Search from over 60,000 research works

Advanced Search

Rejoinder to 'Performance of different synchronisation measures in real data: A case study on electroencephalograhic signals

Full text not archived in this repository.
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Nicolaou, N. and Nasuto, S.J. orcid id iconORCID: https://orcid.org/0000-0001-9414-9049 (2005) Rejoinder to 'Performance of different synchronisation measures in real data: A case study on electroencephalograhic signals. Physical Review E, 72. 063901. doi: 10.1103/PhysRevE.72.063901

Abstract/Summary

We agree with Duckrow and Albano [Phys. Rev. E 67, 063901 (2003)] and Quian Quiroga et al. [Phys. Rev. E 67, 063902 (2003)] that mutual information (MI) is a useful measure of dependence for electroencephalogram (EEG) data, but we show that the improvement seen in the performance of MI on extracting dependence trends from EEG is more dependent on the type of MI estimator rather than any embedding technique used. In an independent study we conducted in search for an optimal MI estimator, and in particular for EEG applications, we examined the performance of a number of MI estimators on the data set used by Quian Quiroga et al. in their original study, where the performance of different dependence measures on real data was investigated [Phys. Rev. E 65, 041903 (2002)]. We show that for EEG applications the best performance among the investigated estimators is achieved by k-nearest neighbors, which supports the conjecture by Quian Quiroga et al. in Phys. Rev. E 67, 063902 (2003) that the nearest neighbor estimator is the most precise method for estimating MI.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/15348
Item Type Article
Refereed Yes
Divisions Life Sciences > School of Biological Sciences > Department of Bio-Engineering
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar