Redox control of light-induced charge separation in a transition metal cluster: photochemistry of a methyl viologen-substituted [Os-3(CO)10(a-diimine)] cluster

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Vergeer, F. W., Kleverlaan, C. J., Matousek, P., Towrie, M., Stufkens, D. J. and Hartl, F. orcid id iconORCID: https://orcid.org/0000-0002-7013-5360 (2005) Redox control of light-induced charge separation in a transition metal cluster: photochemistry of a methyl viologen-substituted [Os-3(CO)10(a-diimine)] cluster. Inorganic Chemistry, 44 (5). pp. 1319-1331. ISSN 0020-1669 doi: 10.1021/ic049191n

Abstract/Summary

Sub)picosecond transient absorption (TA) and time-resolved infrared (TRIR) spectra of the cluster [OS3(CO)(10-) (AcPy-MV)](2+) (the clication AcPy-MV = Acpy-MV2+ = [2-pyridylacetimine-N-(2-(1'-methyl-4,4'-bipyridine-1,1'-diium-1-yl) ethyl)] (PF6)(2)) (1(2+)) reveal that photoinduced electron transfer to the electron-accepting 4,4'-bipyridine-1,1'diium (MV2+) moiety competes with the fast relaxation of the initially populated sigmapi* excited state of the cluster to the ground state and/or cleavage of an Os-Os bond. The TA spectra of cluster 12 in acetone, obtained by irradiation into its lowest-energy absorption band, show the characteristic absorptions of the one-electron-reduced MV*(+) unit at 400 and 615 nm, in accordance with population of a charge-separated (CS) state in which a cluster-core electron has been transferred to the lowest pi* orbital of the remote MV2+ unit. This assignment is confirmed by picosecond TRIR spectra that show a large shift of the pilot highest-frequency nu(CO) band of 1(2+) by ca. +40 cm(-1), reflecting the photooxidation of the cluster core. The CS state is populated via fast (4.2 x 10(11) s(-1)) and efficient (88%) oxidative quenching of the optically populated sigmapi* excited state and decays biexponentially with lifetimes of 38 and 166 ps (1:2:1 ratio) with a complete regeneration of the parent cluster. About 12% of the cluster molecules in the sigmapi* excited state form long-lived open-core biradicals. In strongly coordinating acetonitrile, however, the cluster core-to-MV2+ electron transfer in cluster 12+ results in the irreversible formation of secondary photoproducts with a photooxidized cluster core. The photochemical behavior of the [Os-3(CO)(10)(alpha-diimine-MV)](2+) (donor-acceptor) dyad can be controlled by an externally applied electronic bias. Electrochemical one-electron reduction of the MV2+ moiety prior to the irradiation reduces its electron-accepting character to such an extent that the photoinduced electron transfer to MV*+ is no longer feasible. Instead, the irradiation of reduced cluster 1(.)+ results in the reversible formation of an open-core zwitterion, the ultimate photoproduct also observed upon irradiation of related nonsubstituted clusters [Os-3(CO)(10)(alpha-diimine)] in strongly coordinating solvents such as acetonitrile.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/17278
Identification Number/DOI 10.1021/ic049191n
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
No Reading authors. Back catalogue items
Publisher American Chemical Society
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar