Kinetic studies of reactions of the nitrate radical (NO3) with peroxy radicals (RO2): an indirect source of OH at night?

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Vaughan, S., Canosa-Mas, C. E., Pfrang, C., Shallcross, D. E., Watson, L. and Wayne, R.P. (2006) Kinetic studies of reactions of the nitrate radical (NO3) with peroxy radicals (RO2): an indirect source of OH at night? Physical Chemistry Chemical Physics, 8 (32). pp. 3749-3760. ISSN 1463-9076 doi: 10.1039/B605569A

Abstract/Summary

A discharge-flow system, coupled to cavity-enhanced absorption spectroscopy (CEAS) detection systems for NO3 at lambda = 662 nm and NO2 at lambda = 404 nm, was used to investigate the kinetics of the reactions of NO3 with eight peroxy radicals at P similar to 5 Torr and T similar to 295 K. Values of the rate constants obtained were (k/10(-12) cm(3) molecule(-1) s(-1)): CH3O2 (1.1 +/- 0.5), C2H5O2 (2.3 +/- 0.7), CH2FO2 (1.4 +/- 0.9), CH2ClO2 (3.8(-2.6)(+1.4)), c-C5H9O2 (1.2(-0.5)(+1.1)), c-C6H11O2 (1.9 +/- 0.7), CF3O2 (0.62 +/- 0.17) and CF3CFO2CF3 (0.24 +/- 0.13). We explore possible relationships between k and the orbital energies of the reactants. We also provide a brief discussion of the potential impact of the reactions of NO3 with RO2 on the chemistry of the night-time atmosphere.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/17074
Identification Number/DOI 10.1039/B605569A
Refereed Yes
Divisions Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) > Optical Spectroscopy (CAF)
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
Publisher Royal Society of Chemistry
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar