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ORIGINAL ARTICLE

Non-genomic effects of PPARc ligands: inhibition of
GPVI-stimulated platelet activation
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Summary. Background: Peroxisome proliferator-activated

receptor-c (PPARc) is expressed in human platelets although

in the absence of genomic regulation in these cells, its functions

are unclear. Objective: In the present study, we aimed to

demonstrate the ability of PPARc ligands tomodulate collagen-

stimulated platelet function and suppress activation of the

glycoprotein VI (GPVI) signaling pathway. Methods: Washed

platelets were stimulated with PPARc ligands in the presence

and absence of PPARc antagonist GW9662 and collagen-

induced aggregation wasmeasured using optical aggregometry.

Calcium levels were measured by spectrofluorimetry in Fura-

2AM-loaded platelets and tyrosine phosphorylation levels of

receptor-proximal components of the GPVI signaling pathway

were measured using immunoblot analysis. The role of PPARc

agonists in thrombus formation was assessed using an in vitro

model of thrombus formation under arterial flow conditions.

Results: PPARc ligands inhibited collagen-stimulated platelet

aggregation that was accompanied by a reduction in intracel-

lular calcium mobilization and P-selectin exposure. PPARc

ligands inhibited thrombus formation under arterial flow

conditions. The incorporation of GW9662 reversed the inhib-

itory actions of PPARc agonists, implicating PPARc in the

effects observed. Furthermore, PPARc ligands were found to

inhibit tyrosine phosphorylation levels of multiple components

of the GPVI signaling pathway. PPARc was found to associate

withSykandLATafter platelet activation.This associationwas

prevented by PPARc agonists, indicating a potential mecha-

nism for PPARc function in collagen-stimulated platelet

activation. Conclusions: PPARc agonists inhibit the activation

of collagen-stimulation of platelet function throughmodulation

of early GPVI signalling.

Keywords: glycoproteinVI,nuclearreceptor,platelets,signaling.

Introduction

Diabetes mellitus is a major risk factor for vascular diseases

and is associated with atherosclerosis and thrombotic compli-

cations [1]. Platelets play an important role in hemostasis and

thrombosis, and are becoming increasingly implicated in

inflammation and host defense mechanisms contributing to

the pathogenesis and progression of the vascular complications

of diabetes mellitus [2,3]. When blood vessels become damaged

this results in the local exposure, generation or release of factors

such as collagen and thrombin that trigger the function of

platelets, initiating the hemostatic process. Platelet activation is

associated with signaling that results in shape change and

spreading, secretion and the release of multiple prothrombotic

factors, and through the binding of plasma fibrinogen and von

Willebrand factor (VWF) to integrin aIIbb3, this leads to the

formation of a stable platelet thrombus [2,4,5].

Collagen binding to the platelet receptor glycoprotein VI

(GPVI) results in clustering thereby triggering the tyrosine

phosphorylation of the associated transmembrane protein, the

Fc receptor c-chain by the Src-family kinasesLyn andFyn [6,7].

This results in the binding of the tyrosine kinase Syk, which

becomes tyrosine phosphorylated and activated, leading to the

tyrosinephosphorylationofthetransmembraneadaptorprotein

linker for activationofT-cells (LAT).LAT forms aplatform for

the assemblyof a signaling complex that includes phospholipase

Cc2 (PLCc2) which in turn becomes tyrosine phosphorylated.

Phosphoinositide 3-kinase (PI3-K) is also recruited and through

the generation of phosphatidylinositol (3, 4, 5)-trisphosphate,

influences the recruitment and activation of phospholipase Cc2

(PLCc2), which liberates the second messengers 1,2-diacylglyc-

erol and inositol 1,4,5-trisphosphate. The formation of these

molecules is responsible for the mobilization of calcium from

intracellularstoresandactivationof isoformsofproteinkinaseC

(PKC) leading to secretion and aggregation. PI3-K activity

results in the regulation of protein kinase B (PKB), which is

important for platelet function and thrombus formation [2,8,9].

The peroxisome proliferator-activated receptors (PPARs)

consist of a family of three nuclear receptor isoforms (a, b/d,
and c) that heterodimerize with the retinoic X receptor (RXR)
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and then modulate transcription of target genes [10]. PPARs

play important roles in the regulation of metabolic pathways,

including lipid biosynthesis and glucose metabolism [10,11].

This and implicated roles in cell differentiation, proliferation

and inflammation have led to the hypothesis that the actions of

PPARs may be associated with the prevention of cardiovas-

cular complications [10–12]. Although platelets lack a nucleus,

we and others have reported that they express a number of

transcription factors including the steroid/nuclear receptors

such as PPARc, PPARb/d, the glucocorticoid receptor (GR),

oestrogen receptor (ER), retinoic X receptor (RXR) and NF-

jB [13–19]. While steroid/nuclear receptors are recognized for

their role in gene regulation, increasing evidence supports non-

genomic actions of these receptors [20,21]. These studies have

demonstrated that steroid hormones can induce rapid non-

genomic modulation of cell function, although mechanisms

have not been established for the non-genomic actions of the

majority of these receptors.

The synthetic and clinically used drug rosiglitazone and the

endogenous prostaglandin 15-deoxy-D12,14-prostaglandin J2
(15d-PGJ2) are ligands of PPARc [10]. Rosiglitazone is a

memberofthethiazolidinedione(TZD)familyusedtotreattype

2 diabetes mellitus that effectively lowers blood glucose levels

althoughimprovingsensitivitytoinsulin [22,23].Severalclinical

studies have demonstrated that the treatment of diabetic

patientswiththiazolidinedionesexertsacardioprotectiveeffect,

indicated by a reduction in the risk of myocardial infarction in

diabetic patients with an acute coronary syndrome [24–26].

In the present study, we investigated the effects of PPARc

agonists, 15d-PGJ2 and rosiglitazone on collagen-stimulated

platelet activation, signaling and on thrombus formation. We

demonstrate that PPARc ligands modulate the activity of the

GPVI collagen receptor-stimulated signaling pathway resulting

in reduced levels of platelet activation, aggregation and

thrombus formation under arterial flow conditions.

Materials and methods

Reagents

15d-PGJ2, SQ29548 and GW-9662 were purchased from

Biomol (Affinity Research Products, Exeter, UK). Rosiglitaz-

one was from Cayman Chemical (Alexis Corporation, Not-

tingham, UK). Horm-Chemie collagen was from Nycomed

(Munich, Germany) and collagen-related peptide (CRP) from

Professor Richard Farndale (University of Cambridge, UK).

Anti-Syk (N-19, LR), anti-PPARc (E8), anti-LAT, anti-PLCc2

antibodies and protein A/G agarose were purchased from

Santa Cruz Biotechnology (Autogen Bioclear UK). Anti-Akt/

PKBa was purchased from Upstate Biotechnology (Dundee,

Scotland). PE-Cy5 labeled anti-CD62P(P-selectin) was ob-

tained from BD Biosciences (Oxford, UK) and MRS2179,

Fura-2 AM and dimethylsulfoxide (DMSO) were from Sigma

(Poole, UK). All other reagents were from previously described

sources [27,28]. PECAM-1 knockout mice were provided by

Professor T. Mak (University of Toronto, ON, Canada). All

protocols involving the use of animals were approved by

University of Reading Ethical Review Panel and authorized by

a Home Office licence.

Human platelet aggregation assay

Washed platelets were prepared from fresh blood obtained

from aspirin-free donors by differential centrifugation and

aggregation measured by optical aggregometry (Chrono-log

Corp., Havertown, PA, USA) as described previously [29].

Informed consent from human subjects was obtained and

procedures approved by the University of Reading Research

Ethics Committee.

Mouse platelet aggregation assay

Platelets were isolated from mouse blood (PECAM-1-deficient

mice on a C57/Bl6 genetic background and matched C57/Bl6

controls), by cardiac puncture after termination, washed,

counted using a Z2 coulter counter (Beckman Coulter,

Hialeah, FL, USA) and aggregation assays performed at a

density of 4 · 108 cells mL)1 by optical aggregometry as

described previously [30–32].

Immunoprecipitation and immunoblotting

For protein precipitation assays, platelets were suspended at

8 · 108 cells mL)1 in buffer containing 1 mmol l)1 ethylene

glycol tetraacetic acid (EGTA), 10 lmol L)1 indomethacin

and 2 U mL)1 apyrase to prevent platelet aggregation, release

of TXA2 and the secondary effects of adenosine 5́-diphosphate

(ADP), respectively. Immunoprecipitation, sodium dodecyl-

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and

immunoblotting onto polyvinylidine difluoridemembranewere

performed using standard techniques [28,32,33]. Densitometry

wasperformedusingaBio-RadGS-710 calibrateddensitometer

and QUANTITY ONE� software (Bio-Rad, Hemel Hempstead,

UK). Data were normalized for protein loading established

through reprobing of each blot for the protein of interest.

Measurement of [Ca2+]i by spectrofluorimetry

Mobilization of calcium from intracellular stores wasmeasured

in platelets pre-loaded with the fluorescent dye FURA-2AM as

described previously [27,33]. Platelets (2 · 108 cell mL)1) were

incubated with PPARc agonist or vehicle [DMSO 0.1% (v/v)]

for 3 min and then stimulated with collagen (1.0 lg mL)1) in a

luminescence spectrophotometer (LS-50B; Perkin Elmer, Bea-

consfield, UK). The ratio of emission values (excitation:340/

380 nm) was calculated and converted to calcium concentra-

tion using FLWINLAB software (Perkin Elmer).

a-granule secretion

To measure a-granule secretion, surface exposure of P-selectin
was assessed in whole blood by flow cytometry as reported
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previously [34]. In these assays the GPVI-selective agonist CRP

was utilized to avoid technical issues encountered with collagen

because of integrin a2b1-dependent adhesion to collagen fibrils.

Thrombus formation in vitro

Whole fresh citrated blood was incubated with the lipophilic

dye 3,3¢-dihexyloxacarbocyanine iodide (DIOC6) and perfused

through collagen-coated (100 lg mL)1) micro-capillaries at a

shear rate of 1000 s)1 in the presence of PPARc agonists 15d-

PGJ2, rosiglitazone or vehicle control. Thrombi were subse-

quently visualized using a Leica DMIRE2 inverted confocal

microscopy (using N PLANL 20·/0.4 objective lens with 0–

2 mm correction) and thrombus volume calculated from Z

series images captured using TCS SP2 software (Leica, UK), as

previously reported [31,32].

Statistical analysis

Aggregation traces are representative of at least three separate

experiments from different donors. Numerical data are

presented as mean ± SEM and statistical significance ana-

lyzed using the t-test.

Results

PPARc agonists 15d-PGJ2 and rosiglitazone inhibit

collagen-stimulated platelet aggregation

To determine if the natural PPARc agonist, 15d-PGJ2 and

rosiglitazone modulate platelet activation by the primary

platelet agonist collagen, platelets were incubated with increas-

ing concentrations of 15d-PGJ2, rosiglitazone (1, 3, 10 and

20 lmol L)1) or vehicle [DMSO 0.1% (v/v)] for 3, 15 or

20 min prior to stimulation with collagen (1 lg mL)1) for 90 s.

Platelet aggregation in response to collagen was found to be

inhibited in a concentration-dependent manner by each of the

PPARc agonists 15d-PGJ2 (Fig. 1Ai–ii) and rosiglitazone

(Fig. 1Bi–ii). Aggregation assays performed for up to 5 min

duration confirmed this effect to be inhibition rather than delay

in aggregation (Fig. S1). The extent of inhibition was found to

be dependent of the time of incubation with PPARc agonists,

suggesting that some differences in apparent potencymay be as

a result of the differential ability to cross the plasmamembrane.

Incubation for 15 min with 15d-PGJ2 (Fig. 1Aii) or 20 min

with rosiglitazone (Fig. 1Bii) enabled complete inhibition of

aggregation at a concentration of 10 lmol L)1. The effect of

15d-PGJ2 (3 and 10 lmol L)1) on platelet aggregation induced

by a range of collagen concentrations (0.1, 0.5, 1, 5, 10 and

25 lg mL)1) was also examined. Levels of inhibition became

reduced significantly with increasing concentrations of colla-

gen. Inhibition was, however, maintained at higher concentra-

tions of collagen. Incubation with 15d-PGJ2 (10 lmol L)1) for

15 min resulted in a significant inhibition of platelet aggrega-

tion in response to high concentrations of collagen (10–

25 lg mL)1) (Fig. 1C).

The platelet response to collagen is partially dependent on

the release of secondary agonists, such as ADP and TxA2.

Furthermore, PPARc agonists have been previously reported

to inhibit platelet aggregation induced by ADP [13]. To

examine whether the inhibitory effects of PPARc agonists on

collagen-stimulated aggregation was because of their ability to

inhibit the actions of TxA2 and ADP secreted after stimulation

with collagen, the thromboxane receptor (TPa/TPb) antagonist
SQ29548 and apyrase were used. Figure 2Ai demonstrates the

ability of apyrase to partially inhibit the level of collagen-

(10.0 lg mL)1) stimulated platelet aggregation. At this con-

centration of collagen a maximal level of inhibition was

achieved by 5 U mL)1 apyrase. In the presence of apyrase

(5 U mL)1), the PPARc agonist 15d-PGJ2 increased the

inhibition of platelet aggregation, suggesting that the effects

of PPARc agonists on collagen-stimulated aggregation may

not be explained through inhibition of ADP signaling alone

(Fig. 2Aii–iii). Similar data were obtained using the P2Y1

antagonist MRS2179 (Fig. S2). The TxA2 antagonist SQ29548

partially inhibited collagen-(2.5 lg mL)1) stimulated platelet

aggregation; a maximal level of inhibition was achieved by

10 nmol l)1 SQ29548 (Fig. 2Bi). In the presence of 10 nmol l)1

SQ29548, the PPARc agonist 15d-PGJ2 enhanced inhibition of

platelet aggregation, suggesting that the effects of PPARc

agonists on collagen-stimulated aggregation, may not be

because of attenutation of TxA2 signaling alone (Fig. 2Bii–iii).

15d-PGJ2 and rosiglitazone signal through PPARc on platelets

To establish whether the effects of PPARc ligands on platelets

are mediated by the receptor (PPARc), similar aggregation

assays were carried out in the presence of the PPARc

antagonist GW9662. Washed human platelets were treated

for 5 min with PPARc antagonist GW9662 alone or followed

incubation for 15 min with PPARc ligands 15d-PGJ2 or

rosiglitazone prior to stimulation for 90 s with collagen

(1 lg mL)1). The PPARc antagonist GW9662 alone (1,

3 lmol L)1) did not modulate the levels of collagen-stimulated

aggregation (Fig. 3A). GW9662 (1 lmol L)1) did, however,

cause a significant suppression of the inhibition of collagen-

stimulated platelet aggregation by 15d-PGJ2 and rosiglitazone

(3 lmol L)1) (Fig 3B). These data indicate that the effects of

15d-PGJ2 and rosiglitazone are mediated, at least in part,

through binding to PPARc in platelets.

Rosiglitazone and 15d-PGJ2 inhibit thrombus formation under

arterial flow conditions

The effect of 15d-PGJ2 and rosiglitazone on thrombus

formation in whole blood was examined under arterial flow

conditions in vitro. Whole blood was perfused through

microcapillary tubes coated internally with collagen at a shear

(laminar flow) rate of 1000 s)1 in the presence of rosiglitazone

or 15d-PGJ2 (0.1, 1 and 20 lmol L)1) or vehicle [DMSO 0.1%

(v/v)]. Thrombus size was calculated from the mean thrombus

volume of five randomly selected fields of view. Figure 4A

Non-genomic effects of PPARc ligands 579
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(i–iii) shows composite images from Z series captured and

analyzed by confocal microscopy in the presence of vehicle

control and rosiglitazone. Both PPARc ligands, rosiglitazone

and 15d-PGJ2 inhibited the thrombus formation significantly

in a concentration-dependent manner, where 1 lmol L)1

rosiglitazone or 15d-PGJ2 were able to inhibit thrombus

formation by 50.4 ± 14.7 % and 66.6 ± 2.7 % compared

with the vehicle control (Fig. 4B). To measure thrombus

formation along the whole capillary, lysis buffer was passed

through each capillary and protein concentration measured as

an indicator of thrombus size. This approach is important

because, as a result of the fibrilar nature of the collagen used,

coating of microslides may not be completely uniform. As this

may influence data collected from selected fields, analysis of

platelet recruitment along the entire capillary is quantitatively

more reliable. Consistent with the thrombus volume data,

PPARc ligands resulted in reduced protein concentration

compared with control (Fig. 4C), and no significant differences

were noted between rosiglitazone and 15d-PGJ2 treatments.

The inclusion of the PPARc antagonist GW9662 (3 lmol L)1)

was able to reverse the inhibitory effect of the PPARc ligand

15d-PGJ2 (3 lmol L)1) on thrombus formation (Fig. 4D).

It is possible that PPARc agonists may reduce thrombus

stability, which may result in greater levels of embolization. To

explore this, thrombi were formed under arterial flow condi-

tions, and subsequently perfused, again at arterial shear rate,

with buffer containing rosiglitazone (1, 20 lmol L)1) or solvent

control. Thrombus volume was subsequently measured by

confocal microscopy. After perfusion, a concentration of

1 lmol L)1 rosiglitazone caused no effect on thrombus stabil-

ity, although an approximate reduction of 10% in thrombus

volume was observed at 20 lmol L)1 (Fig. 4E).

PPARc ligands inhibit P-selectin exposure and

collagen-stimulated mobilization of calcium

Whole citrated blood was pre-incubated with increasing

concentrations of the PPARc ligand rosiglitazone (1, 3, 10
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and 20 lmol L)1) or vehicle [DMSO 0.1% (v/v)] for 3 min and

then stimulated with GPVI-selective ligand CRP (1 lg mL)1)

for 3 min and a-granule secretion was assessed by surface

exposure of P-selectin by flow cytometry (Fig. 5A). Rosiglit-

azone was found to inhibit P-selectin exposure. Stimulation of

the collagen receptor GPVI leads to rapid intracellular

mobilization of calcium [33,35]. We therefore examined the

ability of PPARc ligands tomodulate intracellularmobilization

of calcium, on stimulation with collagen. Experiments were

performed in the presence of 2 mmol l)1 EGTA to prevent

extracellular calcium influx. Fura-2AM-loaded washed plate-

lets were pre-incubated with increasing concentrations of

rosiglitazone (1, 3, 10 and 20 lmol L)1) or vehicle [DMSO

0.1% (v/v)] for 3 min and then stimulated with collagen

(1 lg mL)1). Rosiglitazone caused inhibition of collagen-

stimulated peak calcium concentrations (Fig. 5B). It is inter-

esting to note that some aspects of platelet function show

different levels of inhibition by a given concentration of PPARc

agonist, which may also point towards mechanisms of action.

PPARc ligands inhibit the tyrosine phosphorylation of

components of the GPVI signaling pathway

To begin to explore the mechanism through which PPARc

ligands inhibit collagen receptor-mediated signaling the effect

of these ligands on the tyrosine phosphorylation of a number of
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receptor-proximal components of the GPVI signaling pathway

was examined. Platelets were stimulated in the presence of

EGTA (1 mmol l)1), apyrase (2 U mL)1) and indomethacin

(10 lmol L)1) to prevent aggregation and ensure the study of

primary signaling events. In collagen signaling studies, where

non-aggregation conditions are necessary, collagen concentra-
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tions required to observe signaling were increased (25 lg
mL)1) in order to observe tyrosine phosphorylation of

components of the GPVI pathway, consistent with previous

reports [32,33]. PPARc ligand concentrations used were

therefore also increased.

The effect of rosiglitazone on collagen-stimulated tyrosine

phosphorylation of Syk, LAT and PLCc2 was investigated.

Treatment of platelets with rosiglitazone was without amarked

effect on the levels of collagen-stimulated tyrosine phosphor-

ylation of Syk (Fig. 6A), although a trend for low-level

inhibition that did not reach significance was observed. In

contrast, rosiglitazone was found to cause a marked and

concentration-dependent reduction in the levels of tyrosine

phosphorylation of LAT (Fig. 6B) and PLCc2 (Fig. 6C). The

treatment of platelets with the PPARc ligand rosiglitazone was

found to result in inhibition of PI3-K activity as the levels of

serine phosphorylation of a downstream marker of PI3-K

signaling, Akt/PKBa, were reduced (Fig. 6D).

PPARc interacts with Syk and LAT upon stimulation of the

GPVI pathway

As in the presence of PPARc agonists tyrosine phosphorylation

of Syk remained unaffected, while downstream LAT phos-

phorylation was inhibited significantly, it was hypothesized

that PPARcmay interact with Syk and/or LAT. In order to test

this, Syk and LAT were immuno-precipitated from platelets

treated with rosiglitazone (10–100 lmol L)1) for 15 min prior

to their stimulation with collagen (25 lg mL)1) and immuno-

blot analyses were conducted to detect PPARc. PPARc was

found to interact with Syk and LAT when platelets were

stimulated with collagen in the absence of PPARc ligands
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(Fig. 7A–B). In the presence of the PPARc ligand rosiglitazone,

this interaction with both Syk and LAT was inhibited. The

inhibitory effect on the PPARc–Syk interaction was prevented

by the addition of the PPARc antagonist GW9662 (3 lmol

L)1) (Fig. 7C), indicating that this effect is PPARc activation

dependent. GW9662 also prevented rosiglitazone-dependent

inhibition of PPARc–LAT interactions (data not shown).

