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ABSTRACT 28 

The 5'-cap-structures of higher eukaryote mRNAs are ribose 2'-O-methylated. Likewise, a 29 

number of viruses replicating in the cytoplasm of eukayotes have evolved 2'-O-30 

methyltransferases to modify autonomously their mRNAs. However, a defined biological role of 31 

mRNA 2'-O-methylation remains elusive. Here we show that viral mRNA 2'-O-methylation is 32 

critically involved in subversion of type-I-interferon (IFN-I) induction. We demonstrate that 33 

human and murine coronavirus 2'-O-methyltransferase mutants induce increased IFN-I 34 

expression, and are highly IFN-I sensitive. Importantly, IFN-I induction by 2'-O-35 

methyltransferase-deficient viruses is dependent on the cytoplasmic RNA sensor melanoma 36 

differentiation-associated gene 5 (MDA5). This link between MDA5-mediated sensing of viral 37 

RNA and mRNA 2'-O-methylation suggests that RNA modifications, such as 2'-O-methylation, 38 

provide a molecular signature for the discrimination of self and non-self mRNA. 39 

 40 

41 
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INTRODUCTION 42 

Innate immune recognition of pathogen-associated molecular patterns (PAMPs) facilitates 43 

the distinction between immunological self and non-self1. In the case of cytoplasmic viral RNA, 44 

this involves detection by cytoplasmic RIG-I-like receptors (RLRs), such as retinoic acid-45 

inducible gene-I (RIG-I) and MDA5. RLR activation results in the initiation of signaling 46 

cascades that induce the expression of cytokines, including IFN-I. These interferons, mainly 47 

IFN-α and IFN-β, are secreted and can then bind to the IFN-I receptor (IFNAR) and thus 48 

transmit a danger signal to neighboring cells. The activated IFNAR triggers the JAK-STAT 49 

signaling pathway, inducing the expression of a large array of IFN-stimulated genes (ISGs) with 50 

antiviral activity, thus establishing the so-called host cell antiviral state2-4. These ISGs include 51 

the protein kinase PKR, and stress-inducible proteins, such as interferon-induced protein with 52 

tetratricopeptide repeats (IFIT) 1 and IFIT2 (also known as ISG56 and ISG54, respectively), 53 

which impair the host cell protein synthesis apparatus4-7. 54 

Although the distinction between self and non-self RNA is believed to rely on the 55 

molecular signatures found in PAMPs, the exact nature of such signatures remains elusive. Both 56 

of the cytosolic RLRs, RIG-I and MDA5, have been shown to bind to double-stranded (ds) RNA 57 

with the difference that RIG-I appears to prefer short dsRNA, whereas MDA5 can specifically 58 

bind long dsRNA8. In addition, the 5'-end of RNAs is currently receiving increased attention, as 59 

it has been shown that RIG-I can specifically recognize 5'-triphosphate groups on single-stranded 60 

and (partially) dsRNAs9-11. In contrast, eukaryotic mRNAs, which are not recognized by RIG-I 61 

or MDA5, usually have a 5'-cap structure that is methylated at the N-7 position of the capping 62 

guanosine residue (cap 0), the ribose-2'-O position of the 5'-penultimate residue (cap 1) and 63 

sometimes at adjoining residues (cap 2)12. There are two evolutionary forces proposed to be 64 

responsible for the presence of 5'-cap structures on eukaryotic mRNAs, namely the appearance 65 

of 5'-exonucleases in eukaryotes, and as means of directing mRNA to the eukaryotic ribosome13. 66 
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Thus, eukaryotic mRNA 5'-cap structures are known to increase mRNA stability and 67 

translational efficacy. Notably, although N7-methylation has been implicated to be important in 68 

many mRNA-related processes, such as transcriptional elongation, polyadenylation, splicing, 69 

nuclear export, and efficient translation, there is no obvious indication why higher eukaryotes 70 

have evolved mRNA ribose-2'-O-methylation in cap 1 and cap 2 structures. 71 

The functional significance of mRNA 5'-structures is best illustrated by the fact that many 72 

viruses that replicate in the cytoplasm have evolved either alternative 5'-elements, such as small 73 

viral proteins linked to the 5'-end of genomic RNA14, or encode functions associated with 5'-cap 74 

formation that are homologous to those found in eukaryotic cells, such as RNA 5'-75 

triphosphatase, RNA guanylyltransferase, RNA guanine-N7-methyltransferase  (N7-MTase), and 76 

2'-O-MTase (e.g. flaviviruses, coronaviruses and poxviruses) (Fig 1, Supplementary Table 1). 77 

In addition to the well-established role of mRNA 5'-structures in translation, the discovery that 78 

RNA 5'-triphosphate groups activate RIG-I9,10 suggests that viruses have to hide or modify their 79 

RNA 5'-structures to evade innate immune recognition. Interestingly, RIG-I activation is 80 

diminished when 5'-triphosphate RNA contains modified nucleotides9. Thus, we hypothesize that 81 

RNA modifications, such as methylation, could be a critical factor for the activation of RNA-82 

specific pattern recognition receptors (PRRs). Notably, this concept of methylation-based 83 

distinction of self and non-self nucleic acids is well-established for DNA, since the methylation 84 

status of CpG motifs in DNA is the structural basis of toll-like receptor (TLR) 9 activation15. 85 

Moreover, DNA methylation has long been recognized as the basis for the ancient bacterial 86 

restriction and modification systems that allow bacteria to distinguish between foreign DNA and 87 

the bacterial genome.  88 

Here, we show that viral mRNA 2'-O-methylation is biologically significant in the context 89 

of host cell innate immune responses. We demonstrate that human and murine coronavirus 90 

mutants lacking 2'-O-MTase activity induce increased IFN-I expression and are extremely 91 
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sensitive to IFN-I treatment. Furthermore, we show that a murine coronavirus mutant with an 92 

inactivated 2'-O-MTase is attenuated in wild type (WT) macrophages but replicates efficiently in 93 

the absence of IFN-I receptor or MDA5. Consonantly, coronavirus 2'-O-MTase mutants are 94 

apathogenic in WT mice but virus replication and spread is restored in mice lacking the IFN-I 95 

receptor and in mice lacking the two major sensors of coronaviral RNA, TLR7 and MDA5. 96 

Collectively, our results reveal a link between MDA5-mediated sensing of viral RNA and 97 

mRNA 2'-O-methylation, and suggest that RNA modifications, such as 2'-O-methylation, 98 

provide a molecular signature for the distinction of self and non-self mRNA. 99 

 100 

101 
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RESULTS 102 

Effects of 2'-O-MTase-deficiency in human coronavirus infection 103 

To address the biological significance of mRNA 2'-O-methylation in the context of host 104 

cell innate immune responses, we first used a human model of coronavirus infection. 105 

Coronaviruses are single-strand (+) RNA viruses, that replicate in the cytoplasm, and have 106 

evolved N-7 and 2'-O-MTases to methylate their viral mRNA 5'-cap structures16-19. The 2'-O-107 

MTase activity is associated with the viral non-structural protein (nsp) 16, which is highly 108 

conserved amongst coronaviruses (Fig. 1a,b) and an integral subunit of the viral replicase-109 

transcriptase complexes located at virus-induced double membrane vesicles (DMVs) in the host 110 

cell cytoplasm. We have generated a recombinant human coronavirus strain 229E (HCoV-229E) 111 

mutant encoding an inactivated 2'-O-MTase. This mutant, HCoV-D129A, was produced by 112 

substituting nsp16 residue D129 of the highly conserved catalytic K-D-K-E tetrad with alanine 113 

(Fig 1b). Importantly, this substitution has been shown to completely abrogate 2'-O-MTase 114 

activity of recombinant, bacterial-expressed feline coronavirus and SARS coronavirus nsp16 115 

proteins16,18. The mutant virus displayed a small plaque phenotype, and reduced replication in the 116 

human fibroblast MRC-5 cell line (Fig 2a,b). Moreover, we could readily 2'-O-methylate 117 

poly(A)-containing RNA obtained from HCoV-D129A-infected cells using the vaccinia virus 2'-118 

O-MTase VP3920 in vitro (Fig 2c), confirming the loss of 2'-O-MTase activity. In contrast, in 119 

vitro 2'-O-methylation of poly(A)-containing RNA derived from HCoV-229E-infected cells was 120 

indistinguishable compared to poly(A)-containing RNA obtained from mock infected cells. 121 

Importantly, compared to HCoV-229E, we observed significantly increased IFN-β expression in 122 

blood-derived human macrophages (MΦs) following HCoV-D129A infection (Fig 2d), and 123 

complete restriction of HCoV-D129A replication in human MΦ that had been pretreated with 124 

IFN-α (Fig 2e). These results suggest a biological role of mRNA 2'-O-methylation in the context 125 

of (i) IFN-I induction, and (ii) IFN-I stimulated antiviral effector mechanisms. 126 
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 127 

IFN-I induction by 2'-O-MTase mutants is MDA5-dependent 128 

To extend our studies on the impact of 2'-O-methylation on coronavirus-induced innate 129 

immune responses, we used an animal model of coronavirus infection with mouse hepatitis virus 130 

strain A59 (MHV-A59) as a natural mouse pathogen. Studies on innate immune responses 131 

following MHV-A59 infection have shown that plasmacytoid dendritic cells (pDCs) have a 132 

unique and crucial role in sensing coronaviral RNA via TLR7, ensuring a swift production of 133 

IFN-I following virus encounter21,22. Other target cells, such as primary fibroblasts, neurons, 134 

astrocytes, hepatocytes, and conventional dendritic cells, do not produce detectable IFN-I upon 135 

MHV infection22,23. The exceptions are MΦs and microglia, which can respond with IFN-I 136 

expression upon MHV infection, although only to moderate levels24,25. Importantly however, 137 

IFN-I expression detected in MΦs and microglia is dependent on MDA524.  138 

We have generated a recombinant MHV lacking 2'-O-MTase activity by substituting the 139 

nsp16 2'-O-MTase active site residue D130 with alanine (MHV-D130A; Fig 1b). In addition, we 140 

generated a recombinant MHV mutant, designated MHV-Y15A, encoding a Y15A substitution 141 

at the putative type 0 cap binding site of nsp16 (Fig 1b). This substitution was shown to impair 142 

type 0 cap-binding for the corresponding feline coronavirus nsp16 mutant Y14A18, and we 143 

expected that this substitution would reduce, rather than completely abrogate coronaviral mRNA 144 

2'-O-methylation. Indeed, the in vitro methylation of mRNA with the vaccinia virus 2'-O-MTase 145 

VP3920 confirmed the differential 2'-O-methylation of mRNA obtained from MHV-infected 146 

cells. As shown in Figure 3a, right panel, transfer of [3H]-labeled methyl groups from the 147 

methyl donor S-adenosyl-methionine (SAM) to mRNA derived from MHV-Y15A-infected cells 148 

was less efficient compared to MHV-D130A mRNA, but significantly increased compared to 149 

MHV-A59 mRNA. These results show the loss of 2'-O-MTase activity of MHV-D130A, and 150 

that a significant proportion of MHV-Y15A mRNA is not methylated at the 2'-O position.  151 
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The analysis of virus growth in cell culture revealed that the replication kinetics of both 152 

recombinant viruses, MHV-D130A and MHV-Y15A, differed only slightly from those of MHV-153 

A59 following infection of a murine fibroblast 17Cl-1 cell line with high and low multiplicities 154 

of infection (MOI; MOI=1 and MOI=0.0001, respectively) (Fig 3b). Also, there was no 155 

significant difference observed in electron microscope analyses of DMV formation and 156 

morphology in the cytoplasm of MHV-A59-, MHV-D130A-, and MHVY15A-infected cells 157 

(Supplementary Fig 1), which is relevant in relation to cytoplasmic viral RNA sensing, since 158 

coronavirus DMVs are known to harbor dsRNA. When we analyzed IFN-I in supernatants of 159 

WT MΦs at 15 hours p.i., we observed that infection with both 2'-O-MTase mutants, MHV-160 

Y15A and MHV-D130A, resulted in increased IFN-I production (Fig 3c, Supplementary Fig 161 

2a). Likewise, IFN-I was efficiently produced in MHV-D130A and MHV-Y15A infected 162 

IFNAR-deficient MΦs compared to MHV-A59 infection, demonstrating that increased IFN-I 163 

production by MHV 2'-O-MTase mutants is detectable in the absence of IFNAR signaling (Fig 164 

3d, Supplementary Figure 2b). Importantly, in MDA5-deficient MΦs neither MHV-A59, nor 165 

the two 2'-O-MTase mutant viruses induced any detectable expression of IFN-I (Fig 3e), 166 

whereas IFN-I production was readily detectable in MDA5-deficient cells following Sendai virus 167 

infection. Detailed analysis of IFN-β mRNA expression kinetics revealed that infection of WT 168 

(Fig 3f) and IFNAR-deficient (Fig 3g) MΦs with both MHV-D130A and MHV-Y15A resulted 169 

in increased IFN-β gene expression with a peak at 12 h p.i.. Notably, IFN-β induction was most 170 

pronounced after infection with the 2'-O-MTase active site mutant MHV-D130A. These results 171 

indicate that the level of IFN-β expression correlates with the degree of 2'-O-methylation 172 

deficiency of viral RNA and, that IFN-β induction following infection with 2'-O-MTase mutant 173 

viruses is MDA5-dependent. Consonantly, we observed increased nuclear localization of 174 

interferon regulatory factor 3 (IRF3; a transcription factor that is activated in the RLR signaling 175 
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pathway and is translocated from the host cell cytoplasm to the nucleus to mediate IFN-I 176 

transcription) in MHV-D130A- and MHV-Y15A-infected IFNAR-deficient MΦs, but not in 177 

MDA5-deficient MΦs (Fig 4). Collectively, these results demonstrate a linkage of mRNA 2'-O-178 

methylation and MDA5-dependent induction of IFN-β expression. 179 

 180 

2'-O-methylation affects two distinct antiviral mechanisms 181 

Since the 2'-O-MTase active site mutant HCoV-D129A displayed an elevated sensitivity to 182 

IFN-I treatment, we assessed whether IFN-I induced restriction of viral replication is also 183 

effective against the MHV 2'-O-MTase mutants. Therefore, we investigated in more detail the 184 

viral replication kinetics of MHV-D130A and MHV-Y15A in primary MΦs, which represent the 185 

most important target cells for MHV 21,26. MHV-D130A replication was greatly impaired in WT 186 

MΦs (even after infection with high MOI; MOI=1), whereas replication of MHV-Y15A was 187 

similar to that of MHV-A59 (Fig 5a). Importantly, MHV-D130A replication was fully restored 188 

in MDA5-deficient MΦs, even after infection with low MOI (MOI=0.0001) (Fig 5b). This 189 

demonstrates that MDA5-dependent IFN-I expression is a prerequisite for the induction of 190 

effective restriction of MHV-D130A replication. In agreement with the notion that the 191 

replication of MHV-D130A, but not MHV-Y15A, was impaired in WT MΦs, we observed a 192 

remarkable reduction of MHV-D130A replication in WT MΦs that were pretreated with IFN-α. 193 

Thus, compared to MHV-A59, MHV-D130A replication was not detectable at 24 h p.i. (after 4 h 194 

pretreatment of WT MΦs with 50 - 200 U IFN-α), whereas MHV-Y15A replication was not 195 

significantly restricted (Fig 5c). Interestingly, in MDA5-deficient MΦs, pretreatment with at 196 

least 200 U IFN-α was required to restrict MHV-D130A replication to non-detectable levels (Fig 197 

5d). This suggests that endogenous MDA5-mediated IFN-I expression additionally impacts on 198 

MHV-D130A restriction in WT MΦs. Collectively these analyses depict a clear difference 199 
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between the phenotypes of MHV-D130A and MHV-Y15A. Inactivation of the MHV 2'-O-200 

MTase activity by targeting the active site residue D130 led to increased IFN-I production as 201 

well as to pronounced sensitivity to IFN-I pretreatment. In contrast, reduction of viral mRNA 2'-202 

O-methylation through targeting of the type 0 cap-binding site residue Y15 was sufficient to 203 

induce increased IFN-I production but not to confer increased IFN-I sensitivity. Thus, we 204 

conclude that there is, in addition to MDA5-dependent IFN-I induction, a second and distinct 205 

antiviral mechanism, which is IFN-I-induced and accounts for the restriction of viral replication 206 

during the host cell antiviral state.  207 

In this respect, Daffis and colleagues have shown recently that the replication of a West 208 

Nile virus (family Flaviviridae, genus flavivirus) mutant lacking 2'-O-methylation was strongly 209 

inhibited by IFIT gene family members27, which are ISGs implicated in translational regulation. 210 

To assess whether this molecular mechanism also pertains to coronavirus infection, we assessed 211 

the replication kinetics of MHV-A59, MHV-D130A, and MHV-Y15A in primary MΦs derived 212 

from WT or ifit1-/- mice. Remarkably, MHV-D130A replication was almost completely restored 213 

in ifit1-/- MΦs (Fig 6), analogous to the restoration of MHV-D130A replication in mda5-/- MΦs 214 

(Fig 5a,b). Collectively, these findings show that the MDA5-dependent IFN-I induction and the 215 

IFIT-1-mediated restriction of viral replication are two distinct antiviral mechanisms that are 216 

both based on the distinction of 2'-O-methylated and non-methylated mRNAs, but operate at 217 

different levels of the host cell antiviral response. 218 

 219 

Impact of 2'-O-MTase-deficiency on innate immune recognition in vivo 220 

Next, we examined the impact of viral mRNA 2'-O-methylation on innate immune 221 

recognition and virulence in vivo and compared the phenotype of MHV-A59 with those of the 222 

MHV 2'-O-MTase mutants in C57BL/6 (B6) mice after intraperitoneal (i.p.) infection with 500 223 

plaque forming units (p.f.u.) of virus (Fig 7a,b). In contrast to MHV-A59, neither of the MHV 224 
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2'-O-MTase mutants were detectable in spleens or livers of B6 mice at 48 h.p.i., demonstrating 225 

the importance of viral mRNA 2'-O-methylation for efficient replication and spread in the host. 226 

Moreover, both MHV 2'-O-MTase mutants could replicate and spread in IFNAR-deficient mice, 227 

emphasizing the pivotal role of viral mRNA 2'-O-methylation as a countermeasure to the host 228 

IFN-I response. Finally, in MDA5-deficient and TLR7-deficient mice, the two known receptors 229 

recognizing coronaviral RNA, and consonant with the pronounced sensitivity of the 2'-O-MTase 230 

active site mutant MHV-D130A to IFN-α pretreatment in MΦs, MHV-D130A was not 231 

detectable in spleens or livers of mice lacking either of the RNA sensors. This suggested that 232 

induction of IFN-I expression via TLR7 or MDA5 suffices to completely restrict viral replication 233 

and spread when viral mRNA 2'-O-methylation is abrogated. Interestingly, the type 0 cap-234 

binding mutant MHV-Y15A was still detectable in the spleens of TLR7-deficient and MDA5-235 

deficient mice, suggesting that robust IFN-I induction by both RNA sensors is required to fully 236 

restrict viral replication if the 2'-O-MTase activity is reduced rather than abrogated. Importantly, 237 

in mice deficient for both receptors, TLR7 and MDA5 (tlr7-/-/mda5-/-), the replication and spread 238 

of both MHV 2'-O-MTase mutants was indistinguishable compared to IFNAR-deficient mice. 239 

These observations confirm that TLR7 and MDA5 represent the main sensor molecules for 240 

recognizing coronaviral RNAs and demonstrate that 2'-O-methylation of viral mRNA serves as a 241 

mechanism to evade host innate immune recognition of non-self RNA in vivo.  242 

 243 

244 
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DISCUSSION 245 

The correct functioning of host innate immune responses is based on reliable pathogen 246 

detection and is essential in limiting pathogen replication and spread. Here, we demonstrate by 247 

using human and murine coronavirus models of infection that mRNA 2'-O-methylation provides 248 

a molecular signature that has a dual role during interaction with the host innate immune 249 

responses. First, mRNA 2'-O-methylation protects viral RNA from recognition by MDA5 and 250 

thus prevents MDA5-dependent IFN-I production in virus-infected cells. Second, 2'-O-251 

methylation of viral mRNA contributes to evasion from the IFIT1-dependent restriction of viral 252 

replication that is operative during the IFN-I-induced host cell antiviral state. Moreover, this 253 

study shows that these distinct processes can be uncoupled either in the absence of IFN-I 254 

signaling (e.g. in IFNAR-deficient cells/mice), or through a genetic approach that targets the 255 

cap-0 binding residue Y15 of MHV nsp16. Apparently, the lack of 2'-O-methylation on a 256 

proportion of MHV-Y15A mRNAs is sufficient to trigger the MDA5 pathway of IFN-I 257 

induction, whilst the MHV-Y15A mRNAs that are 2'-O-methylated allows the virus to evade the 258 

IFIT-1-mediated restriction of viral replication. In contrast, the absence of 2'-O-methylation of 259 

viral RNA through targeting of the 2'-O-MTase active site residue D130 strongly activates the 260 

MDA5 pathway and results in restriction of virus propagation. 261 

The data provided in this study elucidate the impact of mRNA 2'-O-methylation on 262 

MDA5-dependent induction of IFN-I. The use of human and murine systems of coronavirus 263 

infection greatly facilitated the analysis of this link because (i) coronaviruses encode their own 5' 264 

mRNA cap methylation machinery, which allowed us to study the phenotype of recombinant 265 

viruses with mutated 2'-O-MTase proteins, and (ii) the induction of IFN-I expression is hardly 266 

detectable in infected cells, other than pDCs, with the notable exception of MΦs, which produce 267 

a low level of MDA5-mediated IFN-I following infection22-24,28. In contrast, most other RNA 268 

viruses that replicate in the cytoplasm induce considerable levels of IFN-I that may mask the 269 
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specific impact of mRNA 2'-O-methylation on MDA5 activation2,29. In future studies it will be 270 

important to clarify whether viral mRNA lacking 2'-O-methylation is directly recognized by 271 

MDA5, resulting in its activation, or whether it is part of the activation signal of MDA5, possibly 272 

in combination with dsRNA regions. The reverse genetic approach used in this study provided 273 

evidence for the biological significance of mRNA 2'-O-methylation in the context of MDA5-274 

dependent IFN-I induction, and we expect that the generation of further recombinant viruses, 275 

harboring defined mutations in RNA-processing enzymes, combined with biochemical 276 

approaches will be useful in the identification of naturally occurring MDA5 ligands.  277 

The evasion of MDA5-dependent RNA recognition and IFIT gene member dependent 278 

restriction of virus replication provide a reasonable explanation for the conservation of 2'-O-279 

MTases in many viruses replicating in the cytoplasm of higher eukaryotes (Supplementary 280 

Table 1). It is also striking that a number of viruses, such as bunyaviruses and arenaviruses, 281 

which replicate in the cytoplasm but have not acquired the ability to autonomously generate and 282 

modify their 5'-cap structures, have evolved means to snatch the cap structure from cellular 283 

mRNA30,31 (Supplementary Table 1). Moreover, structural and functional analyses of the Lassa 284 

virus (family Arenaviridae) nucleoprotein have revealed that this cap-binding protein can 285 

antagonize IFN-I through its associated 3' – 5' exoribonuclease activity, probably by cleaving 286 

RNAs that function as PAMPs32. The protein also has an unusually deep cap-binding pocket that 287 

has been proposed to accommodate the entire m7GpppN cap structure32. Thus it is potentially 288 

able to recognize and discriminate between 2'-O-methylated and non-methylated capped RNAs. 289 

Finally, members of the Picornavirales order and related viruses, which replicate in the 290 

cytoplasm but do not encode MTases, have evolved alternative 5'-ends of their viral RNAs. 291 

These viruses covalently attach a small viral protein (VPg) to the genomic 5'-terminus and 292 

harbor an internal ribosomal entry site at the 5'-non-tranlated region33 (Supplementary Table 293 

1). Interestingly, encephalomyocarditis virus (EMCV, family Picornaviridae) replication appears 294 
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not to be restricted by IFIT proteins27, however, EMCV infection is sensed through the MDA5 295 

pathway34. Thus, it is tempting to speculate, that the use of internal ribosomal entry allows 296 

EMCV to evade host restriction by IFIT family members, but the covalent attachment of VPg to 297 

picornaviral RNA 5'-termini does not prevent MDA5-dependent RNA recognition and IFN-I 298 

induction. 299 

A relationship between RNA modification and host cell innate immune responses is further 300 

supported by observations made during studies of cellular PRRs. For example, it has been shown 301 

that activation of RIG-I and PKR is diminished when 5’ triphosphate RNA contains modified 302 

nucleotides9,10,35. Similarly, nucleoside modifications reduce the potential of RNA to trigger 303 

TLRs36. Although, most of these observations have been made by in vitro studies (e.g. the 304 

transfection of short synthetic RNAs), it appears that RNA modifications may impact on innate 305 

immune sensing on a wider scale37. Therefore, it will be important to extend our knowledge on 306 

naturally occurring RNA modifications and their impact on innate immune responses. We 307 

predict that the analysis of viral RNA modifications will most likely unveil further molecular 308 

RNA signatures that function as PAMPs. 309 

In summary, our study identifies 2'-O-methylation of eukaryotic mRNA cap structures as a 310 

molecular pattern of self mRNAs, and demonstrates that there are at least two cellular 311 

mechanisms that allow for the distinction of 2'-O-methylated versus non-methylated mRNAs. 312 

Consequently, a number of viruses replicating in the cytoplasm, without access to the nuclear 313 

host cell mRNA capping and modification machinery, have evolved to encode their own RNA-314 

modifying enzymes as means of mimicking cellular mRNAs. Our data should encourage future 315 

studies to evaluate the full spectrum and functional significance of mRNA modifications as an 316 

additional layer of information imprinted on eukaryotic mRNAs. 317 

318 
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METHODS SUMMARY 319 

Mice, viruses, cells and virus infection. C57BL/6 mice were obtained from Charles River 320 

Laboratories (Sulzfeld, Germany). ifnar-/-, mda5-/-, tlr7-/-, and mda5-/- × tlr7-/- mice were on the 321 

C57BL/6 background and bred in the animal facilities of the Kantonal Hospital St.Gallen. ifit1-/- 322 

mice were bred in the animal facilities of the Washington University School of Medicine. All 323 

mice were maintained in individually ventilated cages and were used between 6 and 9 weeks of 324 

age. All animal experiments were done in accordance with the Swiss Federal legislation on 325 

animal protection and the Saint Louis University Animal Studies Committees.  326 

HCoV strain 229E, HCoV-D129A, MHV strain A59, MHV-D130A and MHV-Y15A 327 

recombinant viruses were generated using a vaccinia virus-based reverse genetic system as 328 

described38 and propagated on either Huh-7 (HCoV) or 17Cl1 (MHV) cells. BHK-21, L929, 329 

NIH-3T3, Huh-7, MRC-5 and CV-1 cells were purchased from the European Collection of Cell 330 

Cultures. D980R cells were a kind gift from G. L. Smith, Imperial College, London, UK. 17Cl1 331 

cells were a kind gift from S.G. Sawicki, Medical University of Ohio, Toledo, Ohio, USA.  332 

BHK-MHV-N and BHK-HCoV-N cells, expressing the MHV-A59 or HCoV-229E 333 

nucleocapsid protein, respectively, under the control of the TET/ON system (Clontech), have 334 

been described previously38. All cells were maintained in minimal essential medium 335 

supplemented with fetal bovine serum (5-10%) and antibiotics. Thioglycolate-elicited murine 336 

macrophages were generated as described39. Human macrophages were isolated from peripheral 337 

blood of normal donors as described40. 338 

Mice were injected intraperitonealy (i.p.) with 500 p.f.u. of MHV. Organs were stored at –339 

70°C until further analysis. Virus infection of human blood-derived macrophages and 340 

thioglycolate-elicited murine macrophages was done in a 24-well format with 0.5-1×106 cells 341 

and the indicated MOI. MHV titers were determined by standard plaque assay using L929 cells. 342 
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HCoV titers were determined by plaque assay using Huh-7 cells that were overlaid at 1 h p.i. 343 

with 1.2% Avicel/10% DMEM and stained with crystal violet 3 days post infection. 344 

2'-O-methylation of poly(A)-containing RNA in vitro. Poly(A)-containing RNA was 345 

isolated using the Dynabeads mRNA DIRECT Kit (Invitrogen, Basel, Switzerland) from 1×107 346 

mock- or HCoV-infected (MOI=1; at 48 h p.i) Huh-7 cells, and from 1×107 mock- or MHV-347 

infected (MOI=1; at 24 h p.i.) NIH-3T3 cells according to the manufacturer’s recommendation. 348 

The RNA was precipitated after adding 0.1 volume of 4 M ammonium-acetate and 1 volume of 349 

isopropanol, washed with 70% ethanol and dissolved in 10 mM TRIS-HCl (pH 7.5) to a final 350 

concentration of 150 ng/μl. In vitro 2'-O-methylation reactions contained 300 ng of poly(A)-351 

containing RNA derived from virus-infected cells or a corresponding amount of poly(A)-352 

containing RNA from non-infected cells (as determined by qRT-PCR using murine GAPDH and 353 

human β-actin specific primers; data not shown) using the ScriptCap 2'-O-Methyltransferase 354 

(Epicentre Biotechnologies, Madison, USA) in 0.5 μM  SAM and 1.4 μM 3H-labeled SAM (78 355 

Ci/mmol; Perkin Elmer, Schwerzenbach, Switzerland) for 1 h at 37°C. Reactions were purified 356 

using SigmaSpin Post-Reaction Clean-Up columns (Sigma-Aldrich, Buchs, Switzerland), and 357 

the eluates were mixed with 2 ml Ultima Gold scintillation fluid to measure 3H-incorporation as 358 

counts per minute using a Packard Tri-Carb Liquid Scintillation Counter (Perkin Elmer, 359 

Schwerzenbach, Switzerland). 360 

Immunofluorescence, IFN-β ELISA and IFN-α pre-treatment. Detection of IRF3 was 361 

done on thioglycolate-elicited murine macrophages (2×105 per well in 200 μl) that were seeded 362 

in 8- chamber tissue culture glass slides (BD Falcon), incubated over night at 37°C and infected 363 

with MHV at an MOI=1. At 3h p.i. cells were stained for IRF3 (Clone FL-425, Santa Cruz 364 

Biotechnology) and DAPI. Images were acquired using a Leica DMRA microscope (Leica, 365 

Heerbrugg, Switzerland). Mouse and human IFN-β concentrations in cell culture supernatants 366 
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was measured by ELISA (PBL Biomedical Laboratories, NJ, USA) according to manufacturers' 367 

instructions. IFN-α pre-treatment of cells prior to virus infection was done using universal type I 368 

interferon (IFN-α A/D, Sigma, Buchs, Switzerland). 369 

Bioassay for type I interferon (IFN-I). Total IFN-I in supernatants was measured using 370 

LL171 cells (kind gift from M. Pelegrin, Institut de Génétique Moléculaire de Montpellier, 371 

France), which are L929 cells stably transfected with a luciferase reporter plasmid under control 372 

of the IFN-stimulated response element (ISRE-Luc)41. Recombinant IFN-A/D (Sigma) was used 373 

as a cytokine standard. Prior to measurement, virus was removed by centrifuging supernatants 374 

through AMICON spin columns with a cutoff of 100 kDa (Millipore) according to the 375 

manufacturer's instructions. LL171 cells grown in 96-well plates were treated with column-376 

filtered supernatants for 6 hours, and luciferase activity was detected upon addition of Bright-377 

Glo Luciferase substrate (Promega) in a GloMax 96 Plate Luminometer (Promega). All 378 

measurements were done in duplicate. The sensitivity threshold of the assay was between 5 and 379 

15 U/ml IFN.  380 

Quantitative RT-PCR. Total cellular RNA was isolated with the NucleoSpin RNA II kit 381 

(Macherey-Nagel) according to the manufacturer's instructions and used as template for cDNA 382 

synthesis using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems). IFN-β 383 

and TATA-box binding protein (TBP) mRNA levels were detected with the LightCycler 384 

FastStart DNA MasterPLUS SYBR Green I kit (Roche) on a LightCycler 1.5 (Roche). The 385 

following primers were used: IFN-β 5'-GGTGGAATGAGACTATTGTTG-3' and 5'-AGGACA 386 

TCTCCCACGTC-3', TBP 5'-CCTTCACCAATGACTCCTATGAC-3' and 5'-CAAGTTTACA 387 

GCCAAGATTCAC-3'. Measurements were done in duplicate and relative expression of IFN-β 388 

was normalized to the mock data by the comparative cycling threshold method (ΔΔCT). 389 

Phylogenetic analysis of viral MTase domains. Regions of MTase homology have been 390 

identified previously as members of the RrmJ-like superfamily, InterPro IPR002877.  Additional 391 
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members of this protein family were identified by BLAST searches using previously-identified 392 

RrmJ-like amino acid sequences using the default search parameters.  For virus species 393 

belonging to a family in which an RrmJ-like domain had been identified, structure-based amino 394 

acid alignment was done to determine whether a distant homolog might be present.  We 395 

compared predicted and actual secondary structures from confirmed 2'-O-MTase domains to 396 

secondary structure predictions of domains of unknown function.  Secondary structures were 397 

predicted using PsiPred version 3.0.  Putative secondary structure matches were considered as 398 

confirmed upon identification of the best-conserved MTase motifs I, IV, VI, VIII and X42.  399 

Viruses in which we were unable to identify a primary or secondary structure match to RrmJ-like 400 

proteins are marked “not detected” in Supplementary Table 1. 401 

 402 

FIGURE LEGENDS 403 

 404 

Figure 1. Conservation of viral 2'-O-MTases. a) Schematic representation of the human 405 

and murine coronavirus genomes. The conserved replicase gene is depicted together with viral 406 

proteinase cleavage sites (arrowheads) that separate nsps 1–16. The nsp16-associated 2'-O-407 

MTase is depicted. b) Coronavirus nsp16 proteins belonging to the human fibrillarin and E. coli 408 

RrmJ-like methyltransferase family43 were analyzed by sequence comparison. Sixteen 409 

coronavirus nsp16 amino acid sequences, which were 20-90% identical and are representative of 410 

alpha-, beta- and gammacoronaviruses were aligned using ClustalW244. Sequence conservation 411 

is shown using a color code that indicates the percentage of amino acid identity. Amino acid 412 

residues that have been substituted to alanine in previously published biochemical and structural 413 

studies16,18 are colored according to the observed phenotype of the mutant protein. Amino acid-414 

to-alanine replacements characterized in this and previous studies are depicted. c) Conservation 415 

of viral and cellular methyltransferase motifs. Alignment of MHV nsp16 with homologous 416 
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methyltransferases from White bream virus (WBV; order Nidovirales), Dengue virus (DENV; 417 

family Flaviviridae), Vesicular stomatitis virus (VSV; order Mononegavirales), Vaccinia virus 418 

(VACV; family Poxviridae), and  human fibrillarin (FBL; Homo sapiens) was done using 419 

ClustalW2 and manually adjusted based on published structural data and PSIPRED protein 420 

secondary structure predictions45. Motif nomenclature follows Fauman et al.42. Coloring reflects 421 

amino acid similarity and conservation as implemented in JalView46. 422 

 423 

Figure 2. The HCoV 2'-O-MTase active site mutant has altered replication kinetics, is 424 

defective in ribose 2'-O-methylation, induces increased levels of IFN-β, and is IFN-I sensitive. a) 425 

Analysis of plaques produced by HCoV-229E and HCoV-D129A. b) HCoV-229E and HCoV-426 

D129A replication kinetics in MRC-5 cells after infection at an MOI=0.1. Results are the 427 

average of two independent experiments done in triplicate. c) 3H-incorporation (counts per 428 

minute; cpm) into poly(A)-containing RNA derived from mock-infected (self RNA), HCoV-429 

229E-, and HCoV-D129A-infected (non-self RNA) cells after in vitro 2'-O-methylation using the 430 

vaccinia virus 2'-O-MTase VP39. Results represent the mean ±SD of three independent 431 

experiments.  d) IFN-β production of human blood-derived MΦs after infection with HCoV-432 

229E and HCoV-D129A. Cells (1×106) were infected at an MOI=1 and 24 h p.i. IFN-β was 433 

measured in the culture supernatant by ELISA. Results are plotted for each of the 9 independent 434 

donors and data points from individual donors are connected by lines. Mean values (thick bars) 435 

±SD (thin bars) are indicated and statistical analysis was done using Wilcoxon matched pairs test 436 

(**, p < 0.005). e) Human blood-derived MΦs were pretreated with increasing doses of IFN-α 4 437 

h prior to infection with HCoV-229E or HCoV-D129A at MOI=1. At 24 h p.i., supernatants 438 

were harvested and viral titers were measured by plaque assay. ND: not detected. 439 

 440 
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 Figure 3. MHV 2'-O-MTase mutants induce IFN-β in an MDA5-dependent manner. a) 441 

Poly(A)-containing RNA (300 ng) from MHV-A59, MHV-Y15A and MHV-D130A infected 442 

cells was separated on a standard 1% agarose gel and stained with ethidium-bromide (left panel). 443 

Genomic and subgenomic mRNAs (mRNA 1-7) and their respective sizes (in kb) are indicated. 444 

The right panel shows 3H-incorporation (cpm) into poly(A)-containing RNA derived from mock 445 

infected (self RNA), MHV-A59-, MHV-Y15A- and MHV-D130A-infected (non-self RNA) cells 446 

after in vitro 2'-O-methylation using the vaccinia virus 2'-O-MTase VP39. Results represent the 447 

mean ±SD of seven independent experiments. b) Replication kinetics of MHV-A59, MHV-448 

Y15A and MHV-D130A in 17Cl1 cells. Cells were infected at an MOI=1 (left panel) or 449 

MOI=0.0001 (right panel), and viral titers in cell culture supernatants were determined at the 450 

indicated time points p.i.. c-e) Murine MΦs (1×106) derived from WT (c), ifnar-/- (d), or mda5-/- 451 

(e) mice were infected at an MOI=1 and IFN-β concentration was determined in cell culture 452 

supernatants by ELISA at 15 h p.i.. Results represent the mean ±SD of three independent 453 

experiments (n=6). f,g) Quantitative RT-PCR for IFN-β. WT (f), or ifnar-/- (g) MΦs were 454 

infected as described above and IFN-β mRNA expression levels were analyzed by quantitative 455 

RT-PCR at the indicated time points. Results represent the mean ±SD of two independent 456 

experiments (n=6). Statistical analysis was done using unpaired Student's t-test (***, p < 0.001; 457 

**, p < 0.01; *, p < 0.05; n.s. (not significant), p > 0.05). ND: not detected. 458 

 459 

Figure 4. 2'-O-MTase mutant viruses induce nuclear localization of IRF3 in WT, but not 460 

MDA5-deficient MΦs. a) Detection of IRF3 in MHV-A59, MHV-Y15A or MHV-D130A 461 

infected (MOI=1) murine MΦs derived from ifnar-/- (upper row) or mda5-/- (lower row) mice. 462 

Cells were stained at 3 h p.i. for IRF3 (red) and DAPI (blue). Representative fields are shown. b) 463 

The percentage of cells with IRF3 located in the nucleus was calculated for each 464 
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immunofluorescence analysis using five random fields with approximately 50-250 cells each. 465 

Results represent the mean ±SD. Statistical analysis was done using unpaired Student's t-test 466 

(***, p < 0.001; **, p < 0.01; *, p < 0.05; n.s. (not significant), p > 0.05). ND: not detected. 467 

 468 

 Figure 5. MDA5 is critical for replication restriction of the IFN-I sensitive MHV 2'-O-469 

MTase active site mutant MHV-D130A but not for the MHV-Y15A mutant. a-b) Murine MΦs 470 

(1×106) derived from WT (left panels) or MDA5-/- (right panels) mice were infected with MHV-471 

A59, MHV-D130A or MHV-Y15A at an MOI=1 (a) or MOI=0.0001 (b). Viral titers in the cell 472 

culture supernatants were measured at the indicated time points by plaque assay. Results 473 

represent the mean ±SEM of two independent experiments (n=5). c-d) IFN-sensitivity of MHV 474 

2'-O-MTase mutants. Murine MΦs (1×105) derived from WT (c) or  475 

MDA5-/- (d) mice were treated with the indicated dosages of IFN-α for 4 h prior to infection 476 

(MOI=1) with MHV-A59, MHV-D130A or MHV-Y15A. Viral titers in the cell culture 477 

supernatants were measured at 24 h p.i.. Results represent the mean ±SD of two independent 478 

experiments (n=4).  479 

 480 

Figure 6. MHV replication kinetics in ifit1-/- MΦs. a,b) Murine MΦs (5×105) derived from 481 

WT (a) or ifit1-/- (b) mice were infected with MHV-WT, MHV-D130A, or MHV-Y15A at and 482 

MOI of 0.01. Viral titers in the cell culture supernatants were measured at the indicated time 483 

points by plaque assay. Results represent the mean ±SEM of two independent experiments (n=4). 484 

 485 

 Figure 7. MHV 2’O-MTase mutants are highly attenuated in WT mice but restore 486 

efficient replication in ifnar-/- and mda5-/-/tlr7-/- mice. WT, ifnar-/-, mda5-/-/tlr7-/-, mda5-/-, and 487 

tlr7-/- mice (6-8 week old) were infected intraperitoneally with 500 p.f.u of MHV-A59, MHV-488 
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D130A or MHV-Y15A. Viral titers in spleens (a) and livers (b) were determined at 24 h p.i. 489 

Results represent the mean ±SD of two independent experiments (n=6). ND: not detected. 490 

 491 
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