+ sup
R

|∂mq1| ≤ c
√
k/a

in L2(Rm) and H1(Rm), respectively. Note that ka ≥ 1 implies 1/a ≤ k and

a−1(ξm + 2ka)−1/2 |ψ| ≤ ca−1/
√
ka ≤ c

√
k/a .
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By interpolation, the norm of this multiplication operator in H�(Rm) is then bounded
by c(�)

√
k/a. It remains to show that

‖
√
ξm ϕ(ξm) v‖H�(Rm) ≤ c(�) ‖v‖H�(Rm) , 0 ≤ � < 1 ,(6.20)

where ϕ is a smooth function with somewhat larger support and ϕψ = ψ.
Let first m = 1. Then (6.20) follows for � ∈ (1/2, 1) since

√
ξ1 ϕ ∈ H�(R) for

� < 1 (but not for � = 1) and H�(R) is a Banach algebra. Since (6.20) is obvious for
� = 0, we obtain the result by interpolation. Note that the constant c(�) blows up as
�→ 1.

For m = 2, the proof of (6.20) can easily be reduced to the case m = 1 by using
the relation (cf. [28, Chap. 1])

H�(R2) = L2(R;H�(R)) ∩H�(R;L2(R))

and the fact that the function (6.19) is independent of ξ1.
Remark 6.5. An alternative proof of Theorem 6.2 (ii) for m = 2 can be given by

the following more direct reduction to the casem = 1. Let (r, θ) be polar coordinates in
R2, and consider a multiplication operator M := q· on H�(R2), � ∈ (0, 1], with a con-
tinuous function q = q(r) depending only on the radial variable, supp q ⊂ [1/3, 2/3],
and such that q· considered as a multiplication operator on H�(R) is bounded with
norm ‖q · ‖�. Then the norm of M on H�(R2) is bounded by a positive constant

c(�). Applying this to the operator T̂ defined in (6.17) and using Theorem 6.2 (ii) for
m = 1, we get the result for m = 2.

To prove the above norm estimate for M, we first note that L2(R2) is the orthog-
onal sum of the subspaces

Hj := {v ∈ L2(R2) : v = f(r) exp(ijθ) ,

∫ ∞

0

|f(r)|2 r dr <∞} , j ∈ Z ,

and the Fourier transform leaves each space Hj invariant; see [38, Chap. 4.1]. There-
fore, it is sufficient to verify that

‖qf exp(ijθ)‖H�(R2) ≤ c(�) ‖f exp(ijθ)‖H�(R2)(6.21)

for each j ∈ Z and f ∈ C∞
0 (0,∞). Furthermore, we have, uniformly in j,

‖qf exp(ijθ)‖L2(R2) ∼ ‖r1/2qf‖L2(R) ,

‖qf exp(ijθ)‖H1(R2) ∼ ‖qf exp(ijθ)‖L2(R2)

+ ‖∂rqf exp(ijθ)‖L2(R2) + ‖qfr−1∂θ exp(ijθ)‖L2(R2)

∼ ‖r1/2qf‖H1(R) + (1 + |j|) ‖r−1/2qf‖L2(R),

and thus, by interpolation,

‖qf exp(ijθ)‖H�(R2) ∼ ‖r1/2qf‖H�(R) + (1 + |j|)� ‖r1/2−�qf‖L2(R) ,(6.22)

where∼means equivalence of norms. Here we used a standard interpolation of Sobolev
norms and the interpolation theorem for weighted L2 spaces (see [40, Chap. 1.18.5]).
Now (6.22) and the boundedness of q· on H�(R) imply the estimates

‖qf exp(ijθ)‖H�(R2) ≤ c(�)
{
‖qr1/2f‖H�(R) + (1 + |j|)� ‖qr1/2−�f‖L2(R)

}

≤ c(�) max(‖q · ‖� , sup |q|)
{
‖r1/2f‖H�(R) + (1 + |j|)� ‖r1/2−�f‖L2(R)

}

≤ c(�) max(‖q · ‖� , sup |q|) ‖f exp(ijθ)‖H�(R2),
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giving (6.21).
Remark 6.6. (i) Repeating the above proofs with a fixed cutoff function χ van-

ishing in a neighborhood of |ξ| = k, we obtain the norm estimate of Lemma 3.2 for
the commutator T − (1 + x2)�/2T (1 + x2)−�/2·. Here we need not take care of the
dependence of the constants on a and k.

(ii) Note that the symbol t(0) = χt of the pseudodifferential operator T (0) =
F−1t(0)F is a smooth function satisfying |t0| ≤ c(1+ ξ2)1/2 and |∇t0| ≤ c on Rm, and
this is enough to obtain the boundedness of the commutators T (0)−(1+x2)�/2T (0)(1+
x2)−�/2·, |�| ≤ 1, on L2(Rm); see the estimates (6.15) and (6.16).

Applying this to the operator Λ := F−1(1 + ξ2)1/2F which is an isomorphism
of H1(Rm) onto L2(Rm), we observe that Λ is also an isomorphism of H1

�(R
m) onto

L2
�(R

m) and that F is an isomorphism of H1
�(R

m) onto H�
1 (R

m), at least for |�| ≤ 1.
This is also true for arbitrary � ∈ R; see [34] and [41].

(iii) Let σ(ξ) be a smooth symbol satisfying the estimates |σ| ≤ c, |∇ξσ| ≤
c(1 + ξ2)−1/2 on Rm. Then, for A := F−1σF and |�| ≤ 1, the commutator

A− (1 + x2)�/2A(1 + x2)−�/2· : L2(Rm) → H1(Rm)

is bounded. This follows from (ii) applied to the operator B = ΛA with the symbol
(1 + ξ2)1/2σ(ξ) and the relation

Λ−1B − (1− x2)�/2Λ−1B(1 + x2)−�/2· = Λ−1(B − (1 + x2)�/2B(1 + x2)−�/2 · )

+
(
Λ−1 − (1 + x2)�/2Λ−1(1 + x2)−�/2 · )(1 + x2)�/2B(1 + x2)−�/2 · .

(6.23)

Note that B is bounded on L2
�(R

m).
More general results on pseudodifferential operators with smooth symbols in

weighted Sobolev spaces can be found in [34] and [41].
Finally, we proceed to the proof of Lemma 3.4.
Proof of Lemma 3.4 (i). From (2.5) we have, for u0 ∈ C∞

0 (Γ0),

u(x, xn) = F−1 exp(−xnt(ξ))Fu0 =:M0u0 , t(ξ) :=
√
ξ2 − k2 ,

∇xu(x, xn) = F−1iξ exp(−xnt(ξ))Fu0 =:M1u0 = ∇xM0u0 ,(6.24)

∂nu(x, xn) = F−1(−t(ξ)) exp(−xnt(ξ))Fu0 =:M2u0 = −TM0u0 .

We have to prove the estimates, for |�| < 1 and h > 0,

‖u‖H1
�(U0\Ūh) ≤ c(h, �)‖u0‖H1/2

� (Γ0)
, u0 ∈ C∞

0 (Γ0) ,

or equivalently, with m = n− 1,∫ h

0

∫
Rm

(1 + x2)�
2∑

j=0

|Mju0|2 dx dxn ≤ c(h, �) ‖(1 + x2)�/2u0‖2H1/2(Rm) .(6.25)

This was proved in [11] for � = 0 by taking the Fourier transform. To verify (6.25) for
� 	= 0, it is then sufficient to show that the commutators

Mj − (1 + x2)�/2Mj(1 + x2)−�/2· , j = 0, 1, 2 ,

are uniformly bounded on L2(Rm) with respect to xn ∈ (0, h); compare the proof of
Lemma 3.3 (ii). We can write (cf. relation (6.23))

AM0 − (1 + x2)�/2AM0(1 + x2)−�/2· = A
(
M0 − (1 + x2)�/2M0(1 + x2)−�/2 · )

+
(
A− (1 + x2)�/2A(1 + x2)−�/2 · )(1 + x2)�/2M0(1 + x2)−�/2· ,

(6.26)
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where A is one of the operators ∂j = ∂/∂xj, 1 ≤ j ≤ m, and T . Therefore, it is enough
to prove the uniform boundedness of

M0 : L2
�(R

m) → L2
�(R

m) , |�| < 1 ,(6.27)

M0 − (1 + x2)�/2M0(1 + x2)−�/2· : L2(Rm) → H1(Rm)(6.28)

since ∂j , T : H1(Rm) → L2(Rm) are bounded and the commutators ∂j − (1 +
x2)�/2∂j(1 + x2)−�/2· are obviously bounded on L2(Rm), while the commutator
T − (1 + x2)�/2T (1 + x2)−�/2· is bounded there by Lemma 3.2.

By taking the Fourier transform, the uniform boundedness of (6.27) is equivalent
to the estimates

‖m(xn, ξ) v‖H�(Rm) ≤ c(h, �)‖v‖H�(Rm) , v ∈ C∞
0 (Rm) , xn ∈ (0, h) ,(6.29)

where m(xn, ξ) = exp(−xnt(ξ)). Consider a decomposition t = t(0) + t(1) as in (6.5),
with a = 1, t(0) = χt, t(1) = (1 − χ)t, and a cutoff function χ vanishing near |ξ| = k
so that t(0) is a smooth symbol. We introduce the multiplication operators M =
m(xn, ξ)· = M(1)M(0) , M(j) = exp(−xnt(j)(ξ))·, xn ∈ (0, h), and we check the
uniform boundedness of

M(0) : H�(Rm) → H�(Rm) , |�| ≤ 1 ,(6.30)

M(1) : H�(Rm) → H�(Rm) , |�| < 1 .(6.31)

Since we have, for xn ∈ (0, h) and m0(xn, ξ) = exp(−xnt(0)(ξ)),
|m0(xn, ξ)| ≤ c(h) , |∇ξm0(xn, ξ)| ≤ c(h)(1 + ξ2)−1/2 on R

m ,(6.32)

the norm of (6.30) is bounded by some constant c(h). To get a bound for (6.31), we
write

exp(−xnt(1)) =
∑
j≥0

xjn(−t(1))j/j!(6.33)

and apply the proof of Theorem 6.2 (ii) to estimate the norm of (6.31) by∑
j≥0

hjc(�)j/j! = exp(hc(�)) .

This finishes the proof of (6.27).
To prove the uniform boundedness of (6.28), we write

M0 − (1 + x2)�/2M0(1 + x2)−�/2· = M (1)(M (0) − (1 + x2)�/2M (0)(1 + x2)−�/2 · )

+
(
M (1) − (1 + x2)�/2M (1)(1 + x2)−�/2 · )(1 + x2)�/2M (0)(1 + x2)−�/2· ,

(6.34)

where M (j) = F−1 exp(−xnt(j)(ξ))F , j = 0, 1. By (6.32) and Remark 6.6 (iii), we
obtain the uniform boundedness of

M (0) − (1 + x2)�/2M (0)(1 + x2)−�/2· : L2(Rm) → H1(Rm) .

Moreover, M (1) is obviously bounded on H1(Rm) since its symbol is uniformly
bounded. In view of (6.30) and the isometry F : L2

�(R
m) → H�(Rm), it is then
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sufficient to verify that the last commutator in (6.34) is uniformly bounded from
L2(Rm) into H1(Rm), and for this it is enough to show the uniform boundedness
(with respect to xn) of

N (1) =M (1) − I : L2
�(R

m) → H1
�(R

m) , |�| < 1 , xn ∈ (0, h) ,(6.35)

where I is the identity operator and the symbol of N (1) is n1(xn, ξ) =
exp(−xnt(1)(ξ)) − 1. Taking the Fourier transform and using Remark 6.6 (ii), (6.35)
is then equivalent to the uniform boundedness in xn of

n1(xn, ξ)· : H�(Rm) → H�
1 (R

m) , |�| < 1 .(6.36)

Consider the multiplication operatorN (1) = (1+ξ2)1/2n1(xn, ξ)·. Then, using relation
(6.33), estimate (6.31) can be proved (in the same way) for N (1) in place of M(1);
recall that t(1) has compact support. This easily implies (6.36), which finishes the
proof of (6.28). Thus Lemma 3.4 (i) is proven.
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