The inhibitory effect of PPARc ligands on platelet function is

not PECAM-1 dependent

Platelet endothelial cell adhesion molecule-1 (PECAM-1), has

been reported to negatively regulate platelet function and

thrombus formation [28,30,36]. Type 2 diabetes mellitus has

been shown to be associated with the cleavage of platelet

PECAM-1. These changes were reverted in patients treated

with rosiglitazone, leading Randriamboavonjy et al. [37] to

suggest that rosiglitazone may contribute to a decrease in the

development of vascular diseases associated with type 2

diabetes mellitus through actions on PECAM-1. In order to

establish if the inhibitory effect of collagen-stimulated platelet

function by acute exposure to PPARc ligands in vitro was

dependent on PECAM-1, the effect of rosiglitazone on platelet

aggregation was examined using washed platelets from

PECAM-1-deficient mice.

Consistent with previous reports [30,36], platelets derived

from PECAM-1-deficient mice exhibit a mildly exaggerated

GPVI-mediated aggregation response to collagen when com-

pared with wild-type mouse platelets (controls Fig. 8A,B:

reduced lag phase and faster initial kinetics). Collagen-stimu-

lated platelet aggregation in wild-type and PECAM-1-deficient

platelets was inhibited in the presence of PPARc ligand

rosiglitazone, when compared with the vehicle control

(Fig. 8A–C). This indicates that the acute (i.e. non-genomic)

inhibitory effects of rosiglitazone on platelet function are not

dependent on the presence or function of PECAM-1.

Discussion

While platelets are anucleate cells, recent reports have demon-

strated that nuclear receptors such as the glucocorticoid

receptor [15], RXR [17] and PPAR isoformsc [13] and b/d
[14] are expressed in these cells. Indeed, these studies have

demonstrated the ability of ligands for intracellular receptors to
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regulate platelet function in a non-genomic fashion [13–19].

PPARc can be activated by a number of ligands, including

lipids and eicosanoids, such as 5,8,11,14-eicosatetraynoic acid

and the prostanoids PGA1, PGA2, PGD2 and 15d-PGJ2,

docosahexaenoic acid, linoleic acid and the synthetic anti-

diabetic glitazones (e.g. rosiglitazone) [10,11].

PPARc ligands have been reported to inhibit platelet

aggregation in response to ADP that is accompanied by a

reduction in markers of platelet activation such as P-selectin

exposure, TXA2 synthesis and sCD40L release [13]. Recently,

we demonstrated that RXR ligands inhibit platelet activation

stimulated by ADP or the TXA2 mimetic U46619 and have

proposed this to be mediated through suppression of Gq

signaling, resulting in inhibition of mobilization of calcium

from intracellular stores [17]. Although this has yet to be

explored, the ability of PPARc to interact with RXR may

suggest some overlapping modes of action.

In this study, we have demonstrated that PPARc ligands

inhibit collagen-stimulated platelet aggregation, a-granule
secretion and calcium mobilization. In the presence of the

PPARc antagonist GW9662, inhibition of aggregation was

reversed, suggesting that this affect is at least in part, modulated

by PPARc in platelets. Failure to completely reverse inhibition

indicates potential additional, and as yet uncharacterized,

PPARc-independent modes of action of these ligands.

Increased concentrations of rosiglitazone or 15d-PGJ2 were

associated with more accentuated levels of shape change upon

stimulation with collagen. This is likely to reflect lower levels of

aggregation in this optical assay, as PPARc agonists alone do

not stimulate shape change. We cannot, however, rule out the

possibility that PPARc normally serves to inhibit shape change.

As PPARc agonists were found to inhibit collagen-stimu-

lated calcium mobilization, a range of signaling proteins

upstream of calcium in the GPVI collagen activation pathway

were examined. Rosiglitazone did not cause marked inhibition

of collagen-stimulated tyrosine phosphorylation of the kinase

Syk, suggesting that the activity of upstreamSrc-family kinases,

such Fyn and Lyn, is not modulated by PPARc ligands. This

ligand was, however, found to reduce the levels of tyrosine

phosphorylation of the transmembrane adapter protein LAT

and thereby PLCc2, which is consistent with the inhibition of

calcium regulation and a-granule secretion.
The tyrosine phosphorylation of LAT results in the recruit-

ment and activation of PI3-K, leading to the generation of

3¢-phosphorylated inositol phospholipid second messengers.

Rosiglitazone treatment resulted in diminished collagen-stimu-

lated phosphorylation of Akt/PKBa, suggesting that the inhib-
itory effect of the PPARc stimulation also results in suppression

of PI3-K signaling. In the present study, interactions of PPARc

with Syk and LAT highlight a potential novel GPVI-dependent

mechanismforPPARcactiononplateletactivation.PPARc inits

inactivated state interactswithSykandLAT(andpossiblyother

components of the LAT signalosome). These interactions

correlate with phosphorylation of Syk and LAT leading to the

activation of proteins downstream within the GPVI pathway.

Upon ligation of PPARc, interactions with Syk and LAT were

prevented, which coincided with diminished signaling down-

streamresultinginareductioninplateletactivation.Theaddition

of the antagonist GW9662 was able to prevent the inhibitory

effectofPPARc ligandsoninteractionsbetweenPPARcwithSyk

and LAT. Taken together, this suggests that the inhibitory

actions of PPARc ligands may be mediated within the GPVI

signaling pathway at the level of LAT or the LAT signalosome

andthatinhibitionofplateletsbyPPARc ligandsisnotbecauseof

toxic effects. Further work is required to establish whether

PPARc is recruited toa signalingprotein complexwithbothSyk

and LAT, or whether interaction with Syk and LAT occurs

independently. Furthermore, whether PPARc interactions con-

tribute to positive signaling through theGPVIpathway remains

to be established.

It has been suggested that PPARc ligands reduce the develop-

ment of atherosclerosis and myocardial ischemia–reperfusion

injury through inhibition of platelet activation and intra-arterial

thrombus formation in animal models [38]. In support of this

notion, we have observed that PPARc ligands rosiglitazone and

15d-PGJ2, inhibit thrombus formation in human whole blood

on immobilized collagen under arterial flow conditions.
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Furthermore, perfusion with a low concentration of rosiglitaz-

one, which is likely achievable in plasma of patients taking

rosiglitazone (1 lmol L)1) [39], caused no effect on thrombus

stability. Together this suggests that PPARc ligands may offer

beneficial clinical actions through inhibition of thrombus

formation without embolization effects. Future studies using in

vivomodelsof thrombosiswillberequiredtoexplore this further.

Treatment with TZDs such as rosiglitazone has been

reported to reduce the activity of circulating platelets in

patients with coronary artery disease [40] and type 2 diabetes

mellitus [41]. More recently, treatment of type 2 diabetes with

rosiglitazone has been reported to cause decreases in l-calpain
activity, the restoration of platelet PECAM-1 levels and

diminished platelet responsiveness to thrombin [37]. As

PECAM-1 and PPARc ligands are able to inhibit the function

of platelets, and they possess similar abilities to modulate

calcium mobilization in these cells, we sought to determine

whether the acute, non-genomic actions of rosiglitazone may

be dependent on PECAM-1 expression. Examination of

PECAM-1-deficient mouse platelets revealed, however, that

the inhibitory effect of collagen-stimulated platelet aggregation

by PPARc ligands is unaffected by the presence or absence of

PECAM-1. The possibility still exists, however, that PPARc

and PECAM-1 share similarities in their modes of modulation

of GPVI-stimulated signaling in platelets.

Clinical trials have demonstrated that the treatment of

diabetic patients with TZDs exerts a cardioprotective effect as

evidenced by a reduction in the risk of myocardial infarction in

diabetic patients [24–26,40]. However, there are conflicting

reports demonstrating that administration of PPARc agonists

may be associated with an increased incidence of congestive

heart failure, myocardial infarct and death [42–44]. These latter

studies were limited by a lack of access to original source data,

and were insufficiently statistically powered. Better character-

ization of such patients is therefore needed to determine the

effect of TZDs on overall cardiovascular outcome.

Our findings indicate that PPARc ligands inhibit collagen-

stimulated platelet function through modulation of signaling

downstream of the collagen receptor GPVI.
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