Dynamic shear modulus of isotropic elastomers

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Squires, A. M., Tajbakhsh, A.R. and Terentjev, E.M. (2004) Dynamic shear modulus of isotropic elastomers. Macromolecules, 37 (4). pp. 1652-1659. ISSN 0024-9297 doi: 10.1021/ma035060e

Abstract/Summary

We have investigated the dynamic mechanical behavior of two cross-linked polymer networks with very different topologies: one made of backbones randomly linked along their length; the other with fixed-length strands uniformly cross-linked at their ends. The samples were analyzed using oscillatory shear, at very small strains corresponding to the linear regime. This was carried out at a range of frequencies, and at temperatures ranging from the glass plateau, through the glass transition, and well into the rubbery region. Through the glass transition, the data obeyed the time-temperature superposition principle, and could be analyzed using WLF treatment. At higher temperatures, in the rubbery region, the storage modulus was found to deviate from this, taking a value that is independent of frequency. This value increased linearly with temperature, as expected for the entropic rubber elasticity, but with a substantial negative offset inconsistent with straightforward enthalpic effects. Conversely, the loss modulus continued to follow time-temperature superposition, decreasing with increasing temperature, and showing a power-law dependence on frequency.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/17108
Identification Number/DOI 10.1021/ma035060e
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
Publisher American Chemical Society
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar