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ABSTRACT

In the forecasting of binary events, verification measures that are ‘‘equitable’’ were defined by Gandin and

Murphy to satisfy two requirements: 1) they award all random forecasting systems, including those that always

issue the same forecast, the same expected score (typically zero), and 2) they are expressible as the linear

weighted sum of the elements of the contingency table, where the weights are independent of the entries in the

table, apart from the base rate. The authors demonstrate that the widely used ‘‘equitable threat score’’ (ETS),

as well as numerous others, satisfies neither of these requirements and only satisfies the first requirement in

the limit of an infinite sample size. Such measures are referred to as ‘‘asymptotically equitable.’’ In the case of

ETS, the expected score of a random forecasting system is always positive and only falls below 0.01 when the

number of samples is greater than around 30. Two other asymptotically equitable measures are the odds ratio

skill score and the symmetric extreme dependency score, which are more strongly inequitable than ETS,

particularly for rare events; for example, when the base rate is 2% and the sample size is 1000, random but

unbiased forecasting systems yield an expected score of around 20.5, reducing in magnitude to 20.01 or

smaller only for sample sizes exceeding 25 000. This presents a problem since these nonlinear measures have

other desirable properties, in particular being reliable indicators of skill for rare events (provided that the

sample size is large enough). A potential way to reconcile these properties with equitability is to recognize

that Gandin and Murphy’s two requirements are independent, and the second can be safely discarded without

losing the key advantages of equitability that are embodied in the first. This enables inequitable and as-

ymptotically equitable measures to be scaled to make them equitable, while retaining their nonlinearity and

other properties such as being reliable indicators of skill for rare events. It also opens up the possibility of

designing new equitable verification measures.

1. Introduction: What is equitability and why is it
desirable?

To assess objectively the skill of a sequence of n yes–

no forecasts (e.g., whether or not a tornado will occur or

whether a rain rate will exceed a certain threshold), one

first defines the 2 3 2 contingency table (e.g., Mason

2003) containing the total number of correct forecasts of

occurrence (or ‘‘hits’’) a, the number of incorrect fore-

casts of occurrence b, the number of incorrect forecasts

of nonoccurrence c, and the number of correct forecasts

of nonoccurrence d,

a b

c d

� �
5

hits false alarms

misses correct negatives

� �
, (1)

such that a 1 b 1 c 1 d 5 n. For a particular set of

weather conditions, the observed frequency of occur-

rence or ‘‘base rate’’ is fixed at p 5 (a 1 c)/n. A verifi-

cation measure S is then defined as a function of the

elements of the contingency table.

It has been known since the time of Finley (1884) that

there are pitfalls to avoid in the design of the measure

one uses to quantify the degree of skill (Murphy 1996).

In particular, the measure should not encourage a fore-

caster to ‘‘hedge,’’ that is, to issue a forecast that differs

from his or her ‘‘true belief’’ or ‘‘judgment’’ in order to

improve either the score that is being used to assess the

forecast, or its expectation. This definition has been

implicit or explicit in discussions of hedging since the
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1950s (see references in Jolliffe 2008). However, it

should be noted that hedging has also been used to de-

note a somewhat different pattern of behavior (Marzban

1998; Brill 2009), namely issuing a forecast that has a

frequency bias, B 6¼ 1 [where bias B 5 (a 1 b)/(a 1 c) 5

1], in order to improve the value of the score being used

to assess the forecast, compared to its value when the

forecast is unbiased (B 5 1). The difference between the

two may be illustrated simply as follows. The first defi-

nition of hedging includes the concept of ‘‘hedging to-

ward climatology,’’ that is, changing one’s forecast rate

of occurrence to match the observed rate (because one’s

true belief has a bias). This is the sense of the term that

was explored at length by Stephenson (2000). The sec-

ond definition would not consider such behavior to be

hedging. Indeed, if the original biased forecast was re-

warded by a particular verification measure for its bias,

then the second definition might judge hedging to be not

to change one’s forecast rate of occurrence to match the

observed rate, since it would be being rewarded by is-

suing a biased forecast even though that was the fore-

caster’s true belief. We stick to the older and more

intuitive definition of hedging.

The concept of hedging is most often considered in the

case of probabilistic forecasts, but for deterministic fore-

casts of binary events it is a less useful concept. Jolliffe

(2008) argued that it is difficult to conceive of a situation

where a forecaster’s true belief is not probabilistic, and

therefore the fact that the forecaster only predicts oc-

currence or nonoccurrence (with apparently 100% con-

fidence) means that all forecasts differ from his or her

belief, and so are hedged in some sense. Murphy and

Daan (1985) recognized this difficulty and defined the

weaker property ‘‘consistency’’: if a probabilistic belief is

converted into a deterministic forecast via some ‘‘direc-

tive’’ (e.g., forecast occurrence only if you believe the

event has greater than a 50% probability of occurring),

then a consistent verification measure is one that maxi-

mizes the score for a particular directive. We are then left

with the problem of determining whether a directive is

sensible.

An alternative desirable property, which is more ame-

nable to analysis for binary forecasts, is that the measure

assesses the performance of a forecaster or forecasting

system relative to a random forecasting system. This is

known as equitability and was defined rigorously by

Gandin and Murphy (1992) in their seminal paper on the

subject as follows:

1) An equitable verification measure awards all random

forecasting systems, including those that always

forecast the same value, the same expected score

(denoted S0 in this paper).

2) An equitable verification measure S must be ex-

pressible as the linear weighted sum of the elements of

the contingency table; that is, S 5 (Saa 1 Sbb 1 Scc 1

Sdd)/n 1 S0, where the weights Sa, . . . , Sd are inde-

pendent of the individual elements of the contingency

table, although they may depend on the base rate p 5

(a 1 c)/n. Gandin and Murphy (1992) expressed these

weights in the form of a 2 3 2 ‘‘scoring matrix.’’

From these two requirements, Gandin and Murphy

(1992) then proceeded to show that only the Peirce skill

score (Peirce 1884), or a linear function of it, is truly

equitable. However, it has since been claimed that sev-

eral other measures are equitable, such as the Heidke

skill score (Mason 2003), the odds ratio skill score

(Stephenson 2000), and indeed the equitable threat

score (ETS; Mason 2003). So what is the reason for this

discrepancy? It can be shown from their definitions that

these three measures do not satisfy requirement 2, so

a possibility is that many authors equate equitability

only with requirement 1, although we will show in the

next section that two of these measures do not, in gen-

eral, satisfy this requirement either. Before we discuss

some of the previous work where apparently different

definitions of equitability have been used, we step back

and address a more fundamental question: why is equi-

tability (as defined by Gandin and Murphy) desirable?

We start by considering requirement 1 and note that

many people question the importance of assigning

a constant baseline score to all random and constant

forecast systems: ‘‘if a measure can correctly rank the

performance of different forecasting systems, then who

cares about equitability?’’ The answer to this is that it

is easy to show that a measure that does not satisfy re-

quirement 1 will sometimes incorrectly rank a random

forecast above a forecast system with some skill. Con-

sider two different random forecasters (e.g., one who

forecasts occurrence with probability 0.1 and the other

with probability 0.9), who are awarded different ex-

pected scores of S1 and S2, with S1 , S2. If a real fore-

caster predicts occurrence in the same proportion of his

or her forecasts as the first random forecaster, but with

positive skill such that the expected score awarded S is

greater than S1, then if S happens to be less than S2, this

forecaster will be incorrectly ranked below the second

random forecaster. Moreover, such a measure would

reward this forecaster if he or she were to abandon the

physical principles on which forecasts were being made

and instead issue random forecasts with a probability

optimized for the measure in question. These properties

are obviously undesirable and support the requirement

for all random and constant forecasts to score the same.

More generally, to what extent is requirement 1 related
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to the inability to hedge? Given the arguments of Jolliffe

(2008), we consider only the limited form of hedging

described by Stephenson (2000): to randomly select a

particular proportion of forecasts of nonoccurrence and

change them to occurrence, or vice versa, in an attempt

to improve one’s score. By this definition, requirement 1

clearly prevents random forecasting systems from being

able to hedge their forecasts. However, it does not

guarantee that the same is true for the much wider class

of forecasting systems in practice that do have some skill.

At most, we can state that, because an equitable measure

cannot be hedged by a random forecasting system, it may

be less easy to hedge by a forecasting system with positive

skill compared to an inequitable measure, but this is not

guaranteed. As a point of clarity, Gandin and Murphy

(1992) specified that the baseline ‘‘no skill’’ score, S0,

should be constant for a particular verification measure

(and indeed S0 5 0 for most measures). In principle, S0

could be a function of p, a quantity over which the

forecaster has no control, and a random forecaster would

still be unable to hedge the measure. However, an addi-

tional justification for requirement 1 is that constant S0

provides a single baseline above which a forecaster’s

performance can be said to be superior to the expected

performance of a class of naı̈ve forecasters, such as ran-

dom forecasters. This makes subsequent interpretation

of the measure easier, especially if we also have a fixed

upper limit corresponding to a perfect forecast. We note

that S0 should not be a function of n, since often fore-

casters do have control over how large a sample they are

assessed with and, therefore, would have the opportunity

to artificially inflate their score.

Gandin and Murphy’s (1992) second requirement given

above is rather less easy to justify as an essential com-

panion to their first. Linearity in general was deemed de-

sirable by Hogan et al. (2009) since it ensures that a

measure is equally sensitive to changes in skill throughout

its range; that is, ‘‘near perfect’’ and ‘‘near random’’ fore-

casting systems will be rewarded by the same increase in

score if 1 is added to a and d and 1 is subtracted from

b and c. This was demonstrated when they estimated the

‘‘half life’’ of numerical weather forecasts, that is, a time

scale for the decay of the score toward S0 as a function of

the lead time into the forecast; in particular, the highly

nonlinear ‘‘odds ratio skill score’’ yielded a misleadingly

high half life. Conversely, linearity appears to be in-

compatible with another desirable property, that of be-

ing a reliable indicator of skill for rare events. It was

shown by Stephenson et al. (2008) that almost all mea-

sures (and certainly all linear ones) are ‘‘degenerate’’ in

that they tend to zero or some other constant as the base

rate tends to zero. Their extreme dependency score and

its symmetric counterpart proposed by Hogan et al.

(2009) overcome this problem via a nonlinear (specifi-

cally a logarithmic) dependence on the elements of the

contingency table, preventing these measures from sat-

isfying requirement 2. So what was the reason for in-

clusion of requirement 2 by Gandin and Murphy (1992)?

It is possible that it was included simply to restrict the

class of measures considered in order that the mathe-

matical condition for a measure to satisfy requirement 1

could be derived, rather than having any overriding merit

of its own. Indeed, another interpretation of Gandin and

Murphy (1992) is not that requirement 2 is fundamental to

the concept of equitability, but simply that they chose to

consider only the equitability (embodied in requirement 1)

of a limited class of measures (those that also satisfy re-

quirement 2). As will be demonstrated later in this paper,

requirement 2 is certainly not a necessary condition in

order for requirement 1 to be satisfied.

There have been several examples in the literature

where the term equitability has been used in a different

sense than that of Gandin and Murphy, although in each

case Gandin and Murphy (1992) was provided as the

reference. Marzban (1998) equated ‘‘inequitability’’ with

being able to hedge a measure, specifically that an in-

equitable measure is one that is optimized by forecasting

with a frequency bias other than B 5 1 and therefore

induces under- or overforecasting. By this definition, all

measures for verifying binary forecasts that he considered

were found to be inequitable, including the Peirce skill

score (also known as the true skill score), which Gandin

and Murphy (1992) deemed to be equitable. Baldwin and

Kain (2006) also adopted Marzban’s concept of equitabil-

ity. Marzban and Lakshmanan (1999) considered measures

that satisfied requirement 2 but argued that requirement

1 could be relaxed in the definition of equitability, on the

basis that it can be difficult to reconcile with the re-

quirement that a measure is optimized by an unbiased

forecast. The findings of Marzban (1998) and Marzban

and Lakshmanan (1999) are simply a consequence of

them taking the fundamental concept of equitability to be

something different to Gandin and Murphy (1992). This

is not to claim that the work of these authors is invalid,

merely to suggest that the property they were considering

to be paramount (that a measure is optimized by an un-

biased forecast) should be referred to as something other

than equitability.

We argue that requirement 1 is fundamental to the

concept of equitability as envisioned by Gandin and

Murphy (1992), and its desirability is amply justified by

the arguments we have provided above. By contrast, we

argue that requirement 2 can be safely discarded in the

definition of equitability, and in this paper we explore

the very interesting class of measures that are now clas-

sified as equitable. In section 2, we derive the necessary
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conditions for requirement 1 to be satisfied and explore

the nature of the class of measures that we deem to be

equitable but that do not satisfy Gandin and Murphy’s

requirement 2. In section 3 we demonstrate the non-

equitability of measures such as the so-called equitable

threat score using examples with a sample size small

enough that all the possible contingency tables can be

written out explicitly. In section 4 we introduce the

concept of ‘‘asymptotic equitability,’’ whereby a number

of measures are shown to tend to equitability only in the

limit of an infinite sample size. Then, in section 5, we

demonstrate how an interesting class of nonlinear but

nonetheless truly equitable measures can be constructed,

for example, by rescaling inequitable measures.

2. How to determine whether a measure is
equitable

a. The expectation over all possible contingency
tables

In this section we show how, from requirement 1 in the

previous section, we may derive an expression that all

truly equitable measures must satisfy, and how by omit-

ting requirement 2 a new class of equitable measures is

admitted. We define a random forecasting system as one

that issues forecasts randomly with a fixed probability, qp,

irrespective of any other information; qp is the ‘‘pop-

ulation’’ forecast rate of occurrence (to contrast with the

‘‘sample’’ forecast rate of occurrence), and may be any

value in the range 0 to 1, inclusive. To calculate whether

this forecasting system would yield an expected score of

zero, or some other constant value S0, we need to con-

sider all possible sequences of n forecasts that could be

made, the score that they would each be awarded by the

verification measure being tested, and the probability of

each sequence being issued by chance. We consider both

n and the base rate p 5 (a 1 c)n to be held fixed in this

exercise, and are therefore calculating the expectation

given a particular sequence of events in reality. At the

end of this section we demonstrate that if we wish to

calculate the expectation over all possible base rates

(e.g., if p is treated as a sample base rate that is just a

realization of the population base rate), we arrive at the

same conclusions as to which measures are equitable.

It is illuminating to consider specific examples of a

small sample size n in which all the possible contingency

tables can be written out explicitly. Figure 1 (see also

Fig. 3) shows two such examples, one with n 5 4 and p 5 ½,

and the other with n 5 3 and p 5 1/3. A particular random

forecasting system may predict the occurrence of the

event between 0 and n times, with the sample forecast

rate of occurrence given by qs 5 (a 1 b)/n. This variable

is used as the abscissa of the figures, and for each value

of qs there may be several possible contingency tables,

which are shown by the vertical columns with the con-

tingency table that corresponds to the best performance

at the top. It is obvious from Figs. 1 and 3 that the ver-

ification problem for binary forecasts is inherently two-

dimensional, with two numbers needed to characterize

the performance of a particular set of forecasts uniquely.

As plotted here, the abscissa is directly related to the

bias (e.g., the frequency bias B 5 qs/p), while the ordi-

nate is directly related to the skill. Although this paper is

primarily concerned with the best measures for charac-

terizing the skill, it should be borne in mind that what-

ever measure is recommended for skill does not on its

own give a complete picture of the performance of the

forecast system, but should be reported alongside

a measure characterizing the bias. For reasons that will

become obvious in section 2c, the measure of the ap-

parent skill against which we choose to plot the contin-

gency tables is the Peirce skill score, defined as

PSS 5
a

a 1 c
� b

b 1 d
. (2)

(Note that this measure has also previously been re-

ferred to as the true skill statistic, the true skill score, and

the Hanssen–Kuipers performance index.)

If a verification measure S(a, b, c, d) is defined in terms

of the elements of the contingency table, then its ex-

pected value given a particular base rate, E(Sjp), is

calculated by summing over the m possible contingency

tables, each weighted by their probability of occurring,

P(a, b, c, djp):

E(Sjp) 5 �
m

i51
S(a

i
, b

i
, c

i
, d

i
)P(a

i
, b

i
, c

i
, d

i
jp). (3)

A measure is equitable by requirement 1 in the intro-

duction if, for a random forecasting system, E(Sjp) 5 S0

for all p 2 f0, 1/n, . . . , 1g and all qs 2 [0, 1], and where we

take S0 to be constant for a particular score (it cannot

vary with p or qp, for instance). Since n and p are fixed,

the four degrees of freedom in the contingency table

reduce to two (as seen by the fact that the possible

contingency tables in Fig. 1 occupy a plane), for exam-

ple, described purely by a and b. For random forecasts,

these may be treated as random, binomially distributed

variables: ajp ; Bin(np, qp) and bjp ; Bin(n 2 np, qp).

Since these variables are also independent, the proba-

bility of a contingency table occurring randomly may be

written as P(a, b, c, djp) 5 P(ajp)P(bjp), where c 5 np 2

a, d 5 n(1 2 p) – b, 0 # a # np, and 0 # b # n(1 2 p).

An alternative way of splitting up this probability is

P(a, b, c, djp) 5 P(a, b, c, djp, qs)P(qsjp), where P(qsjp)

is the probability of a particular sample forecast rate of

occurrence (i.e., the probability of being in a particular
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column in Fig. 1) and P(a, b, c, djp, qs) is the probability

of a particular table occurring given that we are in a

certain column of Fig. 1. The advantage of this approach

is that we may write the expected score over all possible

tables as the sum over the expected scores given each

particular value of qs:

E(Sjp) 5 �
q

s

E(Sjp, q
s
)P(q

s
jp), (4)

where E(Sjp, qs) 5 �i S(ai, bi, ci, di)P(ai, bi, ci, dijp, qs).

The probabilities may be calculated as follows. Again,

assuming the forecast system to have a population fore-

cast rate of occurrence of qp, the number of events that

are actually forecast in a particular sample, nqs, follows

the binomial distribution: nqsjp ; Bin(n, qp). Therefore,

the probability of a particular qs is

P(q
s
jp) 5 C(n, nq

s
)q

nq
s

p (1� q
p
)n(1�qs), (5)

where C(n, k) 5 n!/[k!(n 2 k)!] is the binomial coef-

ficient, expressing the number of ways k events can oc-

cur in n trials. The random conditional probability P(a,

b, c, djp, qs) is now a function of just one random vari-

able (e.g., a) and may be written as

P(a, b, c, djp, q
s
) [ P(ajp, q

s
)

5
C(np, a)C(n� np, nq

s
� a)

C(n, nq
s
),

(6)

where b 5 nqs 2 a, c 5 np 2 a, d 5 n(1 2 p 2 qs) 1 a,

and maxf0, n(p 1 qs 2 1)g # a # minfnp, nqsg. The

denominator on the right-hand side of (6) is the total

number of ways of selecting nqs cases from n, and the

numerator is the number of those ways in which we have

a hits, since then we must select a from the np cases in

which the event occurs and nqs 2 a from the n 2 np cases

in which the event does not occur.

To illustrate these probabilities being applied to a small

sample of forecasts, the numbers above each contingency

table in Figs. 1 and 3 indicate the probability of it occur-

ring randomly given that one is in a particular column,

P(a, b, c, djp, qs). Figures 2 and 4 depict the scores that

would be awarded for each contingency table in Figs. 1

and 3 for a range of different verification measures, and

beneath each column is shown the random expected score

for that column, E(Sjp, qs). A measure is deemed equi-

table if E(Sjp) 5 S0, and from (4) it can be seen that the

easiest way for this to occur is if E(Sjp, qs) 5 S0 for all qs.

In principle, one could have E(Sjp, qs) 6¼ S0, but achieve

cancellation between the differences from S0 in each

column such that E(Sjp) 5 S0 (as in Fig. 2e). In practice,

this is not possible for all values of qp, since each possible

qp leads to a different weighting between the columns.

Take the example in Fig. 1: for qp 5 ½, the probabilities of

obtaining each possible value of qs are P(qs 5 f0/4, 1/4, 2/4,
3/4, 4/4g) 5 f1/16, 4/16, 6/16, 4/16, 1/16g, but for qp 5 1/4, the

probabilities become f0.316, 0.422, 0.211, 0.047, 0.004g.
Therefore, our definition of equitability requires simply

that

E(Sjp, q
s
) 5 S

0
for all p and q

s
. (7)

We prove this result formally in the appendix, and make

use of it later in the paper. It also ensures equitability for

the possible (although improbable) forecaster who fixes

qs by declaring before the first forecast ‘‘in the 10 fore-

casts that will be verified I will predict occurrence ex-

actly 5 times.’’

Finally in this section, we consider the consequence of

requiring that the ‘‘expected score’’ in the definition of

equitability involves calculating the expectation for the

fixed ‘‘population base rate’’ pp, over all the possible

sample base rates, which we temporarily denote ps. Now

the expected score that we had previously written as

E(Sjp) is considered to be for a given sample base rate

and so is denoted E(Sjps). Following the reasoning that

led to (4), the expected score considering all possible

base rates is given by

E(S) 5 �
p

s

E(Sjp
s
)P(p

s
), (8)

FIG. 1. The possible contingency tables for the number of fore-

casts n 5 4 and base rate p 5 ½, as a function of the sample forecast

rate of occurrence qs and the Peirce skill score. The elements of the

contingency tables are a–d as shown in the white table to the top

left. The numbers above each box give P(a, b, c, djp, qs), the

probability of that table occurring randomly given one has a par-

ticular base rate and sample forecast rate of occurrence qs. There-

fore, these conditional probabilities sum to one in each column.
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where P(ps) is the probability of a particular sample

base rate. We may if we choose assume that the number

of events that occurred follows a binomial distribution

nps ; Bin(n, pp), as for nqs, but the essential result is that

if E(Sjps) 5 S0 for all ps, then E(S) 5 S0. Hence, if a

measure is equitable for one particular sequence of oc-

currences in reality, then it will also be equitable when

calculating the expectation over all possible ‘‘realiza-

tions’’ of reality.

b. Gandin and Murphy’s condition for equitability

The previous subsection established the important

result that a binary verification measure is equitable if

and only if E(Sjp, qs) 5 S0 for all p and qs. So how can we

apply this rule to test the equitability of particular

measures without needing to consider a specific example

such as in Fig. 1? We start this discussion by considering

the approach of Gandin and Murphy (1992). They con-

sidered only measures S that may be written as the linear

weighted sum of the terms a–d,

S 5
(S

a
a 1 S

b
b 1 S

c
c 1 S

d
d)

n
, (9)

and then proceeded to calculate the relationships be-

tween the weights Si that are necessary for the measure

to be equitable. Requirement 2 in the introduction in-

cludes the possibility of adding an offset S0 to (9), but

following Gandin and Murphy (1992), if we can prove a

measure with S0 5 0 to be equitable, then adding a

nonzero offset S0 to it will also yield an equitable mea-

sure. Gandin and Murphy made one further assumption

(also part of requirement 2), which was that the weights

can depend only on the base rate p. To impose the con-

dition that constant forecasts of occurrence (qs 5 1) yield

a 0 expected score requires that E(Sjp, qs) 5 0 when a 5

np, b 5 n(1 2 p), c 5 0, and d 5 0. Thus,

E(Sjp, q
s
5 1) 5 pS

a
1 (1� p)S

b
5 0. (10)

Likewise, to require that constant forecasts of nonoc-

currence (qs 5 0) also yield zero leads to

E(Sjp, q
s
5 0) 5 pS

c
1 (1� p)S

d
5 0. (11)

The third condition sets the scale of the measure; for ex-

ample, to make all perfect forecasts score unity, we write

S(np, 0, 0, n� np) 5 pS
a

1 (1� p)S
d

5 1. (12)

Gandin and Murphy (1992) did not take this last step,

but chose instead to impose the scale by explicitly setting

FIG. 2. Values of the scores for each of the contingency tables given in Fig. 1, together with

the expected score, E(Sjp, qs), for each value of the sample forecast rate of occurrence qs at the

bottom of each column. The asterisks in (d) and (f) indicate that a value is undefined due to zero

divided by zero or infinity divided by infinity.
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Sb 5 Sc 5 –1, thereby also making the explicit assump-

tion that misses and false alarms are weighted equally.

As shown by Manzato (2005), the assumption of equal

weighting between misses and false alarms has no effect

on the final result, and so it is clearer not to make it at all.

We prefer to set the scale of the measure via (12). Thus,

we have three equations [(10)–(12)] and four unknowns

(Sa, . . . , Sd), seemingly an underconstrained system.

However, the four unknowns are not independent of

one another because we know that a 1 c 5 np and b 1

d 5 n(1 2 p); so, therefore, we can relate the elements of

the contingency table via b 1 d 5 (a 1 c) 3 (1 2 p)/p.

This means that we can shuffle ‘‘mass’’ between the four

weights while keeping the resulting measure unchanged.

For example, suppose all four weights were nonzero and

we wanted to eliminate Sd. From this relationship be-

tween the elements of the contingency table we may

replace Sdd in (9) with Sd[–b 1 (a 1 c) 3 (1 2 p)/p],

which is equivalent to defining a new set of weights given

by the following primed values:

S9
a

5 S
a

1
S

d
(1� p)

p
; S9

b
5 S

b
� S

d
;

S9
c

5 S
c
1

S
d
(1� p)

p
; S9

d
5 0. (13)

Gandin and Murphy (1992) used (10) and (11), together

with their requirement on Sb and Sc, to show that one

particular equitable measure is defined by the weights

Sa 5 (1 2 p)/p, Sb 5 Sc 5 –1, and Sd 5 p/(1 2 p). This

also satisfies our scale condition given by (12). This may

FIG. 3. As in Fig. 1, but for the number of forecasts n 5 3 and base

rate p 5 1/3.

FIG. 4. Values of the scores for each of the contingency tables given in Fig. 3, together with

the expected score for each value of the sample forecast rate of occurrence at the bottom of

each column, E(Sjp, qs). Measures are only truly equitable if they have E(Sjp, qs) 5 0 in each

column. Note that unlike in Fig. 2a, (a) corresponds only to the HSS and not the PSS, which is

different in the case of qs 5 2/3. The asterisks in (d) and (f) indicate that a value is undefined.
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be simplified by eliminating Sd using the operations

given in (13) to yield Sa 5 1/p, Sb 5 –1/(1 2 p), and Sc 5

Sd 5 0, which is the same as the Peirce skill score (PSS)

defined by (2). [It should also be noted that p in Gandin

and Murphy’s derivation is the sample base rate, but

subsequent practice, at least for 3 3 3 tables, has been to

use a longer-term ‘‘population’’ base rate in defining

equitability, e.g., Livezey (2003).] Thus, the only degree

of freedom in this derivation is the scale of the measure

shown by the right-hand side of (12).

We may conclude that the Peirce skill score is the only

measure with scale 1 and S0 5 0 that satisfies Gandin and

Murphy’s definition of equitability. Recognizing that the

scale and the offset are not fixed by their requirements

of equitability, ‘‘Gandin–Murphy equitable measures’’

must have the form

S
GM

5 f (p)PSS 1 S
0
, (14)

where f(p) may be any positive function. Positivity is

necessary to ensure that forecasts better than random are

awarded a score greater than the expected random score

S0. In principle, a measure could have f depending also on

sample size n and still strictly satisfy the definition of

equitability given in the introduction, but it is difficult to

see when this would ever be an advantage as it would

mean that multiplying all elements of the contingency

table by a constant factor would change the score. Gandin

and Murphy (1992) actually stated that only PSS and

monotonic transformations of it satisfy the definition of

equitability set forth in their paper. One presumes that

by ‘‘monotonic’’ they actually meant ‘‘linear,’’ since non-

linear transformations would violate the linearity ex-

pressed in (9) and requirement 2. Moreover, it is important

to note that the scaling factor in the linear transformation

may depend on p, as shown in (14), but this was not clear

from Gandin and Murphy (1992). A simple example of

a measure other than PSS that satisfies (14) is the one of

Gringorten (1967), which has f 5 1 and S0 5 1.

c. A general condition for linear, equitable
measures

So where does this leave measures that cannot be

written in the form of (14), yet that appear to be equi-

table by requirement 1 in the introduction? An example

is the Heidke skill score (HSS; Heidke 1926), which is

written in two alternative ways (e.g., Hogan et al. 2009):

HSS 5
2(ad� bc)

(a 1 c)(c 1 d) 1 (a 1 b)(b 1 d)

5
a 1 d� E(ajp, q

s
)� E(djp, q

s
)

n� E(ajp, q
s
)� E(djp, q

s
)

, (15)

where E(ajp, qs) 5 npqs and E(djp, qs) 5 n(1 2 p)(1 2

qs) are the expected values of a and d for a random

forecast with a particular sample forecast rate of oc-

currence qs. For the two examples in Figs. 2a and 4a,

HSS does appear to be equitable in that the expected

score for each column, E(Sjp, qs), is 0. By rearrange-

ment, it is possible to express HSS in a form similar to

(14), with S0 5 0 and f 5 fHSS, where

f
HSS

5
2p(1� p)

(p 1 q
s
� 2pq

s
)

, (16)

that is, with f a function of both p and qs. It turns out that

fHSS 5 1 (and hence HSS 5 PSS) both when p 5 ½ and

when p 5 qs. This is confirmed in Fig. 2a: p 5 ½ leads to

HSS 5 PSS for all contingency tables. In Fig. 4a, where

p 5 1/3, it can be seen that HSS 5 PSS for the column

corresponding to qs 5 1/3, but in the column corre-

sponding to qs 5 2/3, we find HSS 5 0.8 PSS.

The Heidke skill score may also be expressed in the

form of (9), but only if the weights are allowed to vary

with both p and qs as follows:

S
a

5 S
d

5 1 and

S
b

5 S
c
5�

[pq
s
1 (1� p)(1� q

s
)]

[1� pq
s
� (1� p)(1� q

s
)]

.

Allowing these weights, and in turn the value of f, to vary

with qs violates Gandin and Murphy’s requirement 2 in

the introduction, but HSS does satisfy the more impor-

tant requirement 1. To prove this, consider a single

column of contingency tables in Fig. 1, for which we

know that the expected value of PSS for a random

forecast with a given value of qs is zero; that is, E(PSSjp,

qs) 5 0. Scaling PSS by an arbitrary factor f still yields

the same result, E( f PSSjp, qs) 5 0, and the resulting

measure is still equitable by the definition in (7). The

only requirement on f is that it is constant within a col-

umn, which means that it may vary with both p and qs,

but may not depend on any individual elements of the

contingency table. Thus, by our more permissive defi-

nition of equitability, the condition for a verification

measure to be equitable and linear is that it can be

written in the form

S
equitable, linear

5 f ( p, q
s
)PSS 1 S

0
, (17)

where f(p, qs) is any positive function of p and qs. By

linear we mean simply that for given p and qs, the

measure varies linearly with every individual member of

the contingency table; that is, the measure can be writ-

ten in the form of (9) with the weights Si being func-

tions of only p and qs. Requirement 2 of Gandin and

Murphy (1992) was a little more restrictive, requiring
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linear variation with the elements of the contingency ta-

ble just for a given p (and therefore excluding HSS). The

merits or otherwise of allowing f to depend on qs de-

serve a little discussion. On one hand, it allows measures

such as HSS to be transpose symmetric (Stephenson

2000), that is, to be invariant if the observations and the

forecasts are swapped. On the other hand, if f increased

strongly with qs, say, then a forecaster with some skill

may be able to increase his or her expected score by

randomly changing some forecasts of nonoccurrence to

occurrence (although this is not true of HSS). However,

these considerations are independent of the property of

equitability encapsulated in requirement 1. In the next

two sections we demonstrate that it is the nonlinearity of

a number of measures that prevents them from being

equitable, and in section 5 it is shown how they may be

transformed into equitable measures while retaining

their nonlinearity.

3. Measures that are inequitable for small sample
sizes

There are a large number of verification measures in

the literature that cannot be written in the form of (17),

and in this section we demonstrate that they are in-

equitable by writing out the scores explicitly for the

examples in Figs. 1 and 3.

a. The critical success index and the equitable threat
score

Motivated by Finley’s paper, Gilbert (1884) proposed

two verification measures, the first of which is now most

commonly referred to as the critical success index

(Donaldson et al. 1975), given by

CSI 5
a

(a 1 b 1 c)
, (18)

although it is also sometimes called the threat score. As

recognized by Gilbert (1884) and reiterated by Mason

(1989) and Schaefer (1990), this measure has the dis-

advantage that equally unskillful forecasting systems,

for example, those that always predict occurrence and

those that always predict nonoccurrence, yield a differ-

ent score, and therefore in modern terminology it is

definitely inequitable. This is revealed clearly in Fig. 2b,

where we can see also that the expected scores for ran-

dom forecasts E(Sjp, qs) increase steadily with qs.

Gilbert proposed an alternative measure in which the

expected number of hits [E(ajp, qs) 5 npqs 5 (a 1 b)

(a 1 c)/n] obtained by a random forecasting system with

the same forecast rate of occurrence (qs) as the actual

forecasting system is subtracted from both the numerator

and denominator. This measure is now most commonly

referred to as the equitable threat score, given by

ETS 5
[a� E(ajp, q

s
)]

[a� E(ajp, q
s
) 1 b 1 c]

. (19)

The presence of a, b, and c on the denominator means

that this measure cannot be rewritten in the form of (13)

and therefore is inequitable by Gandin and Murphy’s

requirement 2 in the introduction. Figure 2c shows that

ETS is also inequitable by requirement 1; although it is

0 for constant forecasts of occurrence or nonoccurrence,

its expected value is positive for random forecasting

systems with 0 , qs , 1. This pattern of behavior ap-

pears to originate from its nonlinear dependence on the

elements of the contingency table; in a given column of

Fig. 1, as one progresses up through the contingency

tables, the elements a–d each change by only one from

one table to the next. Yet, ETS changes by an increasing

amount toward the more positive scores. Hence, there is

incomplete cancellation between the positive and neg-

ative scores, leading to a positive expected value. It turns

out that ETS is monotonically but nonlinearly related to

the truly equitable Heidke skill score via ETS 5 HSS/

(2 – HSS) (Doswell et al. 1990).

So what is the origin of the term equitable threat

score? Schaefer (1990) analyzed it and its relationship to

CSI, but called it the Gilbert score. Mason (2003) at-

tributed the name ETS to both Schaefer (1990) and

Doswell et al. (1990), but neither actually used the term.

The term appears to have been first used in the literature

by Mesinger and Black (1992), who cited Gandin and

Murphy’s (1992) statement that ‘‘many skill scores used

to evaluate forecasts of discrete variables are in-

equitable, in the sense that constant forecasts of some

events lead to better scores than constant forecasts of

other events.’’ Since the modified version of the threat

score considered by Schaefer (1990) did not have this

deficiency, Mesinger and Black felt justified in referring

to it as the ‘‘equitable’’ threat score, without noting that it

did not satisfy the other aspect of Gandin and Murphy’s

requirement 1 for a measure to be equitable, that all

random forecasts must to receive the same expected score

as all constant forecasts. The name has stuck and ETS is

now one of the most widely used verification measures in

meteorology. One of the anonymous reviewers informed

the authors that the term equitable threat score was in-

troduced at the then U.S. National Meteorological Center

by Mesinger in 1991 following a seminar by Gandin, but

before the Gandin and Murphy (1992) paper had been

published and their full definition was available.

Although strictly inequitable, ETS does have the

property that if we calculate the expected values of each
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of the elements of the contingency table over all possible

random forecasts with the same p and qs, and apply the

measure to them, then we obtain

ETS[E(ajp, q
s
), E(bjp, q

s
), E(cjp, q

s
), E(djp, q

s
)] 5 0.

This is indicated by the zeros in the middle row of Figs.

2c and 4c (where PSS is also zero). It appears to be a

widespread misconception that if a measure yields 0

when applied to the expected values of the elements of

the contingency table, then it will also have an expected

value of zero over all realizations of a random forecast.

This is only valid if a measure is linear [i.e., satisfies (17)].

Indeed, Gandin and Murphy (1992) took this shortcut for

the linear measures they considered. The extent to which

ETS is inequitable for larger samples will be examined in

section 4, along with several other measures.

b. Other inequitable measures

A number of verification measures have been advo-

cated more recently that have desirable properties yet also

cannot be written in the form given by (17). Stephenson

(2000) proposed the odds ratio skill score (sometimes

referred to as Yule’s Q; Yule 1900), defined as

ORSS 5
(OR� 1)

(OR 1 1)
,

where the odds ratio is defined as OR 5 ad/(bc). It can

be seen in Figs. 2d and 4d that ORSS is inequitable ex-

cept for the special case of p 5 ½, although Stephenson

(2000) and Mason (2003) stated it to be equitable. (Note

that even for p 5 ½ we have to neglect the case of qs

equal to 0 or 1, as this leads to ORSS being undefined,

although it would be a simple matter to define ORSS to

be zero for these values of qs.) As with ETS, ORSS does

award the expected random contingency table a score of

zero, but its nonlinearity means that this does not lead to

its expected value over all possible random forecasts

being zero. Stephenson also proposed the log of odds

ratio, defined as LOR 5 ln(OR), which is rather more

difficult to judge for small sample sizes due to it taking

the value 6‘ when any of the elements of the contin-

gency table are 0. In practice, LOR is a more reliable

indicator of skill for rare events than, for example, the

Heidke skill score, which tends to the meaningless limit

of 0 (e.g., Hogan et al. 2009).

Stephenson et al. (2008) proposed the extreme de-

pendency score,

EDS 5 ln(p2)/ ln(a/n)� 1, (20)

specifically for verification of rare events; they showed

that for unbiased samples it is a reliable indicator of

skill as p / 0. However, Figs. 2e and 4e show that this

measure is inequitable and, moreover, random forecasts

that overpredict occurrence (i.e., those with higher qs)

are rewarded by a higher expected score (see also Primo

and Ghelli 2009). This property is shared by CSI. Be-

cause of this, Stephenson et al. (2008) specified that EDS

should always be used with calibrated (zero bias) fore-

casts. Hogan et al. (2009) proposed the symmetric ex-

treme dependency score, defined as

SEDS 5 ln(pq
s
)/ ln(a/n)� 1, (21)

which can be applied to uncalibrated forecasts while

retaining the same desirable properties for verifying rare

events. Figures 2f and 4f demonstrate that it is still in-

equitable for these small samples, although this time the

expected random contingency table for a given qs (i.e.,

the middle rows of Figs. 1 and 3, corresponding to PSS 5

0) always receives a score of 0. The exception is the case

of qs 5 0, which results in SEDS being undefined due to

the logarithm of 0 appearing in the numerator and de-

nominator.

None of the example cases in Figs. 1–4 are equitable

for all values of base rate without satisfying the criterion

for linear equitability embodied in (17). The apparent

need for linearity may be illustrated by considering what

happens when we take a nonlinear transformation of the

equitable Heidke skill score that is symmetric about

a score of zero, for example, HSS cubed (HSS3). In the

case of p 5 ½, it can be seen on inspection of Fig. 2a that

the numbers awarded for each contingency table would be

changed, but there would still be cancellation between

positive and negative scores when calculating the expected

score. However, in the case of p , ½, it can be seen from

Fig. 4a that there would no longer be direct cancellation,

and the expected score would be nonzero in general. This

yields an apparent conflict, since it is the very nonlinearity

of some measures that imparts particular desirable prop-

erties. For example, the presence of logarithms in the

definition of the log of odds ratio and the extreme de-

pendency score (and its symmetric equivalent) is what

makes them still convey information on the intrinsic

skill of a forecast for low base rates, when the truly

equitable HSS and PSS tend to a meaningless value of

0 (Stephenson 2000; Stephenson et al. 2008; Hogan et al.

2009). A solution to this dilemma will be presented in

section 5.

4. The concept of asymptotic equitability

a. Numerical examples for increasing sample size

The probability that a random forecasting system pro-

duces a contingency table very different from the expected
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contingency table decreases as n increases. Furthermore,

the expected value of a function of the contingency table

will then tend toward the same function applied to the ex-

pected contingency table as n increases. These arguments

can be made precise by the weak law of large numbers

and the continuous mapping theorem (e.g., Severini 2005,

p. 336) as long as the function is suitably continuous.

Within the context of this paper,

lim
n!‘

E[S(a, b, c, d)jp, q
s
]

5 S[E(ajp, q
s
), E(bjp, q

s
), E(cjp, q

s
), E(djp, q

s
)].

(22)

Since many nonlinear measures are designed such that

the right-hand-side of (22) is zero, this leads to them

approaching equitability as the sample size is increased.

To demonstrate this, Fig. 5a shows the expected value of

a random forecast, with a base rate and population

forecast rate of occurrence qp both equal to 0.5, as a

function of the number of samples n. This was calculated

by numerically computing the score for every possible

contingency table and applying (4). In order for the

number of occurrences np to be an integer, n must be

divisible by 1/p 5 2. The value of np is shown in the scale

at the top of the figure. It can be seen that for small n, the

expected value of the ETS for a random forecast is

considerably greater than 0, but it decreases rapidly as n

increases, to less than 0.01 for n . 30, for any base rate.

We therefore describe ETS as being asymptotically eq-

uitable, that is, tending to equitability (by the definition

in this paper) as n tends to infinity. SEDS also falls into

this category, although CSI does not as it can be seen not

to be equitable even in the limit of large n [indeed, CSI

converges to pqs/(p 1 qs 2 pqs) as n increases with p and

qs held fixed]. As found in the previous section, for p 5

0.5, HSS, PSS, and ORSS are all equitable for all n and,

therefore, fall along the dotted line shown in Fig. 5a.

Note that in calculating the expected value of ORSS, we

are assuming that it is defined to be 0 whenever qs is

equal to 0 or 1, and similarly for SEDS when qs 5 0.

FIG. 5. The expected values of a number of verification measures E(Sjp) vs sample size, for random forecasting

systems with base rate p and population forecast probability of occurrence qp of (a) p 5 qp 5 0.5, (b) p 5 qp 5 0.1, (c)

p 5 qp 5 0.02, and (d) p 5 0.1 and qp 5 0.2. The undefined values are removed from consideration when calculating

SEDS, but when these occupy more than 25% of the probability space, SEDS is not plotted; this only affects (b)

and (c).
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Figures 5b and 5c show the same plots but for p and qp

both reduced by a factor of 5 and 25 from that shown in

Fig. 5a. The abscissa is changed since again it is only

meaningful to consider integer values of the total number

of occurrences np. This time only HSS and PSS are truly

equitable, as shown by the horizontal dotted line. ETS

exhibits the same dependence on n as before, becoming

essentially equitable for n greater than around 30, while

ORSS, EDS, and SEDS tend toward equitability only for

considerably larger sample sizes; for p 5 qp 5 0.1, we find

that one needs a sample size greater than around 1000

before the magnitude of the expected score for random

forecasts falls below around 0.01, while for p 5 qp 5 0.02,

this number is many times greater. Figure 5d shows the

case for a biased forecast with p 5 0.1 and qp 5 0.2. In this

case the unconditional inequitability of EDS is evident

from its non zero asymptote in the limit of large n.

In the introduction we noted that ETS and ORSS have

previously been described as equitable (e.g., Mason

2003; Stephenson 2000); this is presumably because it

has been implicitly assumed that the equality in (22)

holds even without taking the limit of large n, which is

only true for linear measures. Another way of express-

ing this is that the word ‘‘expected’’ in the definition of

requirement 1 in the introduction has been treated as if

it had been applied to ‘‘random forecasting system’’

rather than ‘‘score,’’ such that if the expected contin-

gency table for a random forecasting system scored 0,

then the measure has been treated as equitable.

The extent of the inequitability of ORSS and SEDS for

p 5 qp 5 0.02 is quite startling; for sample sizes smaller

than around 1000, a random forecasting system has an

expected score of less than 20.5. An original justification

for the requirement 1 in the introduction was that it made

hedging impossible for random forecasting systems, but

either of these measures could be hedged by forecasting

occurrence all the time (or almost all the time in the case

of ORSS, since it is undefined for qs 5 1), although ad-

mittedly this would only increase the score awarded to 0.

To determine whether asymptotically equitable mea-

sures approach zero from above or below, we may use

Jensen’s inequality, which states that the expectation of a

convex function of a random variable is bounded below

by the function applied to the expectation of the random

variable, while for a concave function it is bounded above.

For given p and qs, the only random variable in the con-

tingency table is a, and it is apparent from their definitions

that ETS is a convex function of a while SEDS and ORSS

are concave functions of a. Jensen’s inequality therefore

predicts that E[ETS(a)jp, qs)] $ ETS[E(ajp, qs)]. Since

ETS[E(ajp, qs)] 5 0, the expectation of ETS is positive or

0, while the expectations of SEDS and ORSS are negative

or 0, which is indeed what is observed in Fig. 5.

Table 1 presents a list of all the measures used in this

paper, but placed into the appropriate categories of truly

equitable, asymptotically equitable, and not equitable.

Here, a measure is judged to be truly equitable by the

criterion of this paper if it satisfies requirement 1 given

in the introduction, or equivalently satisfies Eq. (7). The

Peirce skill score is the only measure in Table 1 that also

satisfies Gandin and Murphy’s (1992) criteria for equi-

tability. Note that there are many other not equitable

measures in the literature that we have not considered

(e.g., hit rate, false alarm rate, and proportion correct).

b. Application to Finley’s tornado data

A classic example of a set of forecasts of rare events is

the set of tornado forecasts of Finley (1884). He con-

sidered n 5 2803 forecasts for which only np 5 51 tor-

nados occurred, so the base rate was very low at p 5

0.018, similar to Fig. 5c. His contingency table had the

following elements: a 5 28, b 5 72, c 5 23, and d 5 2680.

Table 1 shows the values of the various measures for this

contingency table, together with the expected scores for

a random forecasting system E(Sjp), calculated by sum-

ming over all possible contingency tables using a pop-

ulation forecast rate of occurrence qp of 0.0357, which is

the proportion of forecasts in which a tornado was actu-

ally forecast in Finley’s dataset. Of the asymptotically

equitable measures, it can be seen that the expected

values of ETS and HSS3 for a random forecast are close

enough to 0 that they can be considered to be effectively

equitable for this value of n.

The other asymptotically equitable measures (SEDS

and ORSS) cannot be considered equitable for the Finley

data, as expected scores for a random forecasting system

are notably different from zero. For these measures, the

key parameter in determining the number of samples

required before equitability can be assumed appears to

be the number of hits that would be expected by chance

for a random forecasting system, E(ajp) 5 npqp. In

considering a range of values of p and qp, we find em-

pirically that when E(ajp) is less than around 10 (corre-

sponding to n 5 1000 for p 5 qp 5 0.1 and n 5 25,000 for

p 5 qp 5 0.02), the magnitude of the expected score for

a random forecasting system can exceed 0.01 and there-

fore these measures cannot be treated as equitable. In the

case of the Finley data, the number of hits expected by

chance (now for a given qs) is only E(ajp, qs) 5 1.82 (see

also Table 4 of Stephenson 2000).

c. When does the difference between asymptotically
equitable and truly equitable matter?

In the case of Finley’s tornado data, the forecasts are

actually much better than random, so it might be argued

that in this case the theoretical concerns about using an
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asymptotically equitable score can be dismissed since

the actual number of hits, a 5 28, is so much larger than

the expected number by chance E(ajp, qs) 5 1.82. It is

true that the detrimental consequences of using as-

ymptotically equitable measures on small samples are

more easily demonstrated for poor forecasts. Consider

a forecaster whose forecasts of rare events are routinely

evaluated using either SEDS or ORSS. Figures 5b–d

show that random forecasts may yield an expected value

of these two measures that is very much lower than zero.

If the forecaster had low but better-than-random skill,

on average, and was evaluated using samples small

enough that sometimes the forecast sample performed

worse than would be expected by chance, then it is

possible that the mean score received by the forecaster

could be less than 0. He or she would rightly want to be

assessed on samples large enough that the verification

measure could be reasonably regarded as equitable, for

example, based on the criterion given earlier of npqp $

10. Therefore, considerable care should be taken while

using such measures when this criterion is not satisfied.

A potential solution is always to report confidence

intervals on verification measures, as these will indicate

whether a set of forecasts can be considered to be sig-

nificantly better than random. In the case of the fore-

caster with low skill, his or her low value of the number

of hits will result in a large error in the calculated per-

formance measure, likely indicating that the forecast is

indistinguishable from random, and therefore a larger

sample size is required. This can be illustrated with

Finley’s tornado data. Suppose the tornado predictions

were only slightly better than random, such that (from the

final two columns of Table 1) the expected value of ORSS

awarded lay between 20.14 and 0. The standard error of

ORSS calculated on a forecast that actually happened to

predict close to the expected random elements of the

contingency table (e.g., Table 4 of Stephenson 2000) is

around 0.68. Therefore, it would be very clear that the

sample was insufficiently large to distinguish the forecast

from a random one. The footnote to Table 1 provides

references for the calculation of the standard error of each

of the measures shown.

TABLE 1. The first column classifies various verification measures into those that are truly equitable (i.e., satisfy requirement 1 in the

introduction for any sample size n, base rate p, and population forecast rate qp), those that are asymptotically equitable (equitable only in

the limit n / ‘, for all p and qp), and those that are not equitable. The second column gives the value of the measure when applied to

Finley’s (1884) tornado forecasts, together with its standard error.* The third column gives the expected value of the measure for an

equivalent random forecasting system with the same p as in Finley’s data, and a population forecast rate of occurrence qp set equal to the

value of qs for Finley’s data; hence, the value shown is E(Sjp), as defined in (3) and (4). The fourth column gives the score when applied to

the expected values of a–d for an equivalent random forecasting system, i.e., S[E(ajp, qs), E(bjp, qs), E(cjp, qs), E(djp, qs)]. The truly

equitable measures are the only ones to have a score of 0 in the third column.

Results for Finley’s tornado forecasts

Name of measure Score* Expected random score Score for expected random table

Truly equitable (linear)

Peirce skill score (PSS) 0.523 6 0.069 0 0

Heidke skill score (HSS) 0.355 6 0.058 0 0

Truly equitable (nonlinear)

Equitably transformed ETS 0.216 6 0.043 0 20.0001

Equitably transformed ORSS 0.963 6 0.011 0 0.13

Equitably transformed SEDS 0.646 6 0.038 0 0.13

Eq. (25) 0.296 6 0.077 0 20.0007

Asymptotically equitable

Equitable threat score (ETS) 0.216 6 0.043 0.0001 0

Heidke skill score cubed (HSS3) 0.045 6 0.022 0.000004 0

Odds ratio (OR) 45 6 14 1‘/11.03*** 1

Log of odds ratio (LOR) 3.81 6 0.31 2‘/20.04*** 0

Odds ratio skill score (ORSS)** 0.957 6 0.013 20.14 0

Symmetric extreme dependency score (SEDS) 0.593 6 0.044 20.15 0

Not equitable

Critical success index (CSI) 0.228 6 0.038 0.012 0.012

Extreme dependency score (EDS) 0.740 6 0.048 20.07 0.091

*Standard errors have been calculated for the various scores according to the following papers or methods: PSS, Stephenson (2000); HSS,

Hogan et al. (2009); ETS (as a monotonic function of HSS); OR, LOR, and ORSS, Stephenson (2000); SEDS, Hogan et al. (2009); CSI,

Hilliker (2004); EDS, Stephenson et al. (2008); the equitably transformed measures [by performing an error analysis on Eq. (23)]; and Eq.

(25), as outlined in the text.

**Note that ORSS is truly equitable for the special case of p 5 0.5.

***Strictly the expected values of OR and LOR are infinity, but if the one or two occurrences of infinity are removed from the mean, the

resulting expected values are 1.03 and 20.04, respectively.
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An alternative way to distinguish an actual forecast

from a random one is to calculate the ‘‘p value,’’ which is

the probability that a score equal to or greater than that

awarded could have been obtained by chance. If we

condition this probability on p and qs, then the probability

of a random forecasting system obtaining ORSS $ 0 for

Finley’s tornados is P(ORSS $ 0jp, qs) 5 0.55, thus in-

distinguishable from random. Conversely, the probability

of randomly forecasting as well as or better than Finley’s

actual forecasts is P(ORSS $ 0.957jp, qs) 5 6 3 10229.

Conveniently, this second p value is the same no matter

what verification measure we choose.

5. Nonlinear equitable measures

a. How to make an inequitable measure equitable

It turns out that we may transform any inequitable or

asymptotically equitable measure S (even a nonlinear

one) into a truly equitable measure S9 via the simple

linear transformation:

S9 5
S� E(Sjp, q

s
)

max(S)� E(Sjp, q
s
)

, (23)

where the only requirement on S is that the expected

score for a random forecasting system, E(Sjp, qs), and

the score for a perfect forecasting system, max(S), are

finite. Unfortunately, this excludes the odds ratio and

the log of odds ratio. Clearly, (23) is very similar to the

classic definition of a skill score, in which some function

of the contingency table S is compared to the value for

a baseline forecast, which may be climatology, persis-

tence, or a random forecast. In (23) we require that this

baseline value is specifically set to be E(Sjp, qs).

To illustrate this transformation, consider the values

of equitable threat scores for n 5 4 and p 5 qs 5 ½,

shown by the middle column of the contingency tables in

Fig. 2c. It can be seen that a perfect forecast scores 1, the

expected contingency table for a random forecast scores

0, and the worst possible forecast scores 21/3. This results

in E(Sjp, qs) 5 1/9. Performing the transformation in (23)

yields corresponding values for the ‘‘equitably trans-

formed ETSs’’ of 1, 21/8, and 2½, respectively. It is then

easily confirmed that E(S9jp, qs) 5 0. We do have the

curious property that the expected contingency table for

a random forecasting system no longer scores 0, even

though the expected value of the score overall is 0. This

is a consequence of the fact that the nonlinearity has

been retained, so it is not possible, in general, for both of

these quantities to be 0 as it is for linear measures such as

PSS and HSS.

Table 1 shows the equitably transformed versions of

ETS, ORSS, and SEDS applied to Finley’s forecasts. Of

course, this is specifically a linear transform, and an al-

ternative would be to apply a nonlinear transform, such

as that transforming ETS into HSS. However, this case

removes the nonlinearity of the original measure, which

may not be desirable. In the case of the linear equitable

transform of SEDS, it appears that we are able to have

the best of both worlds: a truly equitable measure that is

also nondegenerate for rare events via its nonlinearity.

Note that for many nonlinear measures it is difficult or

impossible to express E(Sjp, qs) analytically, so in prac-

tice it would need to be calculated numerically in the

application of an equitable transform.

b. A method to generate nonlinear equitable
measures

Rather than transforming existing nonlinear measures

to make them equitable, another approach to develop-

ing equitable nonlinear measures is to generalize (17) to

S 5 f (p, q
s
)

g(a)

E[g(a)jp, q
s
]
� h(b)

E[h(b)jp, q
s
]

� �
1 S

0
, (24)

where g(a) and h(b) can be any positive, monotonically

increasing function of their arguments, and f(p, qs) must

be positive as before. The resulting measure is equitable,

since for a given p and qs, a random forecast will have

expected values of 1 for both of the two terms inside the

braces; these will therefore cancel to yield an expected

value for the measure of S0.

The Peirce skill score represents the simplest case,

with f 5 qs, S0 5 0, and g(x) 5 h(x) 5 x. An example of a

nonlinear measure created from (24) uses f 5 qs
2, S0 5 0,

and g(x) 5 h(x) 5 x(x 2 1). Since the expected values of

g(a) and h(b) can be written out analytically in this case,

we obtain

S 5
a(a� 1)

np(np� 1)
� b(b� 1)

(n� np)(n� np� 1)

5
a(a� 1)

(a 1 c)(a 1 c� 1)
� b(b� 1)

(b 1 d)(b 1 d� 1)

. (25)

The value of f has been chosen such that a perfect fore-

cast always scores 1. Application to Finley’s forecasts in

Table 1 confirms that this measure is indeed equitable.

Error bounds can be calculated for this measure by mod-

eling a and b as independent binomially distributed vari-

ables: ajp ; Bin(np,) and bjp ; Bin[n(1 2 p), F], where

the hit rate is H 5 a/(a 1 c) and the false alarm rate is F 5

b/(b 1 d), enabling the errors in a and b to be estimated.

Note that we are not arguing that the measure shown

in (25) has any desirable properties apart from equita-

bility; it simply serves to demonstrate how nonlinear

equitable measures may be generated. It would be inter-

esting to see if a measure of this form could be developed
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that is reliable for rare events, but such work is beyond

the scope of this paper.

6. Discussion and conclusions

Gandin and Murphy (1992) pioneered the concept of

equitability and proposed the definition expressed by

the two requirements stated in the introduction. In this

paper we have argued that only the first is necessary: that

an equitable verification measure awards all random

forecasting systems, including those that always forecast

the same value, the same expected score. A detailed

discussion of why this is desirable was given in the in-

troduction. By removing Gandin and Murphy’s linearity

requirement, equitability is no longer incompatible with

some other desirable properties, such as being a reliable

indicator of skill for rare events. We have highlighted

that there appears to be some confusion in the literature

about the meaning of equitability, by demonstrating that

the widely used verification measure ‘‘equitable threat

score’’ (ETS) is not in fact equitable. Given this fact, we

recommend that in future the measure should be known

by one of its other names, most obviously the Gilbert

skill score (Mason 2003), and that the terminology ETS

should be avoided. We suggest the term ‘‘asymptotically

equitable’’ to describe measures, like ETS, that are eq-

uitable only in the limit of a large sample of forecasts,

leading to the hierarchy of equitability shown in Table 1.

This has implications for the selection of verification

measures to use in a particular application. Many new-

comers to the field of forecast verification are bewil-

dered by the number of different measures available to

measure the skill of a set of binary forecasts, and ask why

there is not one that is the best to use. Murphy (1991)

pointed out that the verification problem is inherently

multidimensional, and indeed Figs. 1 and 3 plot the

possible sets of forecasts in a two-dimensional space,

indicating that at least two numbers must be reported to

fully characterize performance (e.g., a measure of bias

and a measure of skill). As has been stated by previous

authors, the further problem is that different measures

of skill have desirable properties (e.g., equitability, dif-

ficulty to hedge, and usefulness for rare events) in dif-

ferent amounts, and none is strong in all. Nonetheless, if

equitability is regarded as high on the list of desirable

properties for a measure of skill, then Table 1 provides

some guidance on preferred measures to use.

In general, the case for advocating asymptotically

equitable measures over inequitable ones is easy to

make since the other desirable properties can always

be retained. If we adhere to Gandin and Murphy’s

requirements for equitability, then the same does not

hold for advocating true equitability over asymptotic

equitability. A clear example is the property of tending to

a useful value in the limit of very rare events (p / 0),

which is possible for EDS and SEDS by the use of log-

arithms in the definition of these measures, but the re-

sulting nonlinear dependence on the elements of the

contingency table is what makes them violate Gandin

and Murphy’s second requirement, as given in the in-

troduction, and the two desirable properties of true

equitability and being nondegenerate for rare events

appear to be incompatible. If we have a large enough

sample, then an asymptotically equitable measure will

be close enough to equitable that this dilemma goes

away; Stephenson et al. (2008) and Hogan et al. (2009)

clearly showed that for large datasets, the truly equitable

HSS and PSS measures were degenerate for rare events,

a problem overcome by the use of EDS or SEDS (pro-

vided the former is calibrated first).

For smaller sample sizes when the inequitability of

these measures is likely to be more of a problem, there

appears to be a simple solution: by rejecting Gandin and

Murphy’s second requirement of equitability, we are per-

mitted to rescale nonlinear measures such as SEDS so that

they are truly equitable while retaining their desirable

properties for verifying rare events. This opens up the

possibility of new equitable measures to be designed that

have many more desirable properties than has previously

been possible to encapsulate within a single measure.
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APPENDIX

Proof of Eq. (7)

In this appendix we prove that E(Sjp) 5 S0 for all p and

qp if and only if E(Sjp, qs) 5 S0 for all p and qs, leading to

Eq. (7). The backward implication is straightforward:

E(Sjp) 5 E[E(Sjp, qs)] 5 E(S0) 5 S0 for all p and qp. For

the forward implication, we let f 5 nqs. Then,

E(Sjp) 5 E[E(Sjp, f )] 5 �
n

f 50
P( f jp)�

a
P(ajp, f )S(a),

(A1)

where we have written P(ajp, f) for P(ajp, qs) and S(a)

for S(a, f 2 a, pn 2 a, n 2 pn 2 f 1 a). The two sum-

mations can be thought of as summing over the columns

and rows of the possible contingency tables in Figs. 1 and

3. Substitution of (5) into (A1) leads to
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E(Sjp) 5 �
n

f 50
C(n, f )qf

p(1� q
p
)n� f �

a
P(ajp, f )S(a).

(A2)

Now P(ajp, f) and S(a) are independent of qp; so, from

(A2) we see that E(Sjp) is a polynomial in qp. But E(Sjp)

is constant in qp by assumption and equal to S0. There-

fore, the coefficients of must be 0 for all f . 0 and must

equal S0 when f 5 0. We now show by induction that

these restrictions imply that

E(Sjp, f ) 5 �
a

P(ajp, f )S(a) 5 S
0
, (A3)

for all f 5 0, 1, . . . , n. To find the coefficient of qp
f in the

polynomial, we first note that the binomial theorem

gives

(1� q
p
)n� f

5 �
n� f

r50
C(n� f , r)(�1)rqr

p. (A4)

Therefore,

E(Sjp)

5 �
n

f 50
�
n�f

r50
C(n, f )C(n� f , r)(�1)rqr1 f

p �
a

P(ajp, f )S(a),

(A5)

and rewriting the summation indices yields

E(Sjp)

5�
n

t50
�

n

r5t
C(n, t)C(n� t, r � t)(�1)r�tqr

p�
a

P(ajp, t)S(a).

(A6)

The coefficient of qp
f is therefore

�
f

t50
C(n, t)C(n� t, f � t)(�1) f�t �

a
P(ajp, t)S(a). (A7)

When f 5 0, we obtain

S
0

5 �
a

P(ajp, 0)S(a). (A8)

We may assume that Sa P(ajp, r)S(a) 5 S0 for all r 5 0,

. . . , f 2 1. The coefficient of qp
f is then

S
0
�
f�1

t50
C(n, t)C(n� t, f � t)(�1) f�t

1 C(n, f )�
a

P(ajp, f )S(a). (A9)

By expanding the binomial coefficient C(�,�) into its

component factorials, we find that

�
f�1

t50
C(n, t)C(n� t, n� f )(�1) f�t

5 (�1) f C(n, f ) �
f�1

t50
C( f , t)(�1)t

5 (�1) f C(n, f ) �(�1) f
1 C �

f

t50
C( f , t)(�1)t

2
4

3
55�C(n, f ). (A10)

The last step of (A10) is a consequence of the binomial

theorem [Eq. (A4)], which shows that the summation is

zero. Thus,

�C(n, f )S
0

1 C(n, f )�
a

P(ajp, f )S(a) 5 0,

and the result [Eq. (A3)] follows.
